
Materializing Distributed Skyline Queries

Samiha Brahimi1 and Mohamed-khireddine Kholladi2
1Difa Departement, University of Constantine, Constantine, Algeria

2University of L’oued, El Qued, Algeria

Keywords: Skyline Queries, Distributed Skyline, Skycube, Structured Peer-to-Peer Systems, Top-sky, Query
Optimization.

Abstract: In this paper, we tackle the problem of efficient skycube computation in structured P2P systems. We
introduce a top-down algorithm called Distributed-Top-Sky based on the recently introduced Top-Sky.
Furthermore, we introduce two types of nodes namely the Scheduling-Node where the network is organized
by assigning the computation of each cuboid to a Data-Node and the Data-Node which holds a part of the
dataset used to compute the assigned cuboids. In order to evaluate the effectiveness of our approach, we
have conducted extensive experiments on three real datasets over a simulated CAN (content addressable
network) network.

1 INTRODUCTION

Since nowadays data are increasingly stored and
managed in a distributed way, processing skyline
queries (Börzsönyi et al, 2001) over distributed data
has attracted much attention considering the high
cost they require. On the other hand, P2P systems
are one of the most attractive distributed contexts
since they are highly distributed which increases the
applicability of their approaches on other distributed
systems.

In fact, distributed skyline queries can be
optimized by adopting the optimization technique
developed for relational queries: the materialization
of views. The latter aims at saving the results of
executing a query in a table in order to avoid
recomputing them when needed. The views
materialization process has two steps; the first one is
done over expressing the relations between queries
using AND-OR view graphs, syntactical analysis of
the workload, data cube lattice or query rewriting.
The aim of the second step is to exploit the results of
the first step in order to choose the best views to be
materialized using heuristics and meta-heuristics.

The interest of this paper is within the first step
of the materialization technique; in particular, the
computation of the skycube which has been first
inspired from the well-known data Cube proposed in
(Yuan et al., 2005 and (Pei et al., 2005) and
introduced as being the result of computing all

possible combinations of a d-dimensional set.
In a distributed setting, it is not feasible to build

the skycube by computing each cuboid individually
using the algorithms proposed for the processing of
skyline queries since they produce a high cost.
Hence, computing the skycube by deriving the
cuboids from each other is required in order to
reduce cost.

Consequently, we aim in this work at computing
the skycube over a structured P2P system by
introducing a top-down method called Distributed-
Top-Sky based on the recently introduced Top-Sky
algorithm (Brahimi et al. 2013). This choice has
been motivated by the following points.
- The only a few works treating the problem of

skycube computation over distributed contexts in
general and P2P systems in particular.

- The main advantage of structured P2P approach is
the simplicity of query routing by applying the rule
according to which the data have been distributed
in the first place since they are built in a controlled
manner and impose a relation between peer
content and network topology.

- There is some homogeneity between the Top-Sky
algorithm and the structured P2P approach; the
former relies on the values of some points of the
skyline to find the others, while the latter stores
each point in the node with the limits of its region
including the values of the point considering all
the dimensions.

372 Brahimi S. and Kholladi M..
Materializing Distributed Skyline Queries.
DOI: 10.5220/0004794203720379
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 372-379
ISBN: 978-989-758-015-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

To sum up, we believe that this paper has the
following contributions:
- Distributed-Top-Sky: a method for computing the

skycube in a top down manner i.e. it enumerates
the skycube starting by the highest level (the full
space cuboid) and then it begins the computation
of the other cuboids each from one of its ancestors.

- A scheduling method aims to assign the
computation of the cuboids to the data nodes based
on the data distribution in the network, the
availability of the data required for the
computation of each cuboid in nodes and the
quality of data.

- A system design composed of two types of nodes;
scheduling node (SN) and data node (DN).

- An extensive evaluation of the proposed methods
on three real data sets.

The remainder of the paper is organized as
follows. Section 2 gives background information
about the skyline and skycube notions. Section 3
gives a detailed description of the proposed method.
Section 4 provides the experimental results. Finally,
section 5 concludes the paper.

2 BACKGROUND

In this section, we present the most important
background concepts related to our work.

2.1 Skyline and Distributed Skyline

The skyline operator (Börzsönyi et al, 2001) is an
extension of the SQL's SELECT statement by an
optional SKYLINE OF.

Formally, Given a data space D defined by a set
of d dimensions {a1,..., ad} and a dataset S on D with
cardinality n, a point p∊ S can be represented by:
p={p(a1),…, p(ad)}, where p(ai) is a value of p on
dimension ai.
1) A point p is said to dominate another point q

within a subspace U, denoted as pU qU, if (1) on

every dimension ai U, p(ai) ൑	q (ai); and (2) on
at least one dimension aj U, p (aj) < q (aj).

2) The skyline is a set of points SKY(S) S which
are not dominated by any other point.

3) The subspace skyline is a set of points in S which
are not dominated by any other point with regard
to a subspace dimension set U, we denote
SKYU(S).

Computing skyline queries in a distributed setting
efficiently is a challenging task since we have to

compute the correct and the full skyline from
different sources in a minimal execution time.

DSL (Wu et al., 2006) is the first work proposed
over a structured P2P system where the problem of
running parallel constrained skyline queries is dealt
with. DSL uses the CAN (Ratnasamy et al., 2001)
overlay to map data to regions and assign these
regions to peers. Later on, (Wang et al., 2007)
presented the SSP for distributed processing of
skyline queries in BATON networks proposed by
(Jagadish et al.,2005). A bit later, (Wang et al.,
2009) generalized by SSP skyframe. Subsequently,
other works have been conducted over structured
P2P systems such as the works in (Chen et al,. 2008;
2009; Li et al,.2006).

2.2 t!he Skycube

This section must be in one column. The notion of
skycube has been first introduced in (Yuan et al.,
2005 and (Pei et al., 2005) where the authors
inspired the concept from the well-known data cube.
Over a set of dimensions D, there are 2d-1 possible
skyline queries on the different dimension sets. The
set of all possible skyline query results are the
skycube.

 A B C D
p1 1 4 3 3
p2 4 3 2 5
p3 2 7 3 6
p4 2 2 8 1
p5 1 4 1 4
p6 7 8 3 6
p7 8 3 1 8
p8 7 2 1 8

Cuboids skyline
ABCD p1, p2 ,p4, p5, p8
ABC p4, p5, p8
ABD p1, p4, p8
ACD p2, p4, p5
BCD p1, p2, p4, p5, p8
AB p1, p4, p5
AC p5
AD p1, p4
BC p8
BD p4
CD p4, p5
A p1, p5
B p4, p8
C p5, p7, p8
D p4

c. The skycube

a. Data set

b. The lattice structure of

the skycube

Figure1: Example of a building a skycube

The computation of the skycube is an active research
sub-topic in the field of skyline queries optimization.
(Raïssi et al., 2010) proposed an algorithm called
Orion to compute the skycube in a bottom-up
manner. A distributed version of this algorithm has
been proposed in in (Veloso et al., 2011). Recently,
a top-down algorithm called top-sky has been

Materializing�Distributed�Skyline�Queries

373

introduced in (Brahimi et al. 2013), where the
authors introduced two types of subspaces, distinct
subspaces computed directly from one of the parents
and non-distinct, in which a part of their skyline is
derived from the parents producing an intermediate
skyline used to complete the cuboid by finding
similar points to those it includes.

3 DISTRIBUTED-TOP-SKY

In this section, we present the system’s structure,
illustrated in Figure 2. Then, we explain the work of
the two types of nodes, composing the system; the
Scheduling Node (SN) and the Data Node (DN).

As seen in the figure, our system is composed of
one scheduling node responsible of managing the
work of the data nodes and N data nodes whose role
is to compute the cuboids following the orders of the
scheduling node.

Figure 2: The network structure.

3.1 Scheduling-node

Figure 3: Structure of the Scheduling Node.

The scheduling node (SN) is considered as the heart

of the system since there is only one machine which
manages the work of the other nodes (data nodes).
The SN has three methods exploiting and updating
three types of data. Figure 3 depicts the structure of
the scheduling node.

3.1.1 Data

A. Cuboids-Results
The Cuboids-Result is a file where the result of
computing each cuboid (the skycube) is stored. At
the very beginning the file contains only the scheme
illustrating the relations between cuboids (lattice
structure of the skycube). Hence, the skyline objects
are assigned to each cuboid once they are received
from the Data nodes.
B. Reg-Distribution table
Since we are working on structured peer-to-peer
systems, data are divided on N regions assigning
each to a specific data node. An example of
assigning regions of a bi-dimensional set to a CAN
network composed of seven Data nodes is depicted
in Figure.4. In the figure, the X-axis represents the
first dimension (A) and the Y-axis represents the
second (B).

Inspired by the distributed hash table,
Reg_Distribution is a table having as lines the data
nodes and as columns the considered dimensions.
The intersection represents the interval [min, max]
in which the values of the corresponding dimension
in the corresponding node are included. Table 2
gives an example of the Reg_Distribution table.

Figure 4: Example of CAN network.

Table 1: An example of Reg-distribution table.

DATA NODE A B
DN1 [0,5] [5,10]
DN2 [0,3] [0,5]
DN3 [3,5] [0,5]
DN4 [5,10] [9,10]
DN5 [5,10] [5,9]
DN6 [5,10] [2.5,5]
DN7 [5,10] [0,2.5]

E
nv

ir
on

m
en

t

Data Methods

SCHEDULER

Receive-Cuboids

Send-Cuboids

Schedule

Reg-distribution

Cuboids-Results

Data transmission

Updating

Calling methods

Communication

SCHEDULING -
NODE

DN 1

DN 2

DN n

5

9

2.5

A

DN2

DN1

DN 4

DN 6

DN 5

DN3

DN 7

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

374

C. SCHEDULE
Schedule is a table having as lines the data nodes
and as columns all the subspaces (cuboids), the
intersection is a binary space obeying the following
rules.

- If the space is empty (null), the cuboid is not
assigned to the corresponding node ;

- If the space is set to 0, the cuboid is assigned to the
corresponding node but not yet computed;

- If the space is set to 1; the cuboid is assigned to the
corresponding node and the computation is
fulfilled or the data node has received the
corresponding cuboid by the Scheduling node in
order to perform another computation.

A subspace must be assigned to only one data node,
whereas, a data node can receive more than one
subspace. It is obvious that Schedule is empty at the
very beginning since no cuboid is yet assigned.

Table 2 is the schedule built according to the
Reg-Distribution shown in Table 1, the cuboid AB is
assigned to DN1 whereas the computation is
accomplished by DN7, the cuboid B is assigned to
the node DN3 but not yet computed, and the cuboid
A is not yet assigned to any data node. Since AB is
required to compute B, it is sent to DN3 by SN, the
reason behind setting the intersection [DN3, AB] to
1 even though AB has not been computed by DN3.

Table 2: Example of a schedule.

 AB B A

DN 1 0

DN 2

DN 3 1 0

DN 4

DN 5

DN 6

DN 7 1

3.1.2 Methods

The scheduling node has three methods; each one is
deactivated automatically when no data is available.
It is activated by another method once the latter
detects the availability of the required data.

A. SCHEDULER
Scheduler is the method responsible of assigning
each cuboid to the appropriate Data node. The
assigning is based on three priority principles sorted
as follows.
1. The first priority is for the less loaded node; if

the Data node has no work, its coefficient DN-
coef (see Algorithm 1) is incremented by 4.

2. The second priority is given to the Data node that

holds one of the parent cuboids; so, we save the
communication cost of sending it. The
coefficient of such node is incremented by 2.

3. The third priority is for the node containing the
best points i.e. the best values in each dimension.
DN2 is the best node in our running example.
The coefficient of such a node is incremented by
1.

Sheduler is the start point of the system; it is
automatically deactivated when no parent is
available. Also, when new parents are computed,
Sheduler is activated By Receive-Cuboids.
Algorithm 1 is a pseudo code of the method
Scheduler.

Algorithm 1. SCHEDULER pseudo code

Input: schedule, Reg-distribution, Current cuboid;
Begin

SCHEDULER-stateon;
For (C from current_cuboid to the first cuboid) do
If(C is not the full cuboid) then

If(no computed parent cuboid) then
SCHEDULER-stateoff;
Exit;

Else //at least one parent cuboid is available
For (each Data node DN) do

DN-coef0;
If(DN has the best region) then

DN-coefDN-coef+1;
If(DN owns C’s parent cuboid)then

DN-coefDN-coef+2;
If (DN is not active) then // not loaded

DN-coefDN-coef+4;
End for;
Assign C to the node with the max coef ;

 If (schedule [DNMAX, parent]=0) then
schedule [DNMAX, parent]1;

Else //C is the full cuboid
Assign C to the best node;

Cnext cuboid;
Current_cuboid  C;
If (Send-cuboid_state=off) then
 Send-cuboid ();// activate Send-cuboids

End for;
End.

B. SEND-CUBOIDS
Send-Cuboids is a method responsible for sending
messages to the outside (data nodes). When is called
by Sheduler, this method sends each cuboid to the
corresponding Data node in the schedule.

The sent message can include the cuboid to be
computed and a parent cuboid if required. Send-
Cuboids needs sending one of the parent cuboids if
the data node does not hold any of them.

Materializing�Distributed�Skyline�Queries

375

Algorithm 2. SEND-CUBOIDS pseudo code

Input: schedule
Current cuboid;

Begin
Send-Cuboid_stateon;
For (C, from current_cuboid to the first cuboid) do

DN  the node in which its intersection
with C is equal to 0;
If (!exist DN) do

Send-Cuboid_stateoff;
Exit;

Else;
If ((C =full) or (DN holds a parent)) do

Send(C, DN);
Else

Send(C, DN, parent(C));
C the next cuboid;
Current cuboidC;

End for;
End.

C. RECEIVE-CUBOIDS
Receive-Cuboids is a simple method having the role
of receiving computed cuboids from the data nodes
and saving the result in the file Cuboids-Results. In
addition, it updates the Schedule indicating that the
cuboid is computed and if Scheduler is deactivated,
Receive-Cuboids calls it in order to consider the new
cuboid. Algorithm 3 below gives the pseudo code of
the method Receive-Cuboids.

Algorithm 3. Receive-Cuboids pseudo code

Input: C: received cuboid
Begin

 Save (C); // in Result-Cuboid
 C	∩ DN1; //in the schedule
 If (SCHEDULER_state=off) then

 SCHEDULER;
End.

3.2 Data Node

In this section, we provide a detailed description of
the data node which plays a double role; in addition
to holding its assigned data region, DN
accomplishes the tasks assigned to it by the
scheduling node or by the other data nodes. These
tasks are achieved by means of four methods
exploiting and updating three kinds of data.

Figure 5: Structure of the data node.

3.2.1 Data

A. DATA-REGION
Data-Region is the file containing the data region
assigned to the node. Based on the distribution
example explained in Figure 4 and Table 1, Figure 6
illustrates the data region of each data node using the
data set of our running example.

Figure 6: Data-Region files.

B. REG-DISTRIBUTION
A part of the Reg-Distribution table of the
scheduling node is available on each data node, this
table has the same structure but it considers only the
data node’s neighborhood.

According to CAN network, for instance, two
nodes are neighbors in a d-dimensional space if their
regions overlap along d-1 dimensions and abut along
one dimension. For example, the neighbours of DN3
are DN1, DN2, DN6 and DN7.

C. CUBOIDS-RESULTS
The data node holds a summarized version of the
Cuboids-Results file included in the scheduling
node. It has only the cuboids computed by the DN or

Processing

Data Methods

Data-Region

S
N

Data transmission

Result transmission

Calling method

Sky-Algo
Cuboids-Results

Reg-Distribution
Sky-complete

Search-Similar-Points

D
N

s

DN2

p1, p4, p5

DN1

p3

DN3

p2

DN4

DN6

p7

DN5

p6

DN7

p8

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

376

sent to it by the SN during the computation of
another cuboid.

3.2.2 Methods

As illustrated in figure5, the data node has four
methods; Processing, Sky_Algo, Sky-Complete and
Search -Similar-Points.

A. PROCESSING
Processing is the manager of the Data node; it is
responsible for computing each cuboid using the
suitable methods considering the nature of the
cuboid.

If the cuboid is of the full space and DN is the
first queried node, the method Processing calls the
method Sky-Algo which has as input the Data-
Region and output the skyline points and the filter
points (F-P) (the filter points may be the skyline
points themselves), the latters are forwarded to
another DN chosen using the Reg-Distribution and
the network’s routing system. If the query is
forwarded with the filtering point(s) from another
DN, a pruning test is conducted, if the region of the
node in hand is pruned by the filtering point(s), the
query is forwarded to another DN with the received
filtering point(s) (R-F-P) without performing any
computation; otherwise, Sky-Algo is executed using
the data region and the received filtering point(s)
producing the local skyline points and new filter
point(s) (N-F-P). If there are more nodes to be
queried, the query is forwarded with the new
filtering points, if not, the final skyline is returned
back to the SN.

In the case a subspace cuboid, the method
Processing calls Sky-Algo providing it with a parent
cuboid. When getting back the results from Sky-
Algo, Processing either returns them directly to SN,
in case of a distinct subspace, or provides them to
Sky-Complete in order to complete the skyline
points. The results of Sky- Complete are directly
returned to the scheduling node as a final cuboid.

B. SKY-ALGO
Sky-Algo is the method which computes the skyline
locally using either the data available on the node
(data region) if the cuboid is a full or the data
provided by the method Processing which gets them
either from the SN or from the cuboids already
computed by the Data node in hand.

Besides, the method uses the well-known skyline
algorithm BNL to compute the skyline points, these
points are sometimes filtered using the received
filter points.

C. SKY-COMPLETE
Sky-Complete relies only on the computation of the
subspace, it has as input the intermediate skyline
computed by the Sky-Algo method.

Algorithm 4. Sky-Complete pseudo code
Input: Reg-Distribution table

S: set of points
Define: P: S.first

 DN: data node
Begin

For (S) do
DN first data node;
For (each node in Reg-Distribution) do

If (P	߳ DN) then
If exist(cluster(DN)) then

Cluster(DN) Cluster(DN) {P};
Else

Create (cluster (DN));
 Cluster(DN) Cluster(DN) {P};
Reg-Distribution.end;

Else
Reg-Distribution.next;

 S.next;
End for;

End for;
For (all clusters) do

Msg search-similar-points(actual cluster);
Send(Msg, cluster.DN);

End for;
End.

In fact, the Reg-Distribution table is used in order to
determine which data node has to be queried to find
the similar points of each skyline point.

In order to avoid querying the same node many
times, Sky-Complete classifies the intermediate
skyline according to the node regions having at most
N clusters (N is the number of Data nodes), then
each cluster is sent to the corresponding node after
omitting the repeated points (points which have the
same values in all the dimensions of the subspace).
Since the Reg-Distribution table in the Data node
contains only the information of the neighborhood,
the remaining points are sent to the neighbors in
order to get clustered.

D. SEARCH-SIMILAR-POINTS
Search-Similar-Points relies only on computing the
subspace cuboids. It receives the order from Sky-
Complete run whether in the same node or in the
outside (another Data node) providing it with a
cluster of data points.

Search-Similar-Points scans the Data-Region of
its node to find the similar points to those received
from the querying node and return them back to it.
The process is exhibited in Algorithm 5 below.

Materializing�Distributed�Skyline�Queries

377

Algorithm 5. Search-Similar-Points

Input: cluster: received data points
 DRP: data region points

Output: SP: similar points
Define: P1: cluster.first

 P2: DRP.first
Begin

For (cluster) do
For (DRP) do

 If (P1(U)==P2(U)) then
 SP SP {P2};

 cluster.next;
 End for;
 RDP.next;

End for;
End.

4 EXPERIMENTAL RESULTS

In this section, we present an extensive performance
evaluation of our algorithms. Since there is no work
in the literature treating the computation of the
skycube in P2P systems, we compare our algorithms
with computing the cuboids individually using the
DSL (Wu et al., 2006).

4.1. Experimental Settings

The proposed algorithms and the algorithm DSL
have been encoded in java language and
implemented in a simulated CAN network of 11
nodes, 10 data nodes and a Scheduling Node on a
laptop with an intel (R) Core (TM) i 3 CPU and 4GB
of main memory machine running the Windows 7
operating system.

In all experiments we use three real datasets;
NBA players’ season statistics from 1946 to 2009
(http://basketballreference.com), Shuttle Landing
Control dataset and a part from El Nino dataset
which contains oceanographic and surface

meteorological readings taken from a series of buoys
positioned throughout the equatorial Pacific
http://archive.ics.uci.edu/ml/datasets.html).

4.2. Effect of Dimensionality

First, we study the effect of dimensionality on the
performance of the proposed method over the three
datasets. We notice, as seen in Figure 7, that
Distributed-Top-Sky outperforms DSL within all
datasets

In fact, the gain differs from a dataset to another
for instance, in the case of NBA dataset,
Distributed-Top-Sky is only two times faster. It is 10
times faster within Shuttle and more than 100 times
faster in the case of El Nino dataset. Moreover, the
DSL approach could not complete the computation
for high dimensions within NBA and El Nino
datasets.

4.3. Rate of Transferred Objects

Figure 8 shows the rate of transferred objects per cuboid.
We see that the number of transferred objects in
DSL is always higher than Distributed-Top-Sky. As
well, this difference is very large when El Nino
dataset is considered which explains the great
performance of Distributed-Top-Sky in such a case.

Figure 8: Rate of transferred objects.

(a) NBA dataset (b) Shuttle dataset (c) El Nino dataset

Figure 7: Scalability w.r.t dimensionality.

1

10

100

1000

NBA
shuttle

El Nino

DSL

DTS

0,1

1

10

100

1000

3 6 9 12 15 17

DSL DTS

0,1

1

10

100

1000

10000

3 6 8 10

DSL DTS

0,1

1

10

100

1000

10000

100000

3 6 8 10

DSL DTS

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

378

5 CONCLUSIONS

This paper has dealt with the computation of the
skycube in a structured peer-to-peer system by
introducing a method called Distributed-Top-Sky).

For validating the proposed approach, we have
conducted an experimental evaluation on various
datasets. The efficiency of the proposed method has
been proven; it outperformed individual computation
of the cuboids using the DSL approach. These
results can be optimized in the future by distributing
the scheduling task.

Another possible direction for future work is to
investigate the second step of the materialized views
selection problem for skyline queries under various
constraints since no previous work treats the
distributed version of this problem with skyline
queries and there are a few works for relational
queries. The works presented in (Bauer et al., 2003;
Chaves et al., 2009) can be the start point of such an
investigation.

REFERENCES

Bascketball refrence. http://basketballreference.com
(accessed january 8th, 2013).

Bauer and Lehner, W. (2009) “On solving the view
selection problem in distributed data warehouse
architectures.” In SSDBM, pages 43–, 2003.

Börzsönyi, S., Kossmann, D. and Stocker, K. (2001) “The
skyline operator.” In Proceedings of International
Conference on Data Engineering (ICDE).

Brahimi, S. Kholladi, M.K. and hamerelain, A. (2013)
“top-Sky: top-down algorithm for computing the
skycube” in international symposium of programming
and systems” (isps 2013).

Chaves, L.W.F. Buchmann, E.Hueske, F. and B¨ohm ,K.
“Towards materialized view selection for distributed
databases”. In EDBT, pages 1088–1099, New York,
NY, USA, 2009. ACM.

Chen, B. and Liang, W. (2009) “ Progressive skyline
query processing in wireless sensor networks” In:
International Conference on Mobile Ad-hoc and
Sensor Networks(MSN), pp. 17{24 (2009).

Chen, L., Cui, B., Lu, H., Xu, L. and Xu, Q. (2008) “iSky:
Efficient and progressive skyline computing in a
structured P2P network.” In: Proceedings of the
International Conference on Distributed Computing
Systems , 2008.

Jagadish, H., Ooi, B. and Vu, Q.(2005) “BATON: a
balanced tree structure for peer-to-peer networks.” In
Proceedings of International Conference on Very
Large Data Bases (VLDB), pp. 661{672 (2005).

Li, H., Tan, Q., Lee, W.: Efficient progressive processing
of skyline queries in peer-to-peer systems. In:

Proceedings of the International Conference on
Scalable Information Systems(Infoscale), p. 26 (2006).

Machine learning repository. http://archive.ics.uci.edu/
ml/datasets.html (accessed may 25th, 2013).

Pei, J., W. Jin, M. Ester, et Y. Tao (2005). Catching the
best views of skyline : A semantic approach based on
decisive subspaces. In VLDB, pp. 253–264.

Raïssi, C. Pei, J. and Kister, T. “Computing closed
skycubes,”PVLDB, vol. 3, pp. 838–847, 2010.

Ratnasamy, S., Francis, P., Handley, M., Karp, R. and
Schenker, S. (2001) “A scalable content-addressable
network”. In: Proceedings Conference on
Applications, technologies, architectures, and
protocols for computer communications.

Stoica, I., Morris, R., Karger, D., Kaashoek, M.F. and
Balakrishnan, H. (2001) Chord: A scalable peer-to-
peer lookup service for internet applications. In:
Proceedings of Conference on Applications,
technologies, architectures, and protocols for com
computer communications (SIGCOMM), pp. 149{160
(2001).

Veloso R. R., Cerf .L, Raıssi .C and W. Meira Jr,
“Distributed Skycube Computation with Anthill”, In
ISCAHPC 2011. IEEE Computer Society.

Wang, S., Ooi, B., Tung, A., Xu, L. (2007) » Efficient
skyline query processing on peer-to-peer networks”.
In: Proceedings of International Conference on Data
Engineering (ICDE).

Wang, S., Vu, Q.H., Ooi, B.C., Tung, A.K. and Xu, L.
(2009) “Skyframe: a framework for skyline query
processing in peer-to-peer systems.” In The VLDB
Journal 18(1), 345-362 (2009).

Wu, P., Zhang, C., Feng, Y., Zhao, B., Agrawal, D. and
Abbadi, A (2006). “Parallelizing skyline queries for
scalable distribution.” In: Proceedings of International
Conference on Extending Database Technology
(EDBT), pp. 112{130 (2006).

Yuan, Y., X. Lin, Q. Liu,W.Wang, J. X. Yu, et Q. Zhang
(2005). Efficient computation of the skyline cube. In
VLDB, pp. 241–252.

Materializing�Distributed�Skyline�Queries

379

