Integrating Local Information-based Link Prediction Algorithms with OWA Operator

James N. K. Liu ${ }^{1}$, Yu-Lin He ${ }^{2}$, Yan-Xing Hu ${ }^{1}$ Xi-Zhao Wang ${ }^{2}$ and Simon C. K. Shiu ${ }^{1}$
${ }^{1}$ Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
${ }^{2}$ Key Laboratory in Machine Learning and Computational Intelligence of Hebei Province, College of Mathematics and Computer Science,Hebei University, Baoding 071002, China

Keywords: OWA Operator, Link Prediction, Social Network Analysis, Ensemble.

Abstract

The objective of link prediction for social network is to estimate the likelihood that a link exists between two nodes x and y. There are some well-known local information-based link prediction algorithms (LILPAs) which have been proposed to handle this essential and crucial problem in the social network analysis. However, they can not adequately consider the so-called local information: the degrees of x and y, the number of common neighbors of nodes x and y, and the degrees of common neighbors of x and y. In other words, not any LILPA takes into account all the local information simultaneously. This limits the performances of LILPAs to a certain degree and leads to the high variability of LILPAs. Thus, in order to make full use of all the local information and obtain a LILPA with highly-predicted capability, an ordered weighted averaging (OWA) operator based link prediction ensemble algorithm (LPE OWA) is proposed by integrating nine different LILPAs with aggregation weights which are determined with maximum entropy method. The final experimental results on benchmark social network datasets show that LPE $_{\text {OWA }}$ can obtain higher prediction accuracies which is measured by the area under the receiver operating characteristic curve (AUC) in comparison with nine individual LILPAs.

1 INTRODUCTION

With the development of information technology and big data mining (Lin and Ryaboy, 2013), the social network analysis is attracting more and more attentions and becoming a research hot-spot of sociology and statistics. The social network analysis (Carrington et al., 2005; Knoke and Yang, 2008) refers to mine and discover the underlying knowledge from a social network diagram by using the mathematical and graphical techniques. The social network is represented as a graphic structure that made up of a set of nodes and links, where nodes represent the individuals within network and links denote the relationships between individuals. The main studies of social network analysis include the identification of lo$\mathrm{cal} / \mathrm{global}$ patterns, location of social units, and modeling of dynamic network, etc, where the link prediction (Al Hasan and Zaki, 2011; Cukierski et al., 2011; Dong et al., 2012; Fire et al., 2011; Lü and Zhou, 2011) as a branch of network pattern recognition is the most fundamental and essential problem for the social network analysis.

The link prediction for social network attempts to
estimate the existence likelihood of a link between two nodes x and y in social network. The essence of link prediction algorithm is to assign a score for the non-existent link in social network (Lü and Zhou, 2011; Lü et al., 2009; Zhou et al., 2009), where the score quantifies the existence likelihood of this non-existent link. So far, there are many link prediction strategies which have been proposed (Lü and Zhou, 2011), e.g., similarity-based algorithms, maximum likelihood methods, probabilistic models and so on, where the similarity-based algorithms are most frequently-used and simplest ones. Moreover, according to the information used to design the measure indices of link existence likelihood, the similarity-based algorithms can be further classified into three categories: local, global and quasi-local ones. In consideration of its easier implementation and less computational complexity, our tour of studies in this paper starts with the local information-based link prediction algorithm (LILPA). There are nine representative LILPAs as follows: common neighbors (CN) (Lorrain and White, 1971), Salton index (Chowdhury, 2010), Jaccard index (Lü and Zhou, 2011), Sфrensen in-
dex（Lü and Zhou，2011），hub promoted index（HPI） （Ravasz et al．，2002），hub depressed index（HDI） （Lü and Zhou，2011），Leicht－Holme－Newman－I in－ dex（LHN－I）（Leicht et al．，2006），Adamic－Adar index （AA）（Adamic and Adar，2003）and resource alloca－ tion index（RA）（Zhou et al．，2009）．The comparative studies（Lü et al．，2009；Zhao et al．，2012）have re－ ported the merits of LILPAs，but we think there still exists a defect for the implementations of LILPAs， i．e．，not any LILPA can adequately make use of the so－called local information（the degrees of x and y ，the number of common neighbors of nodes x and y ，and the degrees of common neighbors of x and y ）．This limits the performances（Measured by the area under the receiver operating characteristic curve（AUC））of LILPAs to a certain degree and leads to the higher variability among LILPAs（Zhang and Ma，2012）．

Inspired by the outlook in Lü and Zhao＇s work（Lü and Zhou，2011），i．e．，＂we can implement many in－ dividual prediction algorithms and then try to select and organize them in a proper way．This so－called ensemble learning method can obtain better predic－ tion performance than could be obtained from any of the individual algorithms．＂，we try to use the en－ semble learning strategy（Zhang and Ma，2012；Zhou， 2012）to relieve this limitation of LILPAs and accord－ ingly improve the prediction performance of LILPA． As stated in（Zhang and Ma，2012），ensemble learning is such a strategy which is known to reduce the classi－ fiers＇variance and improve the decision system＇s ro－ bustness and accuracy．The ensembles of some ma－ chine learning algorithms（e．g．，decision tree（Ban－ field et al．，2007），neural network（Zhou et al．，2002）， support vector machine（Kim et al．，2003），etc．）are all well and sophisticatedly studied，while there isn＇t any study of ensemble of LILPAs in literatures．

The ordered weighted averaging（OWA）operator （Yager，1988）is one of mostly used information ag－ gregation techniques．In view of the effectiveness of OWA in preference rankings（Wang et al．，2007），an OWA operator based link prediction ensemble algo－ rithm（ LPE $_{\text {OwA }}$ ）is proposed by integrating the nine above－mentioned LILPAs with aggregation weights which are determined with maximum entropy method （O＇Hagan，1988）．The experimental results on bench－ mark social networks（Pajek，2007）demonstrate the feasibility of our proposed LPE OwA and show that LPE OwA can obtain higher prediction accuracies in comparison with nine individual LILPAs．The rest of this paper is organized as follows．In Section 2，the theoretical and empirical analysis to nine LILPAs are given．In Section 3，the new OWA operator based link prediction ensemble model（LPE OWA ）is presented．In Section 4，experimental comparisons are conducted to

Table 1：The notation－list

Notation	Meaning		
$\mathrm{G}=\langle\mathrm{V}, \mathrm{E}\rangle$	A social network graph		
$\mathrm{A}=\left(a_{x y}\right)$	The adjacency matrix of G		
V	The set of nodes in G		
$\mathrm{E}=\mathrm{E}_{\text {Train }} \cup \mathrm{E}_{\text {Test }}$	The set of links in $\mathrm{G}\left(\mathrm{E}_{\text {Train }} \cap \mathrm{E}_{\text {Test }}=\emptyset\right)$		
$\mathrm{E}_{\text {Train }}$	The training set		
$\mathrm{E}_{\text {Test }}$	The testing set		
U	The set containing all possible links of G		
$\mathrm{E}_{\text {Predict }}=\mathrm{U}-\mathrm{E}$	The set containing nonexistent links of G		
$x \in \mathrm{~V}$	A node x belonging to V		
$s_{x y}$	The existence likelihood of link $x y$		
$\Gamma(x)$	The set of neighbors of node x		
$\\|S\\|$	The cardinality of set S		
$\mathrm{k}_{x}=\\|\Gamma(x)\\|$	The degree of node x		

illustrate the feasibility of proposed ensemble model． Finally，conclusions are given in Section 5.

ローローム ローローローATIロN＝

2 LILPA ANALYSIS

2．1 Nine Basic LILPAs

For a nonexistent link $x y \in \mathrm{E}_{\text {Predict }}$ ，LILPAs calculate the score $s_{x y}$ for it to express the likelihood of its ex－ istence．There are nine frequently used LILPAs as follows．Without loss of generality，we assume there is no isolated node in G for the sake of simplicity．Our discussion is based on the notations in Table 1.
－Common neighbors index（CN）（Lorrain and White，1971）is the most direct and simplest like－ lihood measure and defined as

$$
\begin{equation*}
s_{x y}^{\mathrm{CN}}=\|\Gamma(x) \cap \Gamma(y)\| . \tag{1}
\end{equation*}
$$

It is obvious that $s_{x y}^{\mathrm{CN}}=\left(\mathrm{A}^{2}\right)_{x y}$ ．And，$s_{x y}^{\mathrm{CN}}$ repre－ sents the number of paths from x to y with two steps in G．Thus，the minimum of $s_{x y}^{\mathrm{CN}}$ is 0 ，i．e．， there is no any path with two steps between x and y ；the maximum of $s_{x y}^{\mathrm{CN}}$ is $\|\mathrm{V}\|-2$ ，i．e．，all the residual nodes are served as the intermedi－ ate nodes from x and y ．In summary，we get $s_{x y}^{\mathrm{CN}} \in[0,\|\mathrm{~V}\|-2]$ ．
－Salton index（Chowdhury，2010）considers the de－ grees of nodes and is defined as

$$
\begin{equation*}
s_{x y}^{\text {Salton }}=\frac{\|\Gamma(x) \cap \Gamma(y)\|}{\sqrt{\mathrm{k}_{x} \times \mathrm{k}_{y}}} . \tag{2}
\end{equation*}
$$

In Eq．（2）， $\mathrm{k}_{x}=\|\Gamma(x)\| \in[1,\|\mathrm{~V}\|-1]$ and $\mathrm{k}_{y}=\|\Gamma(y)\| \in[1,\|\mathrm{~V}\|-1]$ ．Then，$\sqrt{\mathrm{k}_{x} \times \mathrm{k}_{y}} \in$ $[1,\|\mathrm{~V}\|-1]$ ．Thus，$s_{x y}^{\text {Salton }} \in[0,\|\mathrm{~V}\|-2]$ ．

- Jaccard index (Lü and Zhou, 2011) is defined as

$$
\begin{equation*}
s_{x y}^{\text {Jaccard }}=\frac{\|\Gamma(x) \cap \Gamma(y)\|}{\|\Gamma(x) \cup \Gamma(y)\|} . \tag{3}
\end{equation*}
$$

Because $\|\Gamma(x) \cup \Gamma(y)\| \in[1,\|\mathrm{~V}\|]$, we can derive $s_{x y}^{\text {Jaccard }} \in[0,\|\mathrm{~V}\|-2]$.

- Sфrensen index (Lü and Zhou, 2011) is defined as

$$
\begin{equation*}
s_{x y}^{\text {Sørensen }}=\frac{2\|\Gamma(x) \cap \Gamma(y)\|}{\mathrm{k}_{x}+\mathrm{k}_{y}} . \tag{4}
\end{equation*}
$$

Because $\mathrm{k}_{x}+\mathrm{k}_{y} \in[2,2(\|\mathrm{~V}\|-1)]$, we can derive $s_{x y}^{\text {Sørensen }} \in[0,\|\mathrm{~V}\|-2]$.

- Hub promoted index (HPI) (Ravasz et al., 2002) is said to assign a higher score for link connecting to the nodes with high degrees (Zhao et al., 2012; Zhou et al., 2009) and defined as

$$
s_{x y}^{\mathrm{HPI}}=\frac{\|\Gamma(x) \cap \Gamma(y)\|}{\min \left\{\mathrm{k}_{x}, \mathrm{k}_{y}\right\}} \in[0,\|\mathrm{~V}\|-2] .
$$

- Hub depressed index (HDI) (Lü and Zhou, 2011) is opposite to HPI and assigns a lower score for link connecting to the nodes with high degrees. The definition of HDI is

$$
\begin{equation*}
s_{x y}^{\mathrm{HDI}}=\frac{\|\Gamma(x) \cap \Gamma(y)\|}{\max \left\{\mathrm{k}_{x}, \mathrm{k}_{y}\right\}} \in[0,\|\mathrm{~V}\|-2] . \tag{6}
\end{equation*}
$$

- Leicht-Holme-Newman-I index (LHN-I) (Leicht et al., 2006) is similar to the Salton index and defined as

$$
\begin{equation*}
s_{x y}^{\mathrm{LHN}-\mathrm{I}}=\frac{\|\Gamma(x) \cap \Gamma(y)\|}{\mathrm{k}_{x} \times \mathrm{k}_{y}} \in[0,\|\mathrm{~V}\|-2] . \tag{7}
\end{equation*}
$$

The main difference between Salton index and LHN-I index is the denominator of Eq. (2) and Eq. (7): the former is $\sqrt{\mathrm{k}_{x} \times \mathrm{k}_{y}}$ and the latter $\mathrm{k}_{x} \times \mathrm{k}_{y}$. Because $\mathrm{k}_{x} \times \mathrm{k}_{y} \geq 1, \mathrm{k}_{x} \times \mathrm{k}_{y} \geq \sqrt{\mathrm{k}_{x} \times \mathrm{k}_{y}}$. Then, we can get $s_{x y}^{\text {Salton }}>s_{x y}^{\text {LHNN }-\mathrm{I}}$ when $\mathrm{k}_{x} \times \mathrm{k}_{y} \neq$ 1. That is to say, for a same link, Salton index always assigns a higher score compared with LHN-I index.

- Adamic-Adar index (AA) (Adamic and Adar, 2003) is defined as

$$
\begin{equation*}
s_{x y}^{\mathrm{AA}}=\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log _{2}\left(\mathrm{k}_{z}\right)} . \tag{8}
\end{equation*}
$$

Because $\mathrm{k}_{z} \in[2,\|\mathrm{~V}\|-1]$, we can derive $s_{x y}^{\mathrm{AA}} \in$ $\left[\frac{1}{\log _{2}(\|\mathrm{~V}\|-1)},\|\mathrm{V}\|-2\right]$.

- Resource allocation index (RA) (Zhou et al., 2009) is similar to AA index and defined as

$$
\begin{equation*}
s_{x y}^{\mathrm{RA}}=\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\mathrm{k}_{z}} \in\left[\frac{1}{\|\mathrm{~V}\|-1}, \frac{\|\mathrm{~V}\|-2}{2}\right] . \tag{9}
\end{equation*}
$$

AA and RA indices are all inclined to assign a low score for the link between x and y which have the comment neighbors with high degrees. By comparing Eq. (8) with Eq. (9), we can find $s_{x y}^{\mathrm{AA}}>s_{x y}^{\mathrm{RA}}$ when $\Gamma(x) \cap \Gamma(y) \neq \emptyset$.

2.2 Performance Measure Index-AUC

AUC (Lü and Zhou, 2011; Zhao et al., 2012) is the prevalently used index to measure the performance of link prediction algorithm, which is defined as

$$
\begin{equation*}
\mathrm{AUC}=\frac{n_{1}+0.5 n_{2}}{n} \tag{10}
\end{equation*}
$$

where n is the number of independent comparisons including n_{1} times the missing link having a higher score, n_{2} times the missing link and nonexistent link having the same score, and n_{3} times the missing link having a lower score, i.e., $n=n_{1}+n_{2}+n_{3}$. The missing link denotes the link in testing set $\mathrm{E}_{\text {Test }}$, and nonexistent link is the link in $\mathrm{E}_{\text {Predict }}$. AUC assumes that a good prediction algorithm is more likely to assign a higher score for the missing link compared with the nonexistent link.

Assume there are two different link prediction algorithms: AlgoA and AlgoB. If AlgoA obtains a better performance, i.e., larger AUC, than AlgoB on the same $\mathrm{E}_{\text {Test }}$ and $\mathrm{E}_{\text {Predict }}$, we want to know what conclusions can be derived from the result $\mathrm{AUC}^{\text {AlgoA }}>$ AUC ${ }^{\text {AlgoB }}$.

From the definition of Eq. (10), we know

$$
\begin{equation*}
\mathrm{AUC}^{\mathrm{AlgoA}}=\frac{n_{1}^{\mathrm{AlgoA}}+0.5 n_{2}^{\mathrm{AlgoA}}}{n} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{AUC}^{\mathrm{AlgoB}}=\frac{n_{1}^{\mathrm{AlgoB}}+0.5 n_{2}^{\mathrm{AlgoB}}}{n} \tag{12}
\end{equation*}
$$

Because AUC ${ }^{\text {AlgoA }}>\mathrm{AUC}^{\text {AlgoB }}$, we can get

$$
\begin{equation*}
n_{1}^{\mathrm{AlgoA}}-n_{1}^{\mathrm{AlgoB}}>0.5\left(n_{2}^{\mathrm{AlgoB}}-n_{2}^{\mathrm{AlgoA}}\right) \tag{13}
\end{equation*}
$$

As mentioned above, a better link prediction algorithm is assumed to assign a high score for the missing link in $\mathrm{E}_{\text {Test }}$ more easily. Thus, we think that these $\underset{\text { AlgoA deductions, i.e, } n_{1}^{\text {AlgoA }}=n_{1}^{\text {AlgoB }}, n_{2}^{\text {AlgoA }}>n_{2}^{\text {AlgoB }},}{\text { AlgoB }}$ Algo, $n_{3}^{\text {AlgoA }}<n_{3}^{\text {AlgoB }}$ and $n_{1}^{\text {AlgoA }}<n_{1}^{\text {AlgoB }}, n_{2}^{\text {AlgoA }}>n_{2}^{\text {AlgoB }}$, $n_{3}^{\text {AlgoA }}<n_{3}^{\text {AlgoB }}$, are inadvisable for AUC ${ }^{\text {AlgoA }}>$ AUC ${ }^{\text {AlgoB }}$, because $n_{1}^{\text {AlgoA }}=n_{1}^{\text {AlgoB }}$ and $n_{1}^{\text {AlgoA }}<$ $n_{1}^{\text {AlgoB }}$ all deviate from the previous assumption. This deduction can be demonstrated by the following experimental results and analysis.

Figure 1: Network of Food Webs-ChesLower.

2.3 High Variability of LILPAs

In this subsection, we study the prediction performances of these nine LILPAs. We select two benchmark social networks (Pajek, 2007) as shown in Fig. 1 and Fig. 2 for our experimental datasets: Food WebsChesLower and Graph Drawing Contests Data-B97.

The 10 -fold cross-validation is used to test the AUCs of LILPAs. Firstly, the set E including all the existent links is randomly and averagely divided into 10 disjointed subsets (folds): $E=E_{1} \cup E_{2} \cup \cdots \cup E_{10}$ and $\mathrm{E}_{1} \cap \mathrm{E}_{2} \cap \cdots \cap \mathrm{E}_{10}=\emptyset$. Then, we select the subset $\mathrm{E}_{i}(1 \leq i \leq 10)$ as testing set $\mathrm{E}_{\text {test }}$ in sequence, the link in which is called missing link. Based on the $\mathrm{E}_{\text {test }}=\mathrm{E}_{i}$ and $\|\mathrm{U}-\mathrm{E}\|, \mathrm{AUC}_{i}$ in Eq. (10) is calculated for i th fold dataset. Finally, 10 AUCs on 10 folds are averaged as the evaluation result of link prediction algorithm. The detailed experimental results on these two networks are summarized in Table 2 and Table 3 respectively. By observing the experimental results, we can get the following conclusions:

- According to the prediction performance, we can divide the above-mentioned 9 LILPAs into three categories: AA and RA obtain the higher AUCs, CN the medium AUC and other 6 algorithms the lower AUCs. From Eqs. (1)-(9), we know that AA and RA consider the degrees of common neighbors of x and y, CN considers the number of common neighbors of x and y, and other algorithms consider the number of common neighbors of x and y and the degrees of x and y synchronously (The item $\|\Gamma(x) \cup \Gamma(y)\|$ in Jaccard index equals to $\mathrm{k}_{x}+\mathrm{k}_{y}$ when there are no common neighbors for x and y).
- For the different link prediction algorithms AlgoA and AlgoB, when $\mathrm{AUC}^{\text {AlgoA }}>\mathrm{AUC}^{\text {AlgoB }}$, we can get $n_{1}^{\text {AlgoA }}>n_{1}^{\text {AlgoB }}$. E.g., from the experimental results in Tables 2 and 3, we can find that under the situation of $\mathrm{AUC}^{\mathrm{AA}}>\mathrm{AUC}^{\mathrm{CN}}$, $n_{1}^{\mathrm{AA}}($ ChesLower $)=6038>n_{1}^{\mathrm{CN}}($ ChesLower $)=$ 5424 and $n_{1}^{\mathrm{AA}}(\mathrm{B} 97)=19998>n_{1}^{\mathrm{CN}}(\mathrm{B} 97)=$ 17399 hold for the employed two networks respectively. This empirical conclusion also reflects

Figure 2: Network of Graph Drawing Contests Data-B97.
that increasing the number of missing links having higher scores is the key for improving the performance of LILPA from another perspective.

- The variability of LILPAs is high. We can find that the prediction performances of different LILPAs are varying dramatically for the same training and testing datasets. For example, $n_{1}=5110$, 4083, 4254, 4254, 3263, 4444, 1846, 5620 and 5791 respectively on the Fold 5 of ChesLower and $n_{1}=16892,16273,15567,15567,17280,15147$, 14605, 19606 and 19977 respectively on the Fold 9 of B97.

From the foregoing analysis, we can find that no any link prediction algorithm mentioned in Subsection 2.1 can consider the degrees of x and y, the common neighbors of x and y, and the degrees of common neighbors of x and y simultaneously. This leads to the high variability of LILPAs and limits the prediction performances of LILPAs.

3 LPE $_{\text {OWA }}$ ALGORITHM

The n-dimensional OWA operator is a mapping F : $\Re^{n} \rightarrow \Re$ with an associated weight vector $\vec{w}=$ $\left(w_{1}, w_{2}, \cdots, w_{n}\right)$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} w_{i}=1, w_{i} \in[0,1], i=1,2, \cdots, n \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{F}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\sum_{i=1}^{n} w_{i} b_{i} \tag{15}
\end{equation*}
$$

where b_{i} is the i th largest value of $a_{1}, a_{2}, \cdots, a_{n}$. The important issue of applying OWA operator is determining the weight vector \vec{w} of OWA operator.

In order to determine the weight vector \vec{w}, two important measures $\operatorname{Disp}(\vec{w})$ and orness (\vec{w}) are defined, where $\operatorname{Disp}(\vec{w})$ measures the degree to which all

Table 2：Prediction performances of nine LILPAs on the network of Food Webs－ChesLower．

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold9	Fold 10	Average
CN	［43261143 30140．5773］	${ }^{5688695618410.7266]}$	［5164731 258880.6518$]$	［5926 1038 15190.7598$]$	［6170761 15520．7722］	［5110785 25880．6487］	$\left.{ }^{14833} 1155524950.6378\right]$	［473394323880．0519］	［68504566780．8865］	［5441695 18480.7250$]$	$1542486620430.7038 \pm \pm 0.00$
Salton	［311160533120．3703］	［4134474302 0．4901］	［34743149780．4114］	［3805 4746310.4513$]$	［467551 37570.5544$]$	［4083244376 0．4827］	［135742048890．4225］	［3551 2344100．4662］	［5364 192601 0．6730］	［42771636950．5362］	［40043442950．4838 ${ }^{\text {a } 0.0075]}$
Jacard	［3063143522770．3695］	［4134 140 42990．4996］	［33809950004．4043］	［368882164579 0．4475］	［4605 110377880.5493$]$	${ }_{[4254142408770.50988]}$	［3362260 48810.4116$]$	［3335614588 0．4215］	［5117 10127660．6472］	［42541 151 35790.5423$]$	［3919 142 4272 0．4799土0．0072］
Sprensen	［3063 14352770.3695$]$	［4134 140 429990．4956］	［33809950004．4043］	［368882164579 0．4475］	［4605 110 37680．5493］	［42544 142 4087 0．5098］	［3362260 48810．4416］	［3335614588 0．4215］	［5117 10127660.6472$]$	［4254 151 35790.5423$]$	［3919 142 4272 0．4799 $\pm 0.0072]$
HPI	［25966885 51990．3466］	［3734472 22770.46800$]$	［13747210 45260．454］］	［13564633 42860．4574］	［4257716 35100．540］	［3263480 47400．4129］	［336650840090．4975］	［379966335520．5155］	［5200 502 22820．6827］	［3472 4677 4045 0．4641］	［3760 531 $40430.4843 \pm 0.0078]$
HDI	［327121549970．3983］	［418420840910．0055］	［13245 164 507440．3922］	［17733169 4551 0．4536］	［4521 150 3812 2.54418 ］	［444416438750．5335］	［1391123 50690.3952$]$	［3168 10047160．4031］	［48858730120．6173］	［4445 102 34370.5631$]$	［3922 1484263 0．4804 $\pm 0.0068]^{\text {a }}$
LHN－I	［1524 12568340．1870］	［202311663440．2453］	${ }^{1218990771750.1489]}$	［117057 72560.1413$]$	［2137 17261740．2621］	［18468846553 0．2226］	［1624 54 488050．1946］	［11934467470．1522］	［195988599370．2509］	［17514861850．2223］	［164588886010．2027 0 0．0202］
AA	［5042 157 32840．0636］	［663459 1990 07619］	［5688465 27340．6739］	［6883 4 15960．8116］	［664571 17670．7875］	［5620 102277610.6685$]$	［5522 24327180．6653］	［544618723510 0．6938］	［72093 7720.9031$]$	［58992820570．7406］	［60389222030 $07310 \pm 0.0077]$
RA	［500115733250．5988］	［664659 19990．76656］	［577465 27040．6774］	［69954 14840.8248$]$	［677371116390．8026］	［579110225900．6887］	［559624326640．6740］	［5996618722010．7126］	［722137600．9946］	${ }^{[59152820410.7426]}$	［6107922135 $0.7392 \pm 0.0078]$

Table 3：Prediction performances of nine LILPAs on the network of Graph Drawing Contests Data－B97．

		｜ial	Itans				${ }^{\text {bilu }}$				践
	S	边	，		（3）23：				232		
	，	Clama	\％	20\％med	\％	and		䢒	\％	，	为
		䢒			边		䢕	5is7	rem		
	（1）				，						

the aggregates are equally used and orness (\vec{w}) mea－ sures the degree to which the aggregation is like an or operation．O＇Hagan＇s maximum entropy method （O＇Hagan，1988）is one of the commonly used meth－ ods for determining the weight vector of OWA oper－ ator，which solves \vec{w} from the following constrained nonlinear optimization model：

$$
\begin{array}{ll}
\text { Maximize } & \operatorname{Disp}(\vec{w})=-\sum_{i=1}^{n} w_{i} \operatorname{In}\left(w_{i}\right) \\
\text { s.t. } \quad & \operatorname{orness}(\vec{w})=\alpha=\frac{1}{n-1} \sum_{i=1}^{n}(n-i) w_{i} \\
& \sum_{i=1}^{n} w_{i}=1, \\
& w_{i} \in[0,1], i=1,2, \cdots, n \tag{16}
\end{array}
$$

where $\alpha \in[0,1]$ is the optimism level factor，which controls the desired degree of orness．When $\alpha=0, \vec{w}=(0, \cdots, 0,1)$ and $\mathrm{F}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=b_{n}$ $=\min \left\{a_{i}\right\} ;$ when $\alpha=1, \vec{w}=(1,0, \cdots, 0)$ and $\mathrm{F}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=b_{1}=\max \left\{a_{i}\right\} ;$ when $\alpha=0.5, \vec{w}=$ $\left(\frac{1}{n}, \frac{1}{n}, \cdots, \frac{1}{n}\right)$ and $\mathrm{F}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} b_{i}=\frac{1}{n} \sum_{i=1}^{n} a_{i}$ ． LINGO software is used to find the optimized weight vector \vec{w} for Eq．（16）．In this study，because OWA op－ erator will be used to aggregate 9 different LILPAs， we let $n=9$ in the following implementation．

LPE OWA is such an ensemble algorithm which in－ tegrates 9 LILPAs with OWA operator to carry out the link prediction for social network．The likelihood score of a link existence calculated with LPE ${ }_{\text {OWA }}$ is defined as follows：

$$
\begin{equation*}
s_{x y}^{\mathrm{OWA}}=\sum_{i=1}^{9} w_{i} s_{x y}^{(i)}, \tag{17}
\end{equation*}
$$

where $s_{x y}^{(i)} \in[0,1]$ is the i th largest value of $s n_{x y}^{\mathrm{CN}}$ ， $s n_{x y}^{\mathrm{Salton}}, s n_{x y}^{\mathrm{Jaccard}}, s n_{x y}^{\mathrm{S} \varnothing r e n s e n}, s n_{x y}^{\mathrm{HPI}}, s n_{x y}^{\mathrm{HDI}}, s n_{x y}^{\mathrm{LHN}-\mathrm{I}}$ ， $s n_{x y}^{\mathrm{AA}}$ and $s n_{x y}^{\mathrm{RA}}$ which are the normalization of $s_{x y}^{\mathrm{CN}}$ ， $s_{x y}^{\text {Saiton }}, s_{x y}^{\text {Jaccard }}, s_{x y}^{\text {Sørensen }}, s_{x y}^{\mathrm{HPI}}, s_{x y}^{\mathrm{HDI}}, s_{x y}^{\mathrm{LHN}-\mathrm{I}}, s_{x y}^{\mathrm{AA}}$ and $s_{x y}^{\mathrm{RA}}$ as shown in Eqs．（1）－（9），$w_{i}(i=1,2, \cdots, 9)$ is the
weight of OWA operator，which is determined with maximum entropy method．

The role of normalization is to locate the likeli－ hood scores in the interval $[0,1]$ and regards the like－ lihood score as a probability value．For the $\mathrm{k}_{x}, \mathrm{k}_{y}>2$ and $\mathrm{k}_{x} \neq \mathrm{k}_{y}$ ，we can derive

$$
\begin{align*}
1 & \left.<\min \left\{\mathrm{k}_{x}, \mathrm{k}_{y}\right\}<\sqrt{\mathrm{k}_{x} \mathrm{k}_{y}}<\frac{\mathrm{k}_{x}+\mathrm{k}_{y}}{2} \right\rvert\, \square \tag{18}\\
& <\max \left\{\mathrm{k}_{x}, \mathrm{k}_{y}\right\}<\|\Gamma(x) \cup \Gamma(y)\|<\mathrm{k}_{x} \mathrm{k}_{y} .
\end{align*}
$$

Furthermore，we can get the following derivations：

$$
\begin{align*}
s_{x y}^{\mathrm{CN}}>s_{x y}^{\mathrm{HPI}}>s_{x y}^{\mathrm{Salton}} & >s_{x y}^{\mathrm{Sørensen}}>s_{x y}^{\mathrm{HDI}} \tag{19}\\
& >s_{x y}^{\text {Jaccard }}>s_{x y}^{\mathrm{LHN}-\mathrm{I}},
\end{align*}
$$

and

$$
\begin{align*}
s n_{x y}^{\mathrm{CN}} & >s n_{x y}^{\mathrm{HPI}}>s n_{x y}^{\text {Salton }}>s n_{x y}^{\text {Sørensen }} \\
& >s n_{x y}^{\mathrm{HDI}}>s n_{x y}^{\mathrm{Jaccard}}>s n_{x y}^{\mathrm{LHN}-\mathrm{I}} \tag{20}
\end{align*}
$$

For any node $z \in\|\Gamma(x) \cap \Gamma(y)\|$ ，when $\mathrm{k}_{z}>2$ ，we can obtain

$$
\begin{equation*}
1<\log _{2} \mathrm{k}_{z}<\mathrm{k}_{z} \Rightarrow 1>\frac{1}{\log _{2} \mathrm{k}_{z}}>\frac{1}{\mathrm{k}_{z}} \tag{21}
\end{equation*}
$$

Considering $s_{x y}^{\mathrm{CN}}=\|\Gamma(x) \cap \Gamma(y)\|=\sum_{z \in\|\Gamma(x) \cap \Gamma(y)\|} 1$ ， we can derive

$$
\begin{equation*}
s_{x y}^{\mathrm{CN}}>s_{x y}^{\mathrm{AA}}>s_{x y}^{\mathrm{RA}} \text { and } s n_{x y}^{\mathrm{CN}}>s n_{x y}^{\mathrm{AA}}>s n_{x y}^{\mathrm{RA}} \tag{22}
\end{equation*}
$$

Eqs．（20）and（22）tell us that the individual algo－ rithm only considers the number of common neigh－ bors of two different nodes x and y ，to obtain the high－ est weight in LPE ${ }_{\text {OWA }}$ ，because it is obvious and direct that a link will more likely exist between two nodes x and y if they have more common neighbors．This kind of local information plays a more crucial role in the link prediction compared with other two local in－ formation，i．e．，the degrees of x and y and the degrees of common neighbors of x and y ．

Table 4: Prediction performances of LPE OwA on the network of Food Webs-ChesLowerl.

ormes(Id 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Fold 7	Fold 8	Fold 9	Fold 10	Average
0.55	${ }^{15362303}$	165861318	${ }_{157961926680.684}$	[72173 12630.8509]	[6842 1516260.8074]	[58686442551 0.6955$]$	[575078 265550.6824$]$	[58429020520.7373]	1724417390.907	15968920	1624832
0.60	[54	166011	[5802 1926620.6851]	[7373311070.8693]	[6832 15 16360.8063]	[5867 64 25520.6954]	[57997826060.6882]	[597390 1921	907	[597	[6294322007 0.7580 ± 0.00711
0.65	[5571 30288200.6585]	[6620 13 18500.7812]	[581419 26500.6865]	[7762 3 10180.8798]	[6824 15 16440.8053]	$\left.{ }_{[5860642559} 0.6946\right]$	${ }_{[590378225020.700}$	1608690018080.7679	[7227 17560.903	${ }^{15972920030.778)}$	${ }^{633433219670.7628 \pm 0.0}$
0.70	[5658 3027950.6687$]$	[6647 13 18230.7843]	[58461926180.6903]	[7505 39750.8849]	[6830 15 16380.8060]	[5857642562 0.6942]	[60127823930.7133]	[616890 17260.7782$]$	[7225 17580.9095]	[59799 19960.7494]	[637332 19280.767440.0065]
0.75	[5681 3027720.6715	166411318290.783	${ }_{5}^{58451926190.690}$	[754939310.8901]	[6780 15 16880.8001]	[5837 6425820.6919$]$	160627823430.719	162369016580.786	[722917540.9095]	15947920280.745	[6881 $32192000.7684 \pm 0.0066]$
0.80	[5705 302 27480.6743$]$	[6660 1318100.7859$]$	[5869 19 29950.6930]	[757739030.8934]	[67431517250.7998]	[58326425870.6913]	[61077822980.7245]	[62709090 16240.7910]	${ }^{1721717660.9040}$	[59259 20500.742	[6391 3219110.7696 ± 0.006
0.85	$53027080.6790]$	${ }^{167051317650.791]}$	[5915 1925490.6984$]$	[7599388810.8960]	[67431517250.7998]	[57986426210.6873]	[61447822610.7289]	[630690 15880.7995]	[7205 17780.9025$]$	[592492051 0.742]	[640832 $18930.7717 \pm 0.0064]$
0.90	[57663026870.6815]	1674	159	[761038700.8973]	[6716 15 17520.7926]	157956426240.6	[618378 22220 .	${ }^{163419015530.7998}$	[72001 1783 0.9019]	15893920820.738	[641932 18820.7730土0.0064]
0.92	[5769 30268440.6818]	[67431117270.7957]	$[59551925090.703]$	[761338670.8976]	[67011517670.7998]	[57996426200.6874]	[619378 22120.7346]	[634590 15490.8004$]$	${ }^{1719617870.9014}$	158779209880.736	[641932 18820.772940.0063]
0.93	$703026830.6820]$	[6758 13 17120.7974]	${ }^{599681924960.704}$	[761838620.8982]	[6701 1517670.7998]	[5800 64 2619 0.687]	${ }^{661967822090.735}$	163479015470.8006	${ }^{1719617870.901}$	${ }^{58779} 209880.736$	${ }^{664233218780.7334 \pm 0}$
0.94	[5770 30268330.6820]	[6757 13 17130.7973]	${ }_{5}^{5969} 1924950.704$	[7625 85550.8999]	[6693151775 0.7899]	[58016426180.6876]	[620078 2205 0.7355]	[635090 15440.8010]	[771961787 0.9014$]$	${ }^{15865921100.735}$	[6423 3218790.7734 ± 0.00
0.95	[5772 3026810.6822$]$	[6758 1317120.7974]	[59771924930.7050]	[762838520.8994]	[668615 17820.7890]	[5801 6426180.6876]	[61947822110.7348]	[635390 15410.8014$]$	[77961787 0.9014]	[58599 21160.7344]	$164223218790.7733 \pm 0.006$
0.96	[57733026800.6823]	[6760 13 17100.7977]	[5977 1924910 0.7052]	[763438460.9001]	[66861517820.7890]	$\left.{ }^{[5797} 6426220.68711\right]$	[619978 22060.7354]	[6360900 15340.8022$]$	[779417890.90011]	[58599 21160.7344$]$	${ }^{6} 64243218780.77735 \pm 0.066$
0.97	[5773 3026800.6823]	[67688 1317720.7986$]$	${ }^{599821924820.706}$	[7642383880.9010]	[6673 15 17950.7875]	${ }^{157966426230.68}$	$[62017822040.735$	${ }^{1636390015310.802]}$	50.90	15589921160.73	[6425 $3218770.7736 \pm \pm 0.0064]$

Table 5: Prediction performances of LPE OwA on the network of Graph Drawing Contests Data-B97.

4 EXPERIMENTATION

The prediction performance of LPEOWA is also tested on the social networks of ChesLower and B97. We compare LPE OwA with other 9 LILPAs on the same folds. 15 different values are assigned to the optimism level factor α. The detailed experimental results are summarized in Table 4 and Table 5.

Three advantages of LPE $_{\text {OwA }}$ can be found by observing these experimental results: (1) LPE OwA obtains higher prediction accuracies compared with any individual LILPA through increasing the numbers of individual missing links (i.e., $n_{1} \mathrm{~s}$) having higher scores. For example, $n_{1} \mathrm{~s}$ on any fold in Table 4 and Table 5 are larger than the corresponding ones in Table 2 and Table 3. (2) LPE OwA reduces the possibility that user selects a weak LILPA and thus improve the high variability of LILPAs. (3) LPE ${ }_{\text {OwA }}$ is more stable in comparison with individual LILPAs because of the lower prediction variances in Table 4 and Table 5. In addition, the computational complexity of LPEOWA is $O(\|\mathrm{~V}\|)$ which is same as the individual LILPAs. The selection of parameter α plays a positive impact on the performance of LPE OWA , i.e., the larger α gives rise to higher prediction accuracy by emphasizing the individual LILPA with higher probability.

We think the better performances of LPE OWA are derived from the adequate utilization of the local information. Besides the more direct number of common neighbors of x and y, LPE OWA also considers the degrees of x and y and the degrees of common neighbors of x and y.

5 CONCLUSIONS

This paper studies the ensemble problem of link prediction algorithm for the first time. An OWA operator based ensemble strategy LPE OwA for integrating nine local information-based link prediction algorithms is proposed. The feasibility and effectiveness of LPE OwA are demonstrated by the experimental results on benchmark social networks. A number of enhancements and future research can be summarized as follows: (1) testing the performance of LPE OwA on the social networks with millions of nodes collected from well-known social-networking sites, e.g., Flickr, Facebook, Weibo and etc; (2) developing the optimization mechanism for the selection of optimism level factor α; and (3) comparing LPE OwA with other aggregation/ensemble strategies.

ACKNOWLEDGEMENTS

This work was supported in part by the CRG grants GYL14 and G-YM07 of The Hong Kong Polytechnic University and by the National Natural Science Foundations of China under Grant 61170040 and Grant 71371063.

REFERENCES

Adamic, L. A. and Adar, E. (2003). Friends and neighbors on the web. Social Networks, 25(3):211-230.
Al Hasan, M. and Zaki, M. J. (2011). A survey of link
prediction in social networks. In Social Network Data Analytics, pages 243-275. Springer.
Banfield, R. E., Hall, L. O., Bowyer, K. W., and Kegelmeyer, W. P. (2007). A comparison of decision tree ensemble creation techniques. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(1):173-180.
Carrington, P. J., Scott, J., and Wasserman, S. (2005). Models and methods in social network analysis. Cambridge University Press.
Chowdhury, G. (2010). Introduction to modern information retrieval. Facet Publishing.
Cukierski, W., Hamner, B., and Yang, B. (2011). Graphbased features for supervised link prediction. In Neural Networks (IJCNN), The 2011 International Joint Conference on, pages 1237-1244. IEEE.
Dong, Y., Tang, J., Wu, S., Tian, J., Chawla, N. V., Rao, J., and Cao, H. (2012). Link prediction and recommendation across heterogeneous social networks. In Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 181-190. IEEE.
Fire, M., Tenenboim, L., Lesser, O., Puzis, R., Rokach, L., and Elovici, Y. (2011). Link prediction in social networks using computationally efficient topological features. In Privacy, Security, Risk and Trust (PASSAT), 2011 IEEE Third International Conference on and Social Computing (SOCIALCOM), 2011 IEEE Third International Conference on, pages 73-80. IEEE.
Kim, H.-C., Pang, S., Je, H.-M., Kim, D., and Yang Bang, S. (2003). Constructing support vector machine ensemble. Pattern Recognition, 36(12):2757-2767.
Knoke, D. and Yang, S. (2008). Social network analysis, volume 154. Sage.
Leicht, E., Holme, P., and Newman, M. (2006). Vertex similarity in networks. Physical Review E, 73(2):026120.
Lin, J. and Ryaboy, D. (2013). Scaling big data mining infrastructure: the twitter experience. ACM SIGKDD Explorations Newsletter, 14(2):6-19.
Lorrain, F. and White, H. C. (1971). Structural equivalence of individuals in social networks. The Journal of Mathematical Sociology, 1(1):49-80.
Lü, L., Jin, C.-H., and Zhou, T. (2009). Similarity index based on local paths for link prediction of complex networks. Physical Review E, 80(4):046122.
Lü, L. and Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications, 390(6):1150-1170.
O’Hagan, M. (1988). Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic. In Signals, Systems and Computers, TwentySecond Asilomar Conference on, volume 2, pages 681-689. IEEE.
Pajek (2007). http://vlado.fmf.uni-lj.si/pub/networks/data/.
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabási, A.-L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297(5586):1551-1555.
Wang, Y.-M., Luo, Y., and Hua, Z. (2007). Aggregating preference rankings using owa operator weights. Information Sciences, 177(16):3356-3363.

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. Systems, Man and Cybernetics, IEEE Transactions on, 18(1):183-190.
Zhang, C. and Ma, Y. (2012). Ensemble machine learning: methods and applications. Springer.
Zhao, J., Feng, X., Dong, L., Liang, X., and Xu, K. (2012). Performance of local information-based link prediction: a sampling perspective. Journal of Physics A: Mathematical and Theoretical, 45(34):345001.
Zhou, T., Lü, L., and Zhang, Y.-C. (2009). Predicting missing links via local information. The European Physical Journal B, 71(4):623-630.
Zhou, Z.-H. (2012). Ensemble methods: foundations and algorithms. CRC Press.
Zhou, Z.-H., Wu, J., and Tang, W. (2002). Ensembling neural networks: many could be better than all. Artificial Intelligence, 137(1):239-263.

