
Materializing Distributed Skyline Queries 

Samiha Brahimi1 and Mohamed-khireddine Kholladi2 
1Difa Departement, University of Constantine, Constantine, Algeria 

2University of L’oued, El Qued, Algeria 

Keywords: Skyline Queries, Distributed Skyline, Skycube, Structured Peer-to-Peer Systems, Top-sky, Query 
Optimization. 

Abstract: In this paper, we tackle the problem of efficient skycube computation in structured P2P systems. We 
introduce a top-down algorithm called Distributed-Top-Sky based on the recently introduced Top-Sky.  
Furthermore, we introduce two types of nodes namely the Scheduling-Node where the network is organized 
by assigning the computation of each cuboid to a Data-Node and the Data-Node which holds a part of the 
dataset used to compute the assigned cuboids. In order to evaluate the effectiveness of our approach, we 
have conducted extensive experiments on three real datasets over a simulated CAN (content addressable 
network) network. 

1 INTRODUCTION 

Since nowadays data are increasingly stored and 
managed in a distributed way, processing skyline 
queries (Börzsönyi et al, 2001)  over distributed data 
has attracted much attention considering the high 
cost they require. On the other hand, P2P systems 
are one of the most attractive distributed contexts 
since they are highly distributed which increases the 
applicability of their approaches on other distributed 
systems. 

In fact, distributed skyline queries can be 
optimized by adopting the optimization technique 
developed for relational queries: the materialization 
of views. The latter aims at saving the results of 
executing a query in a table in order to avoid 
recomputing them when needed. The views 
materialization process has two steps; the first one is 
done over expressing the relations between queries 
using AND-OR view graphs, syntactical analysis of 
the workload, data cube lattice or query rewriting. 
The aim of the second step is to exploit the results of 
the first step in order to choose the best views to be 
materialized using heuristics and meta-heuristics.  

The interest of this paper is within the first step 
of the materialization technique; in particular, the 
computation of the skycube which has been first 
inspired from the well-known data Cube proposed in 
(Yuan et al., 2005 and (Pei et al., 2005) and 
introduced as being the result of computing all 

possible combinations of a d-dimensional set. 
In a distributed setting, it is not feasible to build 

the skycube by computing each cuboid individually 
using the algorithms proposed for the processing of 
skyline queries since they produce a high cost. 
Hence, computing the skycube by deriving the 
cuboids from each other is required in order to 
reduce cost.  

Consequently, we aim in this work at computing 
the skycube over a structured P2P system by 
introducing a top-down method called Distributed-
Top-Sky based on the recently introduced Top-Sky 
algorithm (Brahimi et al. 2013). This choice has 
been motivated by the following points. 
- The only a few works treating the problem of 

skycube computation over distributed contexts in 
general and P2P systems in particular. 

- The main advantage of structured P2P approach is 
the simplicity of query routing by applying the rule 
according to which the data have been distributed 
in the first place since they are built in a controlled 
manner and impose a relation between peer 
content and network topology.  

- There is some homogeneity between the Top-Sky 
algorithm and the structured P2P approach; the 
former relies on the values of some points of the 
skyline to find the others, while the latter stores 
each point in the node with the limits of its region 
including the values of the point considering all 
the dimensions. 
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To sum up, we believe that this paper has the 
following contributions: 
- Distributed-Top-Sky: a method for computing the 

skycube in a top down manner i.e. it enumerates 
the skycube starting by the highest level (the full 
space cuboid) and then it begins the computation 
of the other cuboids each from one of its ancestors. 

- A scheduling method aims to assign the 
computation of the cuboids to the data nodes based 
on the data distribution in the network, the 
availability of the data required for the 
computation of each cuboid in nodes and the 
quality of data. 

- A system design composed of two types of nodes; 
scheduling node (SN) and data node (DN). 

- An extensive evaluation of the proposed methods 
on three real data sets. 

The remainder of the paper is organized as 
follows.  Section 2 gives background information 
about the skyline and skycube notions. Section 3 
gives a detailed description of the proposed method. 
Section 4 provides the experimental results. Finally, 
section 5 concludes the paper. 

2 BACKGROUND 

In this section, we present the most important 
background concepts related to our work.  

2.1 Skyline and Distributed Skyline 

The skyline operator (Börzsönyi et al, 2001) is an 
extension of the SQL's SELECT statement by an 
optional SKYLINE OF.  

Formally, Given a data space D defined by a set 
of d dimensions {a1,..., ad} and a dataset S on D with 
cardinality n, a point p∊ S can be represented by: 
p={p(a1),…, p(ad)}, where p(ai) is a value of p on 
dimension ai.  
1) A point p is said to dominate another point q 

within a subspace U, denoted as pU qU, if (1) on 

every dimension ai U, p(ai) ൑	q (ai); and (2) on 
at least one dimension aj  U, p (aj) < q (aj).  

2) The skyline is a set of points SKY(S) S which 
are not dominated by any other point. 

3) The subspace skyline is a set of points in S which 
are not dominated by any other point with regard 
to a subspace dimension set U, we denote 
SKYU(S).  

Computing skyline queries in a distributed setting 
efficiently is a challenging task since we have to 

compute the correct and the full skyline from 
different sources in a minimal execution time.  

DSL (Wu et al., 2006) is the first work proposed 
over a structured P2P system where the problem of 
running parallel constrained skyline queries is dealt 
with. DSL uses the CAN (Ratnasamy et al., 2001)  
overlay to map data to regions and assign these 
regions to peers. Later on, (Wang et al., 2007) 
presented the SSP for distributed processing of 
skyline queries in BATON networks proposed by 
(Jagadish et al.,2005). A bit later, (Wang et al., 
2009) generalized by SSP skyframe. Subsequently, 
other works have been conducted over structured 
P2P systems such as the works in (Chen et al,. 2008; 
2009; Li et al,.2006). 

2.2 t!he Skycube 

This section must be in one column. The notion of 
skycube has been first introduced in (Yuan et al., 
2005 and (Pei et al., 2005) where the authors 
inspired the concept from the well-known data cube. 
Over a set of dimensions D, there are 2d-1 possible 
skyline queries on the different dimension sets. The 
set of all possible skyline query results are the 
skycube.  

 A B C D 
p1 1 4 3 3 
p2 4 3 2 5 
p3 2 7 3 6 
p4 2 2 8 1 
p5 1 4 1 4 
p6 7 8 3 6 
p7 8 3 1 8 
p8 7 2 1 8 

Cuboids skyline 
ABCD p1, p2 ,p4, p5, p8 
ABC p4, p5,  p8 
ABD p1, p4, p8 
ACD p2, p4, p5 
BCD p1, p2, p4, p5, p8 
AB p1, p4, p5 
AC p5 
AD p1, p4 
BC p8 
BD p4 
CD p4, p5 
A p1, p5 
B p4, p8 
C p5, p7, p8 
D p4 

c. The skycube 

 

a. Data set 

 
b. The lattice structure of 

the skycube  

Figure1: Example of a building a skycube 

The computation of the skycube is an active research 
sub-topic in the field of skyline queries optimization. 
(Raïssi et al., 2010) proposed an algorithm called 
Orion to compute the skycube in a bottom-up 
manner. A distributed version of this algorithm has 
been proposed in in (Veloso et al., 2011). Recently, 
a top-down algorithm called top-sky has been 
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introduced in (Brahimi et al. 2013), where the 
authors introduced two types of subspaces, distinct 
subspaces computed directly from one of the parents 
and non-distinct, in which a part of their skyline is 
derived from the parents producing an intermediate 
skyline used to complete the cuboid by finding 
similar points to those it includes. 

3 DISTRIBUTED-TOP-SKY 

In this section, we present the system’s structure, 
illustrated in Figure 2. Then, we explain the work of 
the two types of nodes, composing the system; the 
Scheduling Node (SN) and the Data Node (DN).  

As seen in the figure, our system is composed of 
one scheduling node responsible of managing the 
work of the data nodes and N data nodes whose role 
is to compute the cuboids following the orders of the 
scheduling node.  

 

Figure 2: The network structure. 

3.1 Scheduling-node 

 
Figure 3: Structure of the Scheduling Node. 

The scheduling node (SN) is considered as the heart 

of the system since there is only one machine which 
manages the work of the other nodes (data nodes). 
The SN has three methods exploiting and updating 
three types of data. Figure 3 depicts the structure of 
the scheduling node. 

3.1.1 Data 

A. Cuboids-Results 
The Cuboids-Result is a file where the result of 
computing each cuboid (the skycube) is stored. At 
the very beginning the file contains only the scheme 
illustrating the relations between cuboids (lattice 
structure of the skycube). Hence, the skyline objects 
are assigned to each cuboid once they are received 
from the Data nodes.  
B. Reg-Distribution table 
Since we are working on structured peer-to-peer 
systems, data are divided on N regions assigning 
each to a specific data node. An example of 
assigning regions of a bi-dimensional set to a CAN 
network composed of seven Data nodes is depicted 
in Figure.4. In the figure, the X-axis represents the 
first dimension (A) and the Y-axis represents the 
second (B). 

Inspired by the distributed hash table, 
Reg_Distribution is a table having as lines the data 
nodes and as columns the considered dimensions. 
The intersection represents the interval [min, max] 
in which the values of the corresponding dimension 
in the corresponding node are included. Table 2 
gives an example of the Reg_Distribution table. 

 

Figure 4: Example of CAN network. 

Table 1: An example of Reg-distribution table. 

DATA NODE A B 
DN1 [0,5] [5,10] 
DN2 [0,3] [0,5] 
DN3 [3,5] [0,5] 
DN4 [5,10] [9,10] 
DN5 [5,10] [5,9] 
DN6 [5,10] [2.5,5] 
DN7 [5,10] [0,2.5] 
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C. SCHEDULE 
Schedule is a table having as lines the data nodes 
and as columns all the subspaces (cuboids), the 
intersection is a binary space obeying the following 
rules.  

- If the space is empty (null), the cuboid is not 
assigned to the corresponding node ; 

- If the space is set to 0, the cuboid is assigned to the 
corresponding node but not yet computed; 

- If the space is set to 1; the cuboid is assigned to the 
corresponding node and the computation is 
fulfilled or the data node has received the 
corresponding cuboid by the Scheduling node in 
order to perform another computation. 

A subspace must be assigned to only one data node, 
whereas, a data node can receive more than one 
subspace. It is obvious that Schedule is empty at the 
very beginning since no cuboid is yet assigned. 

Table 2 is the schedule built according to the 
Reg-Distribution shown in Table 1, the cuboid AB is 
assigned to DN1 whereas the computation is 
accomplished by DN7, the cuboid B is assigned to 
the node DN3 but not yet computed, and the cuboid 
A  is not yet assigned to any data node. Since AB is 
required to compute B, it is sent to DN3 by SN, the 
reason behind setting the intersection [DN3, AB] to 
1 even though AB has not been computed by DN3. 

Table 2: Example of a schedule. 

 AB B A 

DN 1 0   

DN 2    

DN 3 1 0  

DN 4    

DN 5    

DN 6    

DN 7 1   

3.1.2 Methods 

The scheduling node has three methods; each one is 
deactivated automatically when no data is available. 
It is activated by another method once the latter 
detects the availability of the required data. 

A. SCHEDULER 
Scheduler is the method responsible of assigning 
each cuboid to the appropriate Data node. The 
assigning is based on three priority principles sorted 
as follows. 
1. The first priority is for the less loaded node; if 

the Data node has no work, its coefficient DN-
coef (see Algorithm 1) is incremented by 4. 

2. The second priority is given to the Data node that 

holds one of the parent cuboids; so, we save the 
communication cost of sending it. The 
coefficient of such node is incremented by 2.  

3. The third priority is for the node containing the 
best points i.e. the best values in each dimension. 
DN2 is the best node in our running example. 
The coefficient of such a node is incremented by 
1. 

Sheduler is the start point of the system; it is 
automatically deactivated when no parent is 
available. Also, when new parents are computed, 
Sheduler is activated By Receive-Cuboids. 
Algorithm 1 is a pseudo code of the method 
Scheduler. 

Algorithm 1. SCHEDULER  pseudo code 

Input: schedule, Reg-distribution, Current cuboid; 
Begin 

SCHEDULER-stateon; 
For (C from current_cuboid to the first cuboid) do 
If(C is not the full cuboid) then 

If(no computed parent cuboid ) then 
SCHEDULER-stateoff; 
Exit; 

Else //at least one parent cuboid is available 
For (each Data node DN) do 

DN-coef0; 
If(DN has the best region) then 

DN-coefDN-coef+1; 
If(DN owns C’s parent cuboid)then 

DN-coefDN-coef+2; 
If (DN is not active) then // not loaded 

DN-coefDN-coef+4; 
End for; 
Assign C to the node with the max coef ; 

        If (schedule [DNMAX, parent]=0) then 
schedule [DNMAX, parent]1; 

Else //C is the full cuboid 
Assign C to the best node; 

Cnext cuboid; 
Current_cuboid  C; 
If (Send-cuboid_state=off) then 
   Send-cuboid ();// activate Send-cuboids 

End for; 
End. 

B. SEND-CUBOIDS 
Send-Cuboids is a method responsible for sending 
messages to the outside (data nodes). When is called 
by Sheduler, this method sends each cuboid to the 
corresponding Data node in the schedule. 

The sent message can include the cuboid to be 
computed and a parent cuboid if required. Send-
Cuboids needs sending one of the parent cuboids if 
the data node does not hold any of them. 
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Algorithm 2. SEND-CUBOIDS pseudo code 

Input: schedule 
Current cuboid; 

Begin 
Send-Cuboid_stateon; 
For (C, from current_cuboid to the first cuboid) do 

DN  the node in which its intersection 
with C is equal to 0; 
If (!exist DN) do 

Send-Cuboid_stateoff; 
Exit; 

Else; 
If ((C =full) or (DN holds a parent)) do 

Send(C, DN); 
Else 

Send(C, DN, parent(C)); 
C the next cuboid; 
Current cuboidC; 

End for; 
End. 
 

C. RECEIVE-CUBOIDS 
Receive-Cuboids is a simple method having the role 
of receiving computed cuboids from the data nodes 
and saving the result in the file Cuboids-Results. In 
addition, it updates the Schedule indicating that the 
cuboid is computed and if Scheduler is deactivated, 
Receive-Cuboids calls it in order to consider the new 
cuboid.  Algorithm 3 below gives the pseudo code of 
the method Receive-Cuboids. 

 

Algorithm 3. Receive-Cuboids pseudo code 

Input: C: received cuboid 
Begin 

       Save (C); // in Result-Cuboid 
      C	∩ DN1; //in the schedule 
       If (SCHEDULER_state=off) then 

     SCHEDULER; 
End. 

3.2 Data Node 

In this section, we provide a detailed description of 
the data node which plays a double role; in addition 
to holding its assigned data region, DN 
accomplishes the tasks assigned to it by the 
scheduling node or by the other data nodes. These 
tasks are achieved by means of four methods 
exploiting and updating three kinds of data. 

 
Figure 5: Structure of the data node. 

3.2.1 Data 

A. DATA-REGION 
Data-Region is the file containing the data region 
assigned to the node. Based on the distribution 
example explained in Figure 4 and Table 1, Figure 6 
illustrates the data region of each data node using the 
data set of our running example. 

 

Figure 6: Data-Region files. 

B. REG-DISTRIBUTION 
A part of the Reg-Distribution table of the 
scheduling node is available on each data node, this 
table has the same structure but it considers only the 
data node’s neighborhood. 

According to CAN network, for instance, two 
nodes are neighbors in a d-dimensional space if their 
regions overlap along d-1 dimensions and abut along 
one dimension. For example, the neighbours of DN3 
are DN1, DN2, DN6 and DN7.  

C. CUBOIDS-RESULTS 
The data node holds a summarized version of the 
Cuboids-Results file included in the scheduling 
node. It has only the cuboids computed by the DN or 
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sent to it by the SN during the computation of 
another cuboid.  

3.2.2 Methods 

As illustrated in figure5, the data node has four 
methods; Processing, Sky_Algo, Sky-Complete and 
Search -Similar-Points. 

A. PROCESSING 
Processing is the manager of the Data node; it is 
responsible for computing each cuboid using the 
suitable methods considering the nature of the 
cuboid. 

If the cuboid is of the full space and DN is the 
first queried node, the method Processing calls the 
method Sky-Algo which has as input the Data-
Region and output the skyline points and the filter 
points (F-P) (the filter points may be the skyline 
points themselves), the latters are forwarded to 
another DN chosen using the Reg-Distribution and 
the network’s routing system. If the query is 
forwarded with the filtering point(s) from another 
DN, a pruning test is conducted, if the region of the 
node in hand is pruned by the filtering point(s), the 
query is forwarded to another DN with the received 
filtering point(s) (R-F-P) without performing any 
computation; otherwise, Sky-Algo is executed using 
the data region and the received filtering point(s) 
producing the local skyline points and new filter 
point(s) (N-F-P). If there are more nodes to be 
queried, the query is forwarded with the new 
filtering points, if not, the final skyline is returned 
back to the SN. 

In the case a subspace cuboid, the method 
Processing calls Sky-Algo providing it with a parent 
cuboid. When getting back the results from Sky-
Algo, Processing either returns them directly to SN, 
in case of a distinct subspace, or provides them to 
Sky-Complete in order to complete the skyline 
points. The results of Sky- Complete are directly 
returned to the scheduling node as a final cuboid.  

B. SKY-ALGO 
Sky-Algo is the method which computes the skyline 
locally using either the data available on the node 
(data region) if the cuboid is a full or the data 
provided by the method Processing which gets them 
either from the SN or from the cuboids already 
computed by the Data node in hand. 

Besides, the method uses the well-known skyline 
algorithm BNL to compute the skyline points, these 
points are sometimes filtered using the received 
filter points. 

 

C. SKY-COMPLETE 
Sky-Complete relies only on the computation of the 
subspace, it has as input the intermediate skyline 
computed by the Sky-Algo method.  

Algorithm 4. Sky-Complete pseudo code 
Input: Reg-Distribution table 

S: set of  points 
Define: P: S.first 

  DN: data node 
Begin 

For (S) do 
DN first data node; 
For (each node in Reg-Distribution) do 

If (P	߳ DN) then 
If exist(cluster(DN)) then 

Cluster(DN) Cluster(DN)  {P}; 
Else 

Create (cluster (DN)); 
   Cluster(DN) Cluster(DN)  {P}; 
Reg-Distribution.end; 

Else 
Reg-Distribution.next; 

    S.next; 
End for; 

End for; 
For (all clusters) do 

Msg search-similar-points(actual cluster); 
Send(Msg, cluster.DN); 

End for; 
End. 

In fact, the Reg-Distribution table is used in order to 
determine which data node has to be queried to find 
the similar points of each skyline point.   

In order to avoid querying the same node many 
times, Sky-Complete classifies the intermediate 
skyline according to the node regions having at most 
N clusters (N is the number of Data nodes), then 
each cluster is sent to the corresponding node after 
omitting the repeated points (points which have the 
same values in all the dimensions of the subspace). 
Since the Reg-Distribution table in the Data node 
contains only the information of the neighborhood, 
the remaining points are sent to the neighbors in 
order to get clustered. 

D. SEARCH-SIMILAR-POINTS 
Search-Similar-Points relies only on computing the 
subspace cuboids. It receives the order from Sky-
Complete run whether in the same node or in the 
outside (another Data node) providing it with a 
cluster of data points.  

Search-Similar-Points scans the Data-Region of 
its node to find the similar points to those received 
from the querying node and return them back to it. 
The process is exhibited in Algorithm 5 below. 

 

 

 

 

Materializing�Distributed�Skyline�Queries

377



Algorithm 5. Search-Similar-Points 

Input: cluster: received data points 
   DRP: data region points 

Output: SP: similar points 
Define: P1: cluster.first 

     P2: DRP.first 
Begin 

For (cluster) do 
For (DRP) do 

       If (P1(U)==P2(U)) then 
  SP SP  {P2}; 

      cluster.next; 
       End for; 
      RDP.next; 

End for; 
End. 

4 EXPERIMENTAL RESULTS 

In this section, we present an extensive performance 
evaluation of our algorithms. Since there is no work 
in the literature treating the computation of the 
skycube in P2P systems, we compare our algorithms 
with computing the cuboids individually using the 
DSL (Wu et al., 2006). 

4.1. Experimental Settings 

The proposed algorithms and the algorithm DSL 
have been encoded in java language and 
implemented in a simulated CAN network of 11 
nodes, 10 data nodes and a Scheduling Node on a 
laptop with an intel (R) Core (TM) i 3 CPU and 4GB 
of main memory machine running the Windows 7 
operating system. 

In all experiments we use three real datasets; 
NBA players’ season statistics from 1946 to 2009 
(http://basketballreference.com), Shuttle Landing 
Control dataset and a part from El Nino dataset 
which contains oceanographic and surface 

meteorological readings taken from a series of buoys 
positioned throughout the equatorial Pacific 
http://archive.ics.uci.edu/ml/datasets.html). 

4.2. Effect of Dimensionality 

First, we study the effect of dimensionality on the 
performance of the proposed method over the three 
datasets. We notice, as seen in Figure 7, that 
Distributed-Top-Sky outperforms DSL within all 
datasets 

In fact, the gain differs from a dataset to another 
for instance, in the case of NBA dataset, 
Distributed-Top-Sky is only two times faster. It is 10 
times faster within Shuttle and more than 100 times 
faster in the case of El Nino dataset. Moreover, the 
DSL approach could not complete the computation 
for high dimensions within NBA and El Nino 
datasets. 

4.3. Rate of Transferred Objects 

Figure 8 shows the rate of transferred objects per cuboid. 
We see that the number of transferred objects in 
DSL is always higher than Distributed-Top-Sky. As 
well, this difference is very large when El Nino 
dataset is considered which explains the great 
performance of Distributed-Top-Sky in such a case. 

 

Figure 8: Rate of transferred objects. 

 

 

 
(a) NBA dataset (b) Shuttle dataset (c) El Nino dataset 

Figure 7: Scalability w.r.t dimensionality. 
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5 CONCLUSIONS 

This paper has dealt with the computation of the 
skycube in a structured peer-to-peer system by 
introducing a method called Distributed-Top-Sky).  

For validating the proposed approach, we have 
conducted an experimental evaluation on various 
datasets. The efficiency of the proposed method has 
been proven; it outperformed individual computation 
of the cuboids using the DSL approach. These 
results can be optimized in the future by distributing 
the scheduling task.  

Another possible direction for future work is to 
investigate the second step of the materialized views 
selection problem for skyline queries under various 
constraints since no previous work treats the 
distributed version of this problem with skyline 
queries and there are a few works for relational 
queries. The works presented in (Bauer et al., 2003; 
Chaves et al., 2009) can be the start point of such an 
investigation. 
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