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Abstract: In this paper, we present a multiple human tracking approach that takes the single frame human detection 
results as input, and associates them hierarchically to form trajectories while improving the original 
detection results by making use of reliable temporal information. It works by first forming tracklets, from 
which reliable temporal information can be extracted, and then refining the detection responses inside the 
tracklets. After that, local conservative tracklets association is performed and reliable temporal information 
is propagated across tracklets. The global tracklet association is done lastly to resolve association 
ambiguities. Comparison with two state-of-the-art approaches demonstrates the effectiveness of the 
proposed approach. 

1 INTRODUCTION 

Object tracking in video surveillance aims at 
extracting objects' spatial-temporal information, 
which is mandatory for higher level activity 
recognition. However, it is not trivial due to 
difficulties such as low figure-ground contrast, 
changes in object appearance over time, abrupt 
motions, and etc. Multiple object tracking is even 
more challenging as inter-object occlusions exist 
prevalently. 

Tracking by detection  is effective for solving the 
multiple object tracking problem and therefore has 
been widely applied (Wu, 2007; Huang, 2008, 
Breitenstein, 2011). It usually consists of two steps: 
The first one is time-independent object detection 
and the second is detection responses association 
temporally based on appearance similarity, motion 
consistency, etc. Compared to traditional visual 
tracking (Rasmussen, 2001; Comaniciu 2003; Wang, 
2010), tracking by detection can effectively avoid 
the drifting problem caused by accumulated tracking 
error. In addition, it is robust to occasional detection 
failures, i.e. isolated false alarms or missed 
detections are less likely to lead to tracking failures.  

As a good compromise between association 
accuracy and computation complexity, tracklet (i.e. 
track fragment) based approaches (Stauffer, 2003; 
Perera, 2006; Huang, 2008) have become more and 

more popular. In these approaches, tracklets are first 
generated by conservative linking of detections of 
consecutive frames, which helps reduce the possible 
linking space significantly. Then, given the affinities 
between potentially linkable tracklets, the 
association problem is typically solved by the 
Hungarian algorithm (Munkres, 1957). For example, 
Stauffer associates tracklets using the Hungarian 
algorithm with an extended transition matrix that 
considers the likelihood that each tracklet being the 
initialization and termination of trajectories (Stauffer, 
2003). This approach performs iterative tracklet 
association and scene entrances/exits estimation 
using expectation maximization . Perera et al. adapt 
the Hungarian algorithm to deal with the merging 
and splitting of tracklets in multiple object tracking 
when long time occlusion exists (Perera, 2006). Both 
Stauffer and Perera's approaches define the tracklet 
affinity only once, which may not be accurate 
enough due to the errors introduced by inaccurate 
localization in the detection phase. Huang et al. 
propose a hierarchical data association strategy, in 
which tracklet affinities are refined whenever new 
tracklets are formed during the progressive tracklet 
linking procedure (Huang, 2008). To further 
increase the robustness of the affinity measures, a 
few approaches have been recently proposed. For 
example, Li et al. propose a HybridBoost algorithm 
to learn the affinity models between two tracklets 
(Li, 2009). Kuo et al. propose global on-line 
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discriminative appearance models, where descriptors 
are pre-defined (Kuo, 2010), and later they propose 
to use automatic important feature selection by 
learning from a large number of local image 
descriptors (Kuo, 2011). Yang et al. propose to learn 
non-linear motion patterns to better explain direction 
changes (Yang, 2012).  

In this paper, we present a tracklet based data 
association approach for multiple human tracking in 
surveillance scenarios, with the assumptions that the 
camera is static, people walk on a ground plane and 
camera parameters can be obtained. Unlike most of 
the previous data association works that only 
consider how to ensure correct linking, we also 
attempt to improve the detections when reliable 
temporal information can be obtained. To this end, 
we first generate tracklets by conservative linking of 
detections, and extract the appearance, size and 
position information of those reliable detections that 
show high temporal and spatial consistency. Then 
the extracted information is propagated to detections 
within the tracklets by refining the detections' shape 
models. After that, local conservative tracklet 
association based on the Hungarian algorithm is 
performed so that reliable temporal information can 
be further propagated. The iteration stops when there 
are no new detection updates or new tracklet 
association. Finally, the Hungarian algorithm is 
applied globally to resolve ambiguous situations and 
. The whole process ends when neither new updates 
nor association can be performed. The outputs of the 
approach are the updated detection responses as well 
as the associated trajectories.  

Our proposed approach is most related to Huang 
et al.'s approach (Huang, 2008), where data 
association is formulated as a Maximum a Posteriori 
(MAP) problem and solved by the Hungarian 
algorithm. We made necessary improvements over 
that approach for more robust performance. The first 
one is that reliable temporal information is extracted 
to improve the quality of detections and tracklets. 
The second one is that we propose a local tracklet 
association procedure before global association, 
which is more conservative and less likely to make 
errors. The third one is that we use the reliable 
temporal information to recover missed head or tail 
parts of tracklets, bringing in the advantages of 
shortening gaps between tracklets, hence enabling 
associations to be made more robustly, and making 
the resulting tracks more complete. The fourth one is 
that we detect tracklets that may violate the 1st-order 
Markov Chain assumption and approximate the 2nd-
order Markov Chain on them.  

In summary, our main contributions are three-
fold:  
1)  Improving the accuracy of human detection by 

using reliable temporal information;  
2)  A new iterative hierarchical data association 

framework; 
3)  When perform global data association, explicitly 

detecting tracklets that may violate the 1st-order 
Markov Chain assumption and approximate the 
2nd-order Markov Chain on them. 

2 THE PROPOSED APPROACH 

In this section, we will introduce the detail of the 
proposed association approach. The diagram of the 
approach is illustrated in Figure 1. 

 

Figure 1: The diagram of the proposed data association 
approach. 

2.1 Human Detection and Tracklet 
Formation 

The single frame human detection result is firstly 
obtained using a crowd detection approach (e.g. Wu, 
2007). Then model fitting, as proposed in Wang, 
2012, is applied to find the best matched 3D shape 
model for each detection response r, with the model 
parameters being the 3D location z, the orientation 

VISAPP�2014�-�International�Conference�on�Computer�Vision�Theory�and�Applications

388



o, the size s and the leg posture pose. 
Given all the detection responses ={ri} and the 

corresponding model parameters, the detections are 
firstly associated conservatively to form the 
tracklets, and the affinity A(ri, rj) between any two 
detection responses ri and rj is defined as: 

i j i j
i j

( , ) ( , ) if 1
( , ) =   

0 otherwise
app pos j iA A f f

A
 




r r r r
r r , (1)

where Aapp(ri, rj) and Apos(ri, rj) represents the 
appearance similarity and position proximity 
respectively, and fi denotes ri's frame index. 

As the human model is part based, to make the 
appearance model more discriminative, we define a 
three-part appearance model a = {apt| pt=h, t, l} for 
each detection, where pt denotes the body part, h, t 
and l represent head, torso and legs respectively, and 
each apt is an 8 8 8 RGB color histogram. The 
appearance affinity is calculated as  
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where vi, pt is the visible ratio of part pt of ri, BC 
calculates the Bhattacharyya coefficient of two 
histograms, and wpt is the weight for part pt. For a 
human object, as the head and torso are more 
accurately described by the model than legs, they 
should have higher weights than legs. Therefore, we 
set wh=wt=0.4 and wl=0.2. Slight changes of these 
weights would make no obvious difference. 

The position proximity of two detection 
responses is defined in terms of the distance d 
traversed by a human at a high speed within one 
time step: 
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where G(  ; x0, σx) represents the Gaussian 
distribution with mean x0 and standard deviation σx. 
In our experiment, we set d to be 0.7 meters when 
the time step is 0.4 seconds. 

Having the affinity values, the two-threshold 
strategy as presented in Huang, 2008 is used to 
generate the tracklets, i.e. two responses are linked if 
and only if their affinity is high enough and 
significantly higher than the affinity of any of their 
conflicting pairs. 

2.2 Detection Responses Update 

Given the tracklets, reliable temporal information is 

extracted from them and used to refine related 
detections by means of model matching. By reliable 
temporal information, we mean that the appearance, 
position and size information of the corresponding 
detection is accurate enough so that these pieces of 
information can be used to guide the update of 
detections of same identity in neighboring frames.  

2.2.1 Reliable Temporal Information 
Extraction 

To extract reliable temporal information, we first 
look for the reliable detections. Specifically, we 
detect reliable detections according to the following 
criteria:  
a) The detection's head contour is well aligned 

with the foreground contour; and  
b) The detection has high appearance, head 

position and feet position affinities with its 
adjacent detections; and  

c) There are at least three consecutive detections 
from the same tracklet that satisfy a) and b) 
simultaneously (We choose three to avoid the 
coincidental satisfaction of condition a) and b).).  

Figure 2 illustrates some reliable detection responses 
found by the above criteria. 
 

   

Figure 2:  Illustration of reliable detections. 

Next, we refine the models of unoccluded reliable 
detections by using the temporal information 
provided by the tracklets. Those occluded ones will 
be refined when their occluding objects have been 
refined. The best matched model M for a reliable 
detection is selected as 

0
0 0

( , , , )

0

max ( ; , ) ( ; , )

                    ( ( ( , , , )))

s o
m pose s o

s

M G s s G o o

L B m pose s o

 
p

p
, (4)

where m represents the 3D model; B(m) is the 
model’s boundary on the image; s0 is the average 
size of the reliable detections within the 
corresponding tracklet; o0 is the detection's 
tangential direction in the tracklet; Ls is the shape 
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likelihood measuring how well the model matches 
with the image edges (see Wang, 2012 for details); 
p0 is the original model's head position on the image, 
which is assumed to be accurate and needs not to be 
refined. Figure 3 shows an example of the best 
matched model before and after using the temporal 
information, where the original wrong orientation 
estimation has been corrected. 

Having the updated models for the reliable 
detections, we then extract the corresponding 
appearance, size and position information from them 
and propagate it to the other frames.  

           
                          (a)                                 (b) 

Figure 3: Illustration of the best matched models without 
and with the temporal information. (a) Without temporal 
information; (b) With temporal information. 

2.2.2 Temporal Information Propagation 

For an unoccluded detection adjacent to an updated 
detection in the same tracklet, we refine it by using 
the reliable temporal information. An unoccluded 
detection means that the person corresponding to the 
detection is fully visible, or occluded by the image 
border, or a human object whose occluding human 
objects have already been updated. Unlike reliable 
detections, the original head position estimation for 
an ordinary detection may not be correct. Therefore, 
we first predict its head and feet positions separately 
using the temporal information. If the predicted 
position is quite near to the original position, the 
original position is taken to be correct; otherwise, 
both the original and the predicted positions are 
checked. Specifically:  
(a) If the original head position p0 is considered to 

be correct, we do model matching by  

0
0 0

( , , , )

0 0

      max ( ; , ) ( ; , )

( ( , , , ), ) ( ( ( , , , )))
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p

p r p

, 
(5)

where rref is the referenced detection response 
in the adjacent frame. The difference between 
(4) and (5) is the appearance affinity term Aapp, 
as in the current stage we have an appearance 

model to refer to. 
(b) Otherwise, if the feet position is taken to be 

correct, the head position p0 is first searched 
using the following equation  

0 0 0 0    max ( ; , ) ( ; , )

( ( , , ), ) ( ( ( , , )))

s

app ref s

G s s G o o

A ubm s o L B ubm s o

 
p

p

p r p
, (6)

where ubm represents the upper body model, 
which is used to avoid the high computational 
cost of searching for the optimal leg pose. Then 
model matching is performed according to (5). 

(c) If neither the head position nor the feet position 
is correct, we search the head position using the 
original and the predicted feet positions 
separately (both the original and predicted 
positions are considered here to take into 
account of sudden motion changes) as in step 
(b). Then the searched head position with higher 
upper body appearance affinity to the reference 
appearance model is taken to be correct and 
model matching is performed on it as in step (a). 

After obtaining the best matched model, the 
detection’s appearance is updated. To deal with 
occlusion, the appearance model a is renewed by 

(1 )model ref   a va v a , (7) 

where amodel is the appearance model of the newly 
obtained shape model; aref is the referenced 
appearance model; v={vpt| pt=h, t, l} and vpt is the 
visible ratio of part pt; α is the smoothing factor, 
which helps avoid large changes of the appearance 
model caused by incorrect detection update, and is 
set to be 0.2. A body part pt is not updated if vpt is 
less than 0.5, as in such situation the part is 
considered as severely occluded and hence 
unreliable.  

2.2.3 Occlusion Order Determination 

As our approach requires that a detection be updated 
only when it becomes unoccluded. However, the 
occlusion order obtained from the original detection 
result may contain inaccuracy and hence needs to be 
properly dealt with.  

For two detections whose heads are at the similar 
horizontal level in the image and whose torsos 
intersect for only a small percentage (5% is used in 
our experiment), we consider they are not mutually 
occluded. In addition, we assume that, if it can be 
definitely determined that a detection A occludes 
another detection B in one frame f, it is impossible 
that B can occlude A in frame f-1 and frame f+1, 
because normally two persons could not change the 
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occlusion order within a very short time interval. 
Furthermore, false positives (FPs), may 

introduce problem when propagating the reliable 
temporal information, because FPs may occlude 
some true detections and FPs are very unlikely to be 
updated as it cannot link to any reliable detections. 
Therefore, we collect the detections that cannot be 
linked to any other detection responses as candidate 
FPs. By doing so, a detection response is allowed to 
be updated if it is only occluded by a candidate FP. 
In case that a candidate FP is found to have a high 
affinity to an updated detection, it is not taken as an 
FP anymore. 

2.3 Conservative Local Data 
Association  

After all the possible detection updates have been 
made inside each tracklet, the tracklets can be 
associated. However, as only a small portion of 
detections may have been updated at this stage, the 
tracklets' link probability may still contain many 
inaccuracies, making global association of tracklets 
too risky to perform at this time. Therefore, we 
introduce an intermediate tracklets association step, 
namely local conservative Hungarian linking, which 
only aims at performing association for tracklets that 
exhibit high link probability and low ambiguity, and 
at the same time have no gaps in between. In 
addition, if an end of a tracklet has been updated but 
has no other tracklets to link to, we infer that some 
object might be missed at the detection stage and use 
the detection update method as a detector to recover 
the missed detections. For the other more ambiguous 
connections, we leave them to the later global 
Hungarian linking. 

From here on, we use double subscripts to 
represent the quantities corresponding to the 
detections of a tracklet, with the first denoting the 
index of the tracklet and the second denoting the 
detection's index inside the tracklet. For example, 
the detections of a tracklet Ti is denoted as ri,k, where 
k={1, 2, …,|Ti|}. We also denote by { }end

f iT  the 

set of all the tracklets that end at frame f and 

1 { }start
f jT   the set of all the tracklets that start at 

frame f+1.  

2.3.1 Local Affinity Definition 

In conservative tracklets association, the link 
probability between two tracklets end

i fT   and 

1
start

j fT   is defined as  

 Plink_local (Ti, Tj)= Papp(Ti, Tj)Plocal_motion(Ti, Tj).      (8) 

Papp(Ti, Tj) calculates the affinity according to (2) 
between the average appearance model of the last 
three detections of Ti and that of the first three 
detections of Tj  

Denoting Ti’s predicted model at its rear end as 

,| | 1ii T r  and Tj’s predicted model at its front end as rj, 0, 

Plocal_motion(Ti, Tj) is calculated by the average 
intersection ratios of the predicted model and the 
corresponding detection. 

2.3.2 Local Data Association 

For each frame f, we apply the Hungarian algorithm 
on the resulting link probability matrix to obtain the 
tracklets correspondence. As the correspondence is 
only calculated locally, we cannot accept all the 
correspondences but only those reliable ones. 
Therefore, we firstly accept the links with high 
reliability using the two-threshold strategy; we then 
accept the correspondences with relatively high link 
probability and at the same time the tracklets 
contained are not linkable to any other tracklet that 
is not involved in any correspondences. The latter 
condition ensures that the accepted correspondences 
introduce no controversial association. 

2.3.3 Missed Detection Recovery 

In addition to the accepted correspondences, there is 
another situation we can deal with, i.e. if a tracklet 
has one end detection updated but is not linkable to 
any other tracklet, while that end is not at the image 
border or in the scene occluder areas, we are sure 
that the corresponding object is missing. In this case, 
we use the procedure stated in Section 2.2.2 to detect 
the missed object, with the difference being that we 
only have the predicted position. To avoid drifting, 
we accept the detection only if it has a high 
appearance affinity to the reference model, the shape 
matching score is high and it does not overlap 
significantly with other existed detections in the 
frame. Figure 4 shows an example of recovered 
missed detections. 

After the local association, reliable temporal 
information can be propagated again, and new 
association can be made when more detections have 
been updated. The iteration continues until there are 
no new detection updates or local data associations. 

2.4 Global Data Association  
usingthe Hungarian Algorithm 

When no further update or association can be 
made,  we resort  to  the  global  Hungarian  tracklets 
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              (a)                                       (b) 

Figure 4:  Illustration of the result of tracklet extension. (a) 
The single frame detection result; (b) the detections 
recovered by our approach. 

association, where gaps are allowed between 
associated tracklets.  

2.4.1 Global Affinity Definition 

The global link probability is defined as 

Plink_local (Ti, Tj)= Papp(Ti, Tj)Pgap(Ti, Tj) Ptemporal(Ti, Tj). (9)

Papp(Ti, Tj) is the same as the one defined in Eqt.(8). 
For the motion link probability Pglobal_motion(Ti, Tj), a 
constant velocity assumption was usually made. 
However, in real complex situations where people 
have frequent interactions, we cannot expect that 
every person keeps a constant velocity. Therefore, 
we use Pglobal_motion to exclude impossible 
connections and put more emphasis on the 
appearance affinity. Specifically, for any two 
tracklets Ti and Tj, if 

,| | ,1 ,1 ,| |( )
i ii T j j i T maxf f d  z z , 

Pglobal_motion(Ti, Tj) is set to be 0, where dmax is the 
maximum distance that can be traversed by a human 
object in one time step (1 meter in our experiment). 
Otherwise, we consider the similarity between the 
end orientation ,| | and the start orientation ,  
when calculating the motion link probability 

_ ,1,( , ) (1 ) max(0, , )
iglobal motion i j ji TP T T     o o , (10)

where, δ controls the importance of Pglobal_motion in 
Plink_global and is set to be 0.9.  

Pgap(Ti, Tj) measures how well the gap between Ti 
and Tj can be explained and it is defined as  

,1 ,| | 1
,

1

( ,  ) ( )
j i Ti

f f
i j

gap i j gap
k

P T T p k
 



  , (11)

where , ( )i j
gapp k  calculates how likely the detection at 

the kth position in the gap is a missed detection. To 
do this, we first linearly interpolate the real world 

positions within the gap. Then, for the kth 
interpolated position, we check if it is occluded by 
other detections for more than 50%; if it is, this is 
taken as a missed detection and ,  is set to be the 
missed detection rate pmiss, penalizing the missed 
detection. Otherwise, we check the upper body 
appearance of the predicted model at this position: If 
the appearance is  similar to both ,| |   and , , 
,  is set to pmiss as well; Otherwise, ,  is 

set to η (<< pmiss), meaning that that gap position 
cannot be explained by a missed detection and thus 
it is given a much larger penalty.  

2.4.2 Global Data Association 

Having Plink_global for each tracklet pair, the tracklets 
association problem is formulated as a MAP 
problem as proposed in Huang, 2008, which 
considers track initialization, termination, tracklet 
association and the probability of tracklets being 
false alarms. The convergence is guaranteed by 
reducing the initialization and termination 
probabilities of each track after each iteration until 
they reach a predefined lower bound. Figure 5 
illustrates an example of the associated tracklets in  
the global data association step. 

The difference in our approach is that we 
specifically deal with the ambiguous tracklets that 
may violate the 1st-order Markov chain assumption 
and thus are likely to introduce identity switches. 
We consider a tracklet as an ambiguous tracklet 
when it is linkable to two tracklets at the same end. 
This type of tracklets usually appears when there are 
missed detections. In addition, the degenerate 
tracklets (i.e. tracklets consist of one detection) are 
also considered ambiguous because they tend to 
introduce identity switches due to the lack of motion 
information.  

 
(a) 

 
(b) 

Figure 5: Wrong association (red lines) caused by 
ambiguous tracklets (red dots). Green dots represents the 
detections of one human; blue dots represents the 
detections of another human; red dots represent detections 
where occlusion happens and ambiguous tracklets are 
produced. (a) An ambiguous tracklet linkable to two 
tracklets at each end; (b) two degenerate tracklets that lack 
motion information. 
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To approximate 2nd-order Markov chain on the 
ambiguous tracklets, given the Hungarian 
association results, we only accept the connection of 
an ambiguous tracklet at the end with the higher link 
probability than the other end. The connection of the 
other end is left for association in the following 
iterations, when there may be fewer ambiguities 
(e.g. detection update might have been performed to 
correct the detections or retrieve the missed 
detections, or the appearance model may have been 
updated, or the degenerate tracklet has linked to 
another tracklet and hence contains motion 
information). 

After the global Hungarian matching, new links 
may have been established and we can go on 
performing detection update and local tracklet 
linking. The iterative process ends when no new 
links can be found using the global Hungarian 
association. 

2.5 Recovery from Identity Switches 

Identity switch may exist in the original tracklets, 
which are usually caused by occlusions where 
accurate detection is difficult. Within the proposed 
association framework, as the detection update 
proceeds, the renewed detection may deviate from 
the original detection farther and farther away due to 
the guidance of the reliable temporal information. 
When the deviation becomes very significant, i.e. 
the intersection ratio between the updated detection 
and the original detection is quite small or the 
appearance affinity between them is not high 
enough, we doubt that there may be something 
inconsistent. In this situation, we break up the 
tracklet at that point and look for possible better 
association for the resulting two separated tracklets. 

3 EXPERIMENTAL RESULTS 

In this section, we demonstrate the performance of 
our proposed approach on two public data sets, 
namely the CAVIAR data set and the PETS 2009 
data set, which have been widely used for testing the 
performance of multi-target tracking works.  

In our experiment, parameters not specified 
manually are learned through 90 ground truth 
trajectories of a video captured by ourselves where 
mutual occlusion happens frequently, and these 
parameters are set exactly the same for both tested 
data sets. 

To determine whether a target is being tracked, 
the commonly used PASCAL criterion, i.e. the 

intersection over union greater than 0.5 is adopted 
for all the experiments.  

For quantitative evaluation of the proposed 
approach, we follow the currently most widely 
accepted protocol, the CLEAR MOT metrics 
(Stiefelhagen, 2006): The Multi-Object Tracking 
Accuracy (MOTA) combines three types of errors – 
false positives (FP), missed targets (FN), and 
identity switches (IDs) – and is normalized such that 
the score of 100% corresponds to no errors (all three 
error types are weighted equally in our evaluation); 
The Multi-Object Tracking Precision (MOTP) 
measures the alignment of the tracker output w.r.t. 
the ground truth. We also report recall, precision, 
False alarm per Frame (Fa/F), as well as Mostly Lost 
(ML), Partially Tracked (PT), and Mostly Tracked 
(MT) scores, and the number of identity switches 
(IDs) and fragmentations (Frag) of the produced 
trajectories compared with ground truth trajectories 
according to Li, 2009. 

Two state-of-the-art tracklet based data 
association approaches Kuo, 2011 and Yang, 2012 
are selected for comparison. In Kuo, 2011, a robust 
appearance model is learned for each target 
(PRIMPT), and in Yang, 2012, both appearance 
models and motion patterns are learned 
(NLMPRAM). For fair comparison, the detections, 
ground truth and the evaluation tool are downloaded 
from the homepage of the first author of Yang, 2012 
(http://iris.usc.edu/people/yangbo/downloads.html). 

3.1 Performance on the CAVIAR Data 
Set 

As the proposed approach requires additional 
computational time to perform detection update and 
missed detection recovery, to reduce the run time, 
for the CAVIAR data set, we sample 1 frame out of 
every 10 frames from the video sequences for 
tracking, i.e. the frame rate of the input to the 
tracking approach is 2.5f/s.  

20 sequences of the CAVIAR data set have been 
evaluated as is done in Kuo, 2011 and Yang, 2012, 
and Table 1 lists the comparison of the results. It can 
be seen that our approach outperforms Kuo, 2011 
and Yang, 2012 in terms of recall, precision, number 
of mostly lost tracks and identity switches. However, 
the number of fragmentations of our approach is 
higher than both Kuo, 2011 and Yang, 2012. Figure 
6 (a) illustrates the tracking result of our approach 
on CAIVAR data set. 
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Table 1: Comparison of results on CAVIAR data set. 

Method Recall Precision Fa/F GT MT PT ML Frag IDs

PRIMPT [35] 88.1 96.6 0.082 143 86.0% 13.3% 0.7% 17 4 

NLMPRAM [36] 90.2 96.1 0.095 147 89.1% 10.2% 0.7% 11 5

Our approach 91.7 97.9 0.051 147 88.4% 11.6% 0.0% 19 3

Table 2: Comparison of results on PETS 2009 S2L1 data set. 

Method Recall Precision Fa/F GT MT PT ML Frag IDs 

PRIMPT [35] 89.5% 99.6% 0.020 19 78.9% 21.1% 0.0% 23 1 

NLMPRAM [36] 91.8% 99.0% 0.053 19 89.5% 10.5% 0.0% 9 0

Our approach 95.8% 99.8% 0.013 19 94.7% 5.3% 0.0% 21 0 

 
3.2 Performance on the PETS 2009 

Data Set 

For the PETS 2009 data set, as the sequence was 
recorded in a low frame rate (7f/s), we did not 
perform sampling. The comparison result is shown 
in Table 2. We can see that the recall rate and 
portion of mostly tracked trajectories have been 
substantially improved by our approach. However, 
the number of fragmentations of our approach is still 
high. Figure 6 (b) shows the tracking result of our 
approach on PETS 2009 data set. 

The high number of fragmentations of our 
approach is mainly caused by the applied part-based 
appearance model, for which inaccurate 
segmentation, which occurs frequently at the spatial 
temporal locations where occlusion exists, will result 
in low appearance affinity. In addition, as the 
appearance model is based on color histogram, it has 
relatively low discriminability. These two reasons 
make our approach difficult to deal with some very 
ambiguous situations. To reduce the possibility of 
identity switches, a conservative strategy is applied 
in our approach: if the link probability is low (i.e. 
the association is likely to introduce identity 
switches), we choose to discard the association, thus 
resulting in more fragmentations. We expect that 
this problem can be much alleviated if more features 
are used in addition to colors, and discriminative 
training of appearance models is applied. 

3.3 Computational Cost Analysis 

Our approach is currently realized using MATLAB 
and implemented on an Intel Corei7 2.93GHz CPU. 
Most of the computational time is spent on the 

detection update, which depends on the 
computational time for each detection update and the 
total number of detections that need to be updated. 
For each detection update, usually two times of 
search for the head position are needed (one for the 
predicted position and one for the detected position) 
and the computational time is 1-2 seconds, where the 
optimal orientation and size are searched within a 
small neighborhood of the expected orientation o0 
and size s0. Then given the head position, the 
optimal model is selected, where, except for the 
optimal orientation and size, the leg pose is also 
searched using the hierarchical model matching as 
introduced in Wang, 2012. This step usually takes 2-
4 seconds. The total number of detection updates 
depends on the density of the crowd, which is hard 
to tell, and its upper bound is the total number of 
human objects in all frames.  

The whole association process terminates within 
10 iterations for all the tested sequences: for the first 
several iterations, there are both detection update 
and local and global tracklet associations; for the 
remaining iterations, as no detections can be update 
anymore, only global associations take place. 

4 CONCLUSIONS 

In this paper, we propose a hierarchical data 
association approach that performs detection update 
using reliable temporal information to improve the 
accuracy of tracklet quantities. Comparison with two 
state-of-the-art approaches demonstrates the 
effectiveness of the proposed approach. 

Our future work includes introducing 
discriminatively   trained   affinity   and   appearance 
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Figure 6: Illustration of tracking results. (a) CAVIAR data set; (b) PETS 2009 data set. 

models into the proposed framework so that 
fragmentations of the tracking results can be reduced 
significantly. In addition, our approach can be also 
improved by exploiting high level scene 
understanding ability to resolve more ambiguities, 
e.g. scene occluder detection by either specifically 
detecting certain commonly seen occluders such as 
trees and pillars or statistical  analysis of the 
obtained trajectories. 
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