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Abstract: Integrated environmental modeling approaches, especially the agent-based modeling one, are increasingly 
used in large-scale decision support systems. A major consequence of this trend is the manipulation and 
generation of huge amount of data in simulations, which must be efficiently managed. Furthermore, 
calibration and validation are also challenges for Agent-Based Modelling and Simulation (ABMS) 
approaches when the model has to work with integrated systems involving high volumes of input/output 
data. In this paper, we propose a calibration and validation approach for an agent-based model, using a 
Combination Framework of Business intelligence solution and Multi-agent platform (CFBM). The CFBM is 
a logical framework dedicated to the management of the input and output data in simulations, as well as the 
corresponding empirical datasets in an integrated way. The calibration and validation of Brown Plant 
Hopper Prediction model are presented and used throughout the paper as a case study to illustrate the way 
CFBM manages the data used and generated during the life-cycle of simulation and validation.  

1 INTRODUCTION 

Integrated socio-environmental modeling in general 
and multi-agent based simulation approach applied 
to socio-environmental systems in particular are 
increasingly used as decision-support systems in 
order to design, evaluate and plan public policies 
linked to the management of natural resources 
(Laniak et al., 2013). For example, in the research 
about invasions of Brown Plant Hopper (BPH) and 
the impact of BPH on rice fields of the Mekong 
Delta region (Vietnam), researchers must develop 
and integrate several models (e.g. BPH growth 
model, light-trap model, BPH migration model). 
They must also integrate data from different data 
sources and analyze the integrated data at different 
scales. Such an integrated simulation system 
involving high volume of data raises two problems: 
how to manage and analyze outputs of simulation 
models considering such a high volume of input?  

Although computing power is increasing rapidly, 
to determine the accuracy of the simulation outputs 
from a large size of inputs with several parameters 

and to work on the high computational requirements 
in large systems are still the limitations of agent-
based modelling (Crooks and Heppenstall, 2012). 
When developing a simulation model, the modelers' 
ambition is to achieve a credible model. To obtain a 
credible model or to determine the accuracy of the 
simulation outputs, calibration and validation are 
two necessary processes (Donigian, 2002; Klügl, 
2008; Law, 2009). For instance, complex agent-
based models are usually executed with several 
parameters and generate a huge amount of data, 
which do not have exactly the same structure than 
observation data from real system and can be 
measured and validated in various conditions. In 
such case, calibration and validation are used to 
determine which inputs and outputs are appropriate 
regarding observation data (Ngo and See, 2012; 
Rogers and Tessin, 2004; Said et al., 2002). 
Furthermore, calibration and validation are among 
the greatest challenges in agent-based modelling 
(Crooks et al., 2008; Crooks and Heppenstall, 2012). 
Therefore, how to solve the two challenges 
(calibration and validation) of agent-based 
modelling and simulation when the model deals with 
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integrated systems with a high volume of 
input/output data? 

In this article, we briefly describe a Combination 
Framework of BI solution and Multi-agent platform 
(CFBM). CFBM was designed and implemented in 
GAMA (Truong et al., 2013) and it can be used to 
model and execute agent-based simulation models, 
to handle data input/output of the models, and to 
conduct data analysis. Subsequently, we expose an 
approach for the calibration and validation of multi-
agent models by applying the CFBM, which 
proposes a solution to two of the limitations of 
agent-based modelling when working in integrated 
systems. In addition, a specific measure is presented, 
i.e. Jaccard index for ordered data sets, which has 
been used to evaluate the accuracy of simulation 
outputs.  

Hence the major contribution of this article is to 
propose an implemented framework (CFBM) to 
address two crucial issues in agent-based simulation 
that are the calibration and validation of such 
models. In order to demonstrate the feasibility and 
the interest of the application of such framework, we 
apply it to the calibration and validation of a Brown 
Plant Hoppe invasion model, which is described 
briefly.  

In the following sections, we first present the 
state of the art of works linking ABMS, BI and 
calibration and validation of simulation models 
(Section 2). The global architecture of the 
Combination Framework of BI solution and Multi-
agent platform is presented in Section 3. In Section 
4, we illustrate the calibration and validation 
approach for integrated agent-based simulation 
models. In Section 5, we apply the approach on an 
integrated simulation model, namely the BPH 
prediction model, in order to calibrate and validate 
the model on the GAMA simulation platform in 
order to illustrate the approach. Discussion and 
perspectives conclude this article. 

2 RELATED WORKS 

2.1 Integration of BI Solution into a 
Simulation System 

Data Warehouse (DW) and analysis tools such as BI 
solutions can help users to manage a large amount of 
simulation data and to make several data analyses 
that support the decision-making processes (Inmon, 
2005; Kimball and Ross, 2002). The combination of 
simulation tools and DW is on the increase and 
being applied in different areas. For example, 

although (Madeira et al., 2003; Sosnowski et al., 
2007) are only two applications of OLAP 
technologies to a specific problem, these works 
demonstrate that a multidimensional database is 
suitable to store several hundreds of thousands of 
simulation results. Simulation models, DW and 
analysis tools with OLAP technologies were also 
integrated in decision support systems or forecast 
systems (Ehmke et al., 2011; Vasilakis et al., 2008). 
In (Mahboubi et al., 2010), Mahboubi et al. also 
used data warehouse and OLAP technologies to 
store and analyze a huge amount of output data 
generated by the coupling of complex simulation 
models such as biological, meteorological and so on. 
In particular, the authors proposed DW and Online 
Analytical Processing tool (OLAP tool) for storing 
and analyzing simulation results.  

The mentioned state of the art demonstrates 
therefore the practical possibility and the usefulness 
of the combination of simulation, data warehouse 
and OLAP technologies. It also shows the potential 
of a general framework that has, as far as we know, 
not yet been proposed in the literature. 

2.2 Calibration and Validation 

What are calibration and validation? The calibration 
process is known as a test of a model with known 
input and output information. It is used to adjust or 
estimate factors for data which are not available. The 
validation process is the comparison of model results 
with numerical data independently derived from 
experiments or observations of the environment. 
These two definitions are taken from (Donigian, 
2002) who was citing (ASTM, 1984). In the 
validation of multi-agent simulation, there are two 
kinds of validation: internal validation and external 
validation (Amblard et al., 2007). These two 
processes are also presented in terms of "face 
validation" and "statistical validation" by (Klügl, 
2008). Internal validation is used to check the 
conformity between specifications and the 
implemented model. In the software engineering 
field, it is usually called verification and corresponds 
to the process which is used to compare the 
conceptual model to the computer-generated model. 
Internal validation corresponds to building the 
model right. External validation is used to check the 
similarities between the model and the real 
phenomenon. It is also named validation process in 
software engineering, so external validation 
corresponds to build the right model. In this paper, 
we address only the external validation. In the 
following, validation then means external validation 
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of multi-agent models; and the calibration is the 
fine-tuning of the output of simulation model by a 
change in the values of parameters. The calibration 
involves the validation (especially the similarity 
evaluation which is present in both cases) to check 
the simulation outputs. 

To calibrate and validate a simulation model, 
modelers used several different methods: (Donigian, 
2002) used the "weight of evidence"; (Ngo and See, 
2012; Rogers and Tessin, 2004; Said et al., 2002) 
used generic algorithms to optimize the fitness value 
of parameters by comparison with the observations 
from real systems. In general, these researchers 
validate simulation outputs with empirical data and 
check fitness conditions by statistic methods such as 
Root Mean Squared Error (RMSE) (Ngo and See, 
2012; Willmott et al., 1985). Implementing 
calibration and validation model in Section 5, we 
tune values of parameters in their value domain 
(they were specified by expert biologist) by 
specifying the different values of all parameters and 
execute simulations with all possible cases (full 
experimental design in statistical terms). The Jaccard 
index (Jaccard, 1908), which can be found in 
(Niwattanakul et al., 2013; Rahman et al., 2010; 
Sachdeva et al., 2009) is used to estimate the 
similarity coefficient between two data sets. 

3 COMBINATION FRAMEWORK 
OF BUSINESS INTELLIGENCE 
SOLUTION AND 
MULTI-AGENT PLATFORM 
(CFBM) 

In this section, we demonstrate the logical 
framework to combine BI solution and Multi-agent 
platform. This framework has been implemented on 
the GAMA simulation platform (Truong et al., 
2013). The CFBM is designed to handle big data 
from different data sources and perform analyses on 
the integrated data from these sources. It is a 
solution to improve the weaknesses of ABMs when 
modelling is conducted on an integrated system.  In 
this framework, we use a BI solution as a database 
tool, a multi-agent platform as model design tool and 
model execution tool. For the execution analysis 
tool, we can either use OLAP analysis tool or use 
analysis features of the platform (implemented as an 
external plug-in for the platform, e.g. R scripts). 

The architecture of the CFBM is illustrated in 
Figure 1. It is formed by three systems and it 
supports four tools: model design tool, model 

execution tool, execution analysis tool and database 
tool. 

3.1 Simulation System 

The simulation system plays two roles: model design 
tool and model execution tool. It is composed of a 
multi-agent platform and a relational database. This 
system is an Online Transaction Processing (OLTP) 
or an operational source system. It is an outside part 
of the data warehouse (Kimball and Ross, 2002).  

 

Figure 1: Combination framework of BI solution and 
multi-agent platform architecture. 

Three layers with five components compose the 
simulation system. The simulation interface is the 
user environment that helps the modeler to design 
and implement his models, execute the models and 
visualize results. Multi-agent simulation models 
are a set of multi-agent based models. They are used 
to simulate the phenomena that the modeler aims at 
studying. The SQL-agent plays the role of the 
database tool and can access to the relational 
database. It is a particular kind of agent that supports 
Structured Query Language (SQL) functions to 
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retrieve simulation inputs from simulation data or 
reality data, to store output simulation data into 
simulation data databases and to transform data (in 
particular the data type) from simulation model to 
relational database, and conversely. Reality data and 
Simulation data are relational databases. The reality 
database is used to store empirical data gathered 
from the target system that are needed for the 
simulation and analysis phases. Finally, Simulation 
data is used to manage simulation models, 
simulation scenarios and the output results of the 
simulation models. These two data sources will be 
used to feed the second part of the framework, 
namely the Data warehouse system 

The simulation system helps to implement 
models, execute simulations and handle their 
input/output data.  

3.2 Data Warehouse System 

The data warehouse system is conceptualized as a 
part of the BI solution. It is an important part to 
integrate data from different sources (simulation 
data, empirical data and others external data) and is 
used as data storage to feed data for decision support 
systems.  

The data warehouse system is divided into three 
parts. ETL (Extract-Transform-Load) is a set of 
processes with three responsibilities. First, it extracts 
all kind of data (empirical data and simulation data) 
from the simulation system. Second, ETL transfers 
the extracted data into an appropriate data format. 
Finally, it loads the transferred data into a data 
warehouse. Data warehouse is used to store 
historical data, which are loaded from simulation 
system by ETL. Data mart is a subset of data stored 
in the data warehouse and it is a data source for 
concrete analysis requirements. We can create 
several data marts depending on our analysis 
requirements. Data mart is a multidimensional 
database, which is designed based on 
multidimensional approach. It uses star joins, fact 
tables and dimension tables to present the data mart 
structure data. With a multidimensional structure, 
data mart is particularly useful in improving the 
performance of analytic processes. 

3.3 Decision Support System 

In CFBM, the decision support system plays the role 
of analysis tool. It is a software environment 
supporting analysis, decision-making features and 
the visualization of results. In our design, we 
propose to use existing OLAP analysis tools, or a 

multi-agent platform with analysis features or a 
combination of both options. The decision support 
system of CFBM is built on four parts. Analysis 
interface is a user interface used to handle analysis 
models and visualize results. Multi-agent analysis 
models are a set of agent-based analysis models. 
They are created based on analysis requirements and 
handled via analysis interface. MDX-agent is a 
bridge between multi-agent analysis models and data 
marts. This agent supports MultiDimensional 
eXpressions (MDX) functions to query data from a 
multidimensional database. OLAP analysis tools 
are analysis software packages that support OLAP 
operators. 

In general, the CFBM is a solution we proposed 
to solve the limitations of ABMS in terms of data 
management and output analysis with high volume 
of data, which have been explained in Section 1. 

The key points of the CFBM architecture are that 
it contains and adapts the four features of a computer 
simulation system (model design, model execution, 
execution analysis, and database management). All 
these functions are integrated into one multi-agent 
platform. The data warehouse manages the related 
data. The analysis models and simulation models 
can interact with each other. Using the CFBM 
architecture, we can build a simulation system not 
only suitable for modeling driven approach but also 
for data driven approaches. Furthermore, CFBM 
brings certain benefits for building simulation 
system with complex requirements such as the 
integration and analyzes of high volume of data. 

4 CALIBRATION & VALIDATION 
APPROACH 

In this section, we propose an approach to calibrate 
and validate an agent-based simulation model. The 
approach is an application of CFBM, which we 
presented in Section 3. It is useful when we work 
with integrated simulation systems, where we need 
to control several models with high volume of 
input/output data of simulation, observation data 
from real system and analysis results. In this part we 
detail the practical use of CFBM to calibration and 
validation purposes. 

4.1 Calibrating an Agent-based Model 

In Figure 2, we present an automatic approach with 
seven steps for calibrating and validating an agent-
based model. The approach helps modelers to test 
their models more systematically in a given 
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parameter space, to evaluate (validate) outputs of 
each simulation and manage all data in an automatic 
manner.  

Step 1: Load input Data with Default Parameter 
Values. Select a model scenario from the database 
then the input data and default parameter values are 
loaded from the quartet (model, scenario, input data 
set, parameters). This step assures that the correct 
input data and default values of parameter are loaded 
to simulation model. 

Step 2: Execute Simulation Model. The simulation 
model is executed with the loaded scenario as input. 
In this process, outputs of the simulation are stored 
into a database. Because the simulation can be 
executed many times (replications) with the same 
scenario, to be sure that the system can handle 
results, the quartet (model, scenario, replicate, 
output) must be stored into the database. 

Step 3: Execute Validation Model. The validation 
model is used to analyze the variations between 
simulation outputs and observations from the real 
system. The result of this process is a similarity 
coefficient or difference/distance coefficient 
between the output data in step 2 and observation 
data. The method is used to validate depends on the 
properties of data and on the modeler's choice. For 
example, we choose Jaccard index method for the 
validation of our model in Section 4. 

In this step, the validation model loads testing 
data set (observations) and corresponding output 
data set of the quartet (model, scenario, replicate, 
output) to make the comparison between the two 
data sets. The result of validation is also stored into 
the database with the quartet (model, scenario, 
replicate, result of validation). 

Step 4: Check Fitness Condition. The result of 
validation in Step 3 is compared with a fitness 
condition that is defined by the modeler. For 
example, the similarity coefficient of Step 3 must be 
greater than or equal to 0.90 (see Section 5.2.1). 
There are two cases: 

 If the fitness is true/yes then do Step 5 (It means 
that the input of simulation with the value of the 
parameters is accepted). 

 If the fitness is false/no then do Step 6 (It means 
that the input of simulation with the value of the 
parameters is not accepted). 

Step 5: Store the Scenario with Fitness 
Parameters. Note that the result of each replication 
was stored in the quartet (model, scenario, replicate, 
result of validation) by step 3. Hence this step only 
stores the adaptive scenario and fitness parameter 

values in the quartet (model, scenario, replicate, 
fitness parameter values).  

Step 6: Check Adjustment Condition. The system 
checks if there is another instance of parameters in 
its population or not. Hence there are two cases: 

 If the Adjustment is True/Yes then do Step 7 (It 
means that there is another instance of 
parameters in its population). 

 If the Adjustment is False/No then stopping the 
process (It means that there is not any other 
instance of parameters in its population). 

Step 7: Execute Adjustment Parameters. The 
adjustment function concerns the determination of 
the new values for parameters. It is used to adjust the 
input parameters to improve the output of the model. 
The result of this process is the creation of a new 
scenario for the simulation model. 

This function changes the values of the 
parameters to other values in their population and 
progresses to step 2. 

With the seven-step approach, the calibration 
model can execute the simulation model with all 
adjusted values of the parameters, manage the whole 
input/output data dealt within the processes and 
analyze the variant between simulation outputs and 
observation data. It helps us to specify appropriate 
values of parameters automatically.  The calibration 
model is an integration of two major models: 
simulation model and validation model. It also 
handles all data processed by the two models. The 
calibration model is a demonstration of the 
application of the CFBM, where: BI solution is used 
to handle all input/output of the model and empirical 
data related with simulating and analyzing while the 
analysis model is used to validate the output of the 
simulations. 

4.2 Validating Simulation Output using 
Jaccard Index 

There are several methods to measure similarity 
between two data sets as mentioned in (Ngo and 
See, 2012; Wolda, 1981). Root Mean Squared Error 
(RMSE) is usually used to estimate the distance (or 
error) between two data sets (simulation outputs and 
observations from real system). 
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Figure 2: Workflow for the calibration of a model. 

In this section, we propose a method to measure 
the similarity between two data sets integrating 
constraints on the position of elements in the data 
sets (ordered data set). In our method, we use 
Jaccard index as the similarity coefficient between 
two ordered data sets as follow: 

Jaccard Index on Ordered Data Sets. Assume that 
we have two ordered data sets: 

X = {x1, x2, …., xn} 
Y = {y1, y2, …., yn} 

Definition 1: xi is called match (or similar or equal) 
with yj when i = j and value of xi equal value of yj. 

match(xi, yj) = true when i = j and 
value(xi) = value(yj) other match(xi, yj) = false

i,j=1..n 
(1)

Definition 2: The intersection of X and Y is: 

S={s1, s2, …, sn} (2)

where:    
 si = {xi} (or si = {yi}) when match(xi,yj) = true 
 si = {} = ∅  when match(xi, yj) = false 
 i=1..n 

Definition 3: The union of X and Y is: 

U={u1, u2, …, un} (3)

where:   
 ui  = {xi} (or ui = {yi}) when match(xi,yj) = true 
 ui  = {xi, yi}  when match(xi, yj) = false 
 i =1..n 

Definition 4: The cardinality of an ordered set is 

| {} |=0; 
| S |=| s1 | + | s2 | + … + | sn | 

| U |=| u1 | + | u2 | + … + | un | = | X  |+| Y  | - | S |
(4)

Definition 5: Jaccard index of two ordered data sets 
is:  

J ,
∩
∪

| |
| | 	

 (5)

where:  
 c: number of matched pairs (xi, yi)  
 a: number of xi elements in X and not matched  yi 

in Y 
 b: number of yi elements in Y and not matched  xi 

in X 

In an easier way, we calculate Jaccard index 
between X and Y based on the cardinality of S, X and 
Y as equation (6): 

J ,
∩
∪

| |
| | 	

 (6)

where:  
 f: cardinality of S.  
 d: cardinality of X. 
 e: cardinality of Y.  

Example 1: Assume that we have the following 
data: 
 Empirical data set: X={ 1,2,3,4,5}   
 Simulation data set: Y={ 3,2,5,6,7} 
Jaccard index between X and Y with no constraint on 
position of elements: 

Intersect(X, Y) = {2, 3, 5} 
Union(X, Y)     = {1, 2, 3, 4, 5, 6, 7} 

J(X, Y)            = 3/(2+2+3) = 3/7 = 0.429 

However we cannot say x3=y1 because we consider 
ordered sets. In this case, we apply Jaccard index on 
two ordered data sets: 

Intersect(X, Y) = { {}, {2}, {}, {}, {} } 
Union(X, Y)   = { {1,3}, {2}, {3,5}, {4,6}, {5,7} } 
(5) => J(X, Y) = 1/(4+4+1) = 1/9 = 0.111 or (6) => 

J(X, Y) = 1/(5+5-1)  = 1/9 = 0.111 

In Example 1, the similarity coefficient (Jaccard 
index) between two data sets with no position 
constraint (0.429) is different from the similarity 
coefficient between those two data sets with position 
constraint (0.111).  
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5 CALIBRATION & VALIDATION 
OF THE BPH PREDICTION 
MODEL 

In this section, we demonstrate the calibration and 
validation model for an integrated agent-based 
simulation model, the BPH prediction model 
(Truong et al., 2013). This model is one of the 
research results of the DREAM1 project, coordinated 
between Can Tho University, Vietnam and Institut 
de Recherche pour le Développement (IRD), France. 

5.1 BPH Prediction Model 

BPH Prediction model is used to predict the Brown 
Plant Hopper (cricket) density on rice fields in 
Mekong Delta, Vietnam. This model contains two 
sub-models: BPH Growth Model and BPH 
Migration Model. The output is the number of BPHs 
in each light-trap distributed in the environment to 
catch BPH. Inputs and outputs of the integrated 
model are handled via the CFBM in GAMA. 
Empirical data such as administrative boundary 
(region, river, sea region, land used), light-trap 
coordinates, daily trap-densities, rice cultivated 
regions, general weather data (wind data), station 
weather data (temperature, humidity, etc.), river and 
sea regions are used as inputs of the simulation 
model and as validation data for the model. 

5.1.1 BPH Migration Model 

BPH migration model is used to simulate the 
invasion of BPHs on the rice fields. The migration 
process of BPHs in the studied region is modeled by 
a dynamical moving process on cellular automata. 

Denoting x(t) as the number of adult BPHs at 
time t, the migration model essentially determines 
the outcome xout(t) at a later time t + 1 from a 
specific source cell and the rates of xout(t) moving to 
all destinations at time (t + 1). Destination cells are 
determined by the semi-circle under the wind, while 
the radius of the circle is determined by the wind 
velocity and the migration time in a day. The local 
constraints are also considered by two combinational 
indices: attractiveness index and obstruction index ( 
(Truong et al., 2013). 

 
 
 
 

 
1 http://www.ctu.edu.vn/dream/ 

5.1.2 BPH Growth Model 

In the growth model, authors applied a deterministic 
model of T variables where T is the life cycle of the 
insect. To simplify the implementation process, 
these variables will be stored in an array variable V 
of length T where an element V[i] marks the number 
of insects at age i (i.e. ith day of BPH life cycle). For 
each simulation step, all elements of V will be 
updated by the following equation: 

	

∗ ∗ ,							 1
	∈	

1 ∗ ∗ ,												 	 ∈
1 ∗ ∗ ,											 	 ∈
1 ∗ , 																	 	 ∈

 (7)

where 

  denotes the number of insects at age i, 

 	 denotes the ratio of egg number able to 
become the nymph, 

  denotes the ratio of nymph number able to 
become the adult. 

  denotes the ratio of eggs can be produced by 
an adult. 

 m denotes the ratio of natural mortality. 

  denotes the egg giving time span. 

  denotes the egg and time span. 

 denotes the nymph time span. 

 denotes the adult time span. 

5.2 Calibration & Validation of the 
BPH Prediction Model 

5.2.1 Parameters for Calibration 

From equation (7) in Section 5.1.2, there are several 
parameters we can choose for calibration. However, 
we only choose T4 (adult time span of BPH) and m 
(the ratio of natural mortality) as two parameters for 
demonstration purpose. BPH has an adult time span 
of 8 days in minimum and 12 days in maximum. The 
ratio of natural mortality is 0.15 in minimum and 
0.35 in maximum. The following populations of the 
two parameters are therefore tested: 

 T4: [8, 9, 10, 11, 12] 

 m=[0.35, 0.25, 0.15] 

For the input data of BPH prediction model, we used 
the data from 48 light-traps of three typical 
provinces in the Mekong Delta region: Soc Trang, 
Hau Giang and Bac Lieu from January 1, 2010. With 
one input data set, we have 15 scenarios as presented 
in Table 1. 
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Table 1: The parameters value of scenarios for a complete 
experimental design. 

Scenario 
Parameters 

Adult time span (T4) 
Ratio of natural 
mortality (m) 

1 8 0.35 
2 9 0.35 
3 10 0.35 
4 11 0.35 
5 12 0.35 
6 8 0.25 
7 9 0.25 
8 10 0.25 
9 11 0.25 
10 12 0.25 
11 8 0.15 
12 9 0.15 
13 10 0.15 
14 11 0.15 
15 12 0.15 

The Fitness Condition. We try the fitness condition 
in two cases: 
Case 1: The difference coefficient is equal or less 
than 500 
 if (RMSE<=500.0) 
 { 
    saveFitness(MODEL_ID, SCENARIO_ID,  
        REPLICATE_ID, PARA_VALUES); 
 } 
Case 1:  The similarity coefficient is equal or greater than 0.9  
 if (Jindex>=0.9)   
 { 
    saveFitness(MODEL_ID, SCENARIO_ID,  
        REPLICATE_ID, PARA_VALUES); 
 } 

saveFitness is a user defined function, it writes 
the fitness scenario to database. 

5.2.2 Simulation Output and Empirical Data 

All related operations for validation in the validation 
model are shortly introduced in this part. As 
mentioned, the output of BPH prediction model is 
the BPH density by light-traps and by time. The 
empirical data (testing data) is BPH density from 48 
light-traps of three typical provinces in the Mekong 
Delta region: Soc Trang, Hau Giang and Bac Lieu 
from January 1, 2010.  

We simulate and predict the infection of the 
BPHs on the rice fields of the three provinces in 28 
days. The output of the BPH prediction model has 
been structured as in Table 2. The structure of 
empirical data is presented in Table 3. Each table 
has 48 columns and 28 rows. The columns stand for 
48 light-traps and the rows for 28 days (prediction 
time). In Table 2, si,j is the number of BPH that is 
simulated in step i (day i) at light-trap j. In Table 3, 
ei,j is the number of BPHs that are caught in day i at 
light-trap j on the rice fields of Mekong Delta, 

Vietnam. It should be noted that the indices of the 
rows and columns starts at 0 for programming 
reasons.  

Table 2 and Table 3 present two matrixes of 
values which have constraints on the position 
(location and time) of their elements, hence they are 
considered as two ordered data sets.  

Table 2: Simulation outputs. 

Light-trap
Tr0 Tr1 ... Tr47 

   day 

0 s0,0 s0,1 ... s0,47 

1 s1,0 s1,1 ... s1,47 

... ... ... ... ... 

27 s27,0 s27,1 ... s27,47 

Table 3: Empirical data. 

Light-trap
Tr0 Tr1 ... Tr47 

   day 

0 e0,0 e0,1 ... e0,47 

1 e1,0 e1,1 ... e1,47 

... ... ... ... ... 

27 e27,0 e27,1 ... e27,47 

5.2.3 Validating the Output of the BPH 
Prediction Model 

The simulation output and testing data have location 
constraints (light-trap) and time constraints. Hence, 
we use Jaccard index on ordered data sets, which has 
been presented in Section 4.2 to estimate the 
similarity between the simulation output and the 
empirical data. The RMSE method has also been 
applied to measure the difference between the two 
data sets. 

As regard to prediction, we need to predict 
different periods of time: from day 0 (initial day) to 
6 (1st week), from day 7 to 13 (2nd week), from day 
14 to 20 (3rd week) and from day 21 to 27 (4th week). 
Hence for each scenario, we validate the results of 
simulation in four cases: 1st week, 2nd week, 3rd 
week, 4th week. For each case of validation, we 
measure difference coefficient (RMSE) and 
similarity coefficient (Jaccard index).  

In addition, we also measure RMSE and Jaccard 
index of the whole data set (from day 0 to 27 or 4 
weeks) for the comparison of the two measures in 
each scenario. 

5.2.3.1 The Difference Coefficient (RMSE) 

The difference coefficient between the two data sets 
is calculated based on the equation (8): 
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where: 
 m denotes the number of rows of data set 
 n denotes the number of columns of data set 
 ei,j is the empirical data. It denotes the number of 

BPHs caught in day i at light-trap j. 
  si,j is the simulation output. It denotes the 

number of BPHs obtained in step i (day i) at 
light-trap j. 

The RMSE results of the 15 scenarios are presented 
in Table 4.  

Table 4: RMSE between simulation output and empirical 
data. 

Scenario 1st week 2nd week 3rd week 4th week 4 weeks
1 483.24 35.53 84.07 1610.25 879.58
2 474.58 31.73 95.14 1714.17 931.34
3 57.17 28.34 119.74 1762.46 928.09
4 53.48 25.71 282.73 1768.57 939.68
5 51.96 19.16 489.3 1738.06 944.39
6 484.26 108.54 209.26 1609.61 885.86
7 472.54 105.35 234.76 1713.14 937.82
8 56.45 106.86 233.00 1761.98 934.39
9 54.63 110.65 345.59 1766.14 945.00
10 84.44 94.69 530.54 1735.76 950.25
11 488.51 1215.93 2413.06 1863.30 1666.85
12 473.80 1271.71 2639.58 2322.33 1903.59
13 83.20 1210.19 2570.50 8826.41 4846.08
14 139.46 1339.62 2636.22 10508.34 5709.14
15 770.65 1150.98 2588.53 11430.14 6174.68

Based on the difference coefficient condition 
(RMSE ≤  500.0) in Section 5.2.1, we can show that: 
the RMSE of the first 14 scenarios fits the 
calibration conditions for the 1st week. , this is also 
the case for the first 10 scenarios the 2nd week and 
the first 9 scenarios the 3rd week; but none of the 15 
scenarios fits the calibration conditions of the 4th 
week. 

5.2.3.2 The Similarity Coefficient (Jaccard 
Index) 

We apply equation (6) in Section 4.2 to measure the 
Jaccard index between the simulation output (Table 
2) and empirical data (Table 3). The results are 
presented in Table 5. 

If we compare the results in Table 5 with the 
similarity coefficient condition (Jindex ≥ 0.90) in 
Section 5.2.1 then there are not any results fitting the 
condition. Certainly, there are no scenarios to be 
recognized in the calibration process. This problem 
can be explained by the reason that the numbers of 
BPHs caught at each light-trap by time has a wide 

range of values, from zero to ten thousands. Hence, 
to exactly simulate the number of BPHs at each 
light-trap over time is impossible or Jaccard index 
of two ordered data sets is not suitable to measure 
the similarity coefficient between two matrixes of 
values where the domain of elements is large. For 
this reason, we transformed the number of BPH in 
Table 2 and Table 3 to the BPH infection with the 
mapping as in Table 6. It means that we change from 
the ratio scale to ordinal scale. The scale in Table 6 
is proposed by biologists and it was used in (Phan et 
al., 2010). The structures of the two transformed 
tables are the same as Table 2 and 3, but the value in 
each cell ranges from 0 to 4 and its meaning is the 
BPH infection level. 

Table 5: Jaccard index between simulation output and 
empirical data. 

Scenario 1st week 2nd week 3rd week 4th week 4 weeks 

1 0.4071 0.3352 0.2826 0.4573 0.3701

2 0.4525 0.3035 0.2672 0.4382 0.3629

3 0.4651 0.2586 0.2936 0.4015 0.3513

4 0.4547 0.2553 0.3085 0.3682 0.3435

5 0.3952 0.2785 0.3387 0.3490 0.3393

6 0.1845 0.1482 0.1894 0.1362 0.1630

7 0.1799 0.1516 0.1923 0.1267 0.1607

8 0.1647 0.1320 0.2001 0.1147 0.1506

9 0.1580 0.1922 0.1910 0.1136 0.1610

10 0.1560 0.1804 0.1894 0.1040 0.1546

11 0.1580 0.1239 0.1831 0.1317 0.1479

12 0.1554 0.1430 0.1920 0.1120 0.1484

13 0.1728 0.1371 0.1944 0.1196 0.1539

14 0.1346 0.1701 0.1633 0.0993 0.1396

15 0.1313 0.1649 0.1602 0.0915 0.1345

Table 6: Transform BPH density to BPH infection. 

Number of BPH BPH Infection Meaning 

<500 0 Normal 

   50 − <1500 1 Light infection 

1500 − <3000 2 Medium infection 

3000 − ≤10000 3 Heavy infection 

>10000 4 Hopper burn 

We applied the Jaccard index to measure the 
similarity of the two transformed tables and its 
results are presented in Table 7. 

Based on the similarity coefficient condition 
(Jindex ≥ 0.9) in Section 5.2.1, we got the same 
scenarios, which are fitted with the difference 
coefficient conditions in Section 5.2.3.1. 

From the validation results, the calibration model 
can choose the scenarios with parameters checking 
the specified fitness condition in the calibration 
model. 
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Table 7: Jaccard index on BPH infection data sets. 

Scenario 1st week 2nd week 3rd week 4th week 4 weeks 
1 0.9823 1.0000 0.9941 0.7819 0.9293
2 0.9823 1.0000 0.9882 0.7534 0.9187
3 1.0000 1.0000 0.9765 0.7376 0.9147
4 1.0000 1.0000 0.9535 0.7336 0.9082
5 1.0000 1.0000 0.9200 0.7376 0.9016
6 0.9823 0.9862 0.9535 0.7819 0.9169
7 0.9804 0.9882 0.9292 0.7534 0.9021
8 1.0000 0.9882 0.9273 0.7323 0.8990
9 1.0000 0.9862 0.9037 0.7297 0.8922
10 0.9901 0.9862 0.8736 0.7297 0.8828
11 0.9765 0.6649 0.6260 0.4197 0.6396
12 0.9745 0.6622 0.6083 0.3989 0.6265
13 0.9882 0.6583 0.5975 0.3644 0.6121
14 0.9765 0.5975 0.6417 0.3419 0.5979
15 0.8329 0.6970 0.6272 0.3257 0.5863

6 DISCUSSION 

Applying CFBM to Calibration and Validation. 
There have been many studies, which proposed 
frameworks aiming at building credible simulation 
models (Law, 2009) in general or at validating agent 
based simulation models (Klügl, 2008) in particular. 
Although those frameworks instructed us the 
processes to archive simulation model with the 
accuracy of the simulation output, we still need a 
concrete approach to solve two challenges of agent-
based models, which we explained in the 
introductory section. By applying CFBM, we 
developed a calibration and validation approach for 
agent-based models that can help not only to handle 
the inputs/outputs of agent-based simulation models 
but also to calibrate and validate the agent-based 
simulation in an automatic manner. In the Section 4, 
we did not demonstrate the concrete method to 
adjust the parameters of the simulation model such 
as "weight of evidence" (Donigian, 2002) or generic 
algorithm (Ngo and See, 2012) because of two 
reasons: we only propose the general calibration 
approach and adjustment method should be 
implemented depending on the case study. 
Furthermore, our approach only concerns the 
management of the input/output data of simulation 
model and validation model and the automation of 
the calibration process. They are useful when 
working on integrated simulation systems with high 
amount of data. For instance, we successfully 
applied our approach to calibrate and validate the 
BPH prediction model with several data sources 
such as administrative boundary (region, river, sea 
region, land used), light-trap coordinates, daily trap-
densities, rice cultivated regions, general weather 
data (wind data), station weather data (temperature, 
humidity, etc.), river and sea regions of three 
provinces of Mekong Delta region of Vietnam as we 

explained in Section 5. It helped us to reduce time 
and work force. 

Jaccard Index on ordered Data Sets vs. RMSE. In 
experiment, we also compared the Jaccard index on 
ordered data sets and RMSE by investigating the 
variation of RMSE in Table 4 and Jaccard index of 
the two BPH infection tables (the results of the 
transformation of Table 2 and 3) in Table 7. For 
instance, we compared the values of RMSE on the 
whole data sets (column 4 weeks in Table 4) with the 
values of Jaccard index (column 4 weeks in Table 7) 
by using Graphical method as Figure 3. It should be 
noticed that the values of RMSE in Figure 3 were 
divided by 1000. 

 
Figure 3: RMSE & Jaccard index on whole data sets. 

Figure 3 shows that there is an accordance  
between RMSE and Jaccard index. For instance, in 
scenario 1, as the RMSE get the lowest value of 
879.58, the Jaccard index obtains the highest value, 
which is 0.9293. In scenario 11, when the RMSE 
suddenly increases to 1666.85, the Jaccard index 
decreases to 0.6396 as well. In scenario 15, whereas 
RMSE gets the highest value 6174.68, the Jaccard 
index gets the lowest value, i.e. 0.5863. It proves 
that we can use Jaccard index on ordered data for the 
transformed data as fitness condition, which has 
been presented in Section 5.2.1. 

The Combination on the Fitness Condition. In the 
calibration of BPH prediction model, we can choose 
RMSE or Jaccard index as a fitness condition. 
However, it is suggested to use the combination of 
both coefficients, for instance: 
if ((Jindex>=0.9) & (RMSE<=100))   
 { 
    saveFitness(MODEL_ID, SCENARIO_ID,  
        REPLICATE_ID, PARA_VALUES); 
 } 
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The combination of similarity and difference 
coefficients helps to have better fitness condition for 
choosing the appropriate scenario in calibration. 

The Jaccard Index with Aggregation. Assume that 
we have two modality matrixes and the domain of 
the elements in S and E are [0..k-1], have k values: 

, … ,
… … …

, … ,

 

, … ,
… … …

, … ,

 

(9)

The aggregation on the columns on S (or E) has a 
matrix: 

, … ,
… … …

, … ,

 (10)

where: 
 C denotes aggregation matrix on the columns of 

matrix S (or E). 
 ci,j is the number of elements in row i in S (or E) 

having value j.  

The aggregation on the rows on S (or E) has a 
matrix: 

, … ,
… … …

, … ,

 (11)

where: 
 R denotes aggregation matrix on the rows of 

matrix S (or E). 
 ri,j is the number of elements at columns j in S (or 

E) having the value i.  

Then we can apply the Jaccard index on ordered data 
sets to the aggregation matrices (equation 10, 11) of 
S and E. 

7 CONCLUSIONS 

In this paper, we introduced a conceptual 
framework, which is adapted to multi-agent models 
with high volume of data. CFBM supports experts 
not only to model a phenomenon and execute the 
models via a multi-agent platform, but also to 
manage a set of models with their input and output, 
to aggregate and analyze the model output data via 
data warehouse and OLAP analysis tools. 

The key features of CFBM are that it supplies 
four components: (1) model design, (2) model 
execution, (3) execution analysis and (4) database 

management. These components are coupled and 
combined in a simulation system. The distinguished 
value of CFBM is that it augments the combination 
power of data warehouse, OLAP analysis tools and 
of a multi-agent based simulation platform. These 
components, when put together, are useful to 
develop complex simulation systems with a large 
amount of input/output data, which can be a what-if 
simulation system, a prediction/forecast system or a 
decision support system. 

In this article, we proposed an automated 
calibration approach; it helps modelers to solve the 
limitations of ABMs concerning calibration and 
validation of agent-based models with high volume 
of data: BI solution is used to manage the high 
volume of input/output of the simulation models and 
the analysis model is used to validate the accuracy of 
simulation outputs on large size of input with 
varying parameters. We also proposed a specific 
method to measure the similarity coefficient of two 
data sets with the constraints on the position of 
elements, which is called "Jaccard index on the 
ordered data sets". In our opinion, the method can 
not only be used as a demonstration of validating for 
BPH prediction model but it is also a good approach 
to validate the output of other models with 
constraints on location and time.  

Although our calibration and validation approach 
is the automation model with the integration of 
coupled models (simulation model and validation 
model) we have not succeeded in implementing it in 
GAMA. For instance, we execute the BPH 
prediction model with all values of the parameters 
via batch process. Subsequently, we execute the 
validation model to validate the outputs and select 
appropriate scenarios based on the fitness condition. 
These are still two separate processes but not 
integrated in one model as designed in Section 4. 
This is the problem that we plan to solve in the 
future. 

As for further work, on one hand we will 
continue to develop and improve features for 
specific agents (SQL-agent, OLAP-agent and 
Analysis-agent) of the CFBM described in Section 3 
to GAMA platform. On the other hand, we will also 
apply CFBM on multi-scale in multi-agent 
simulation or building what-if system, prediction 
system and decision support system. 
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