
Validating the Functional Design of Embedded Systems
against Stakeholder Intentions

Marian Daun, Thorsten Weyer and Klaus Pohl
Paluno, The Ruhr Institute for Software Technology, University of Duisburg, Essen, Germany

Keywords: Functional Design, Correctness, Stakeholder Intentions, Behavioral Requirements, Embedded Systems.

Abstract: In the embedded systems industry, function-centered engineering is commonly applied to address the in-
creasing number and complexity of system functions. During function-centered engineering, the functional
design that is created based on the defined requirements for the system is the main artifact that serves as a
basis for subsequent development activities. If stakeholder intentions change and modifications become
necessary, they are frequently incorporated directly into the functional design without updating the behav-
ioral requirements accordingly. As a consequence, the correctness of the interplay of system functions as de-
fined in the functional design cannot be assessed by checking it against the defined requirements (since they
are outdated) but needs to be checked against the current stakeholder intentions. More precisely, the re-
quirements engineer has to validate the functional design against the stakeholder intentions because he is the
expert concerning the stakeholder intentions and can communicate with the stakeholders regarding them, if
necessary. However, the requirements engineer is typically not familiar with the functional design and its
notation on the one hand, and, on the other hand, the overall behavior of the system is spread across various
diagrams in the functional design. Therefore, the requirements engineer needs a more abstract and consoli-
dated view of the functional design in order to be able to validate its correctness with regard to the current
stakeholder intentions. In this paper, we present an approach which is based on a specific kind of review
model that is automatically generated from the functional design and supports the requirements engineer in
her task. The approach that is presented in this paper is subject of ongoing research.

1 INTRODUCTION

As described in (Pretschner et al. 2007) the para-
digm of function-centered engineering is commonly
applied in the embedded systems industry to address
the increasing number and complexity of system
functions. In function-centered engineering, the
functional design is the core artifact within the entire
engineering process. It serves as a basis for subse-
quent development activities like designing the sys-
tem’s software and hardware parts and determining
the deployment of software functions to hardware
components. Figure 1 illustrates a typical function-
centered engineering process. In the first step (in
Figure 1), the behavioral requirements ([B] in Figure
1) of the system are defined. At first the stakeholder
intentions ([A] in Figure 1) are elicited and consoli-
dated. The stakeholder intentions refer to the re-
quired functionality and corresponding behavior of
the system as well as to necessary qualities of the
system (w.r.t. performance) and comprises con-

straints (w.r.t. legal regulations) that must not be
violated by the system.
Based on the stakeholder intentions, the behavioral
requirements are defined. In Step , the functional
design ([C] Figure 1) is created based on the behav-
ioral requirements. During this step, each system
function is considered individually, i.e. its behavior
as well as its functional interdependencies with other
system functions are specified (cf. (Broy et al.
2009), (Beeck. 2007)).

However, stakeholder intentions may change af-
ter an initial version of the functional design has
been created, for example, because stakeholders gain
additional insights into solution aspects, while the
functional design is created. Unfortunately, it is
common practice during function-centered engineer-
ing processes that modifications resulting from such
changed stakeholder intentions are incorporated
directly into the functional design without updating
the behavioral requirements.

During Step it also has to be ensured that the

333Daun M., Weyer T. and Pohl K..
Validating the Functional Design of Embedded Systems against Stakeholder Intentions.
DOI: 10.5220/0004713103330339
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 333-339
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Behavioral
Requirement

Artifact

Functional
Design

Electric &
Electronic
Design

Artifact

Deployment
Architecture

Artifact

Stakeholder
Intentions

Define Behavioral Requirements: Elicit, negotiate and document
requirements to specify the desired overall system behavior that
the system must exhibit to satisfy the stakeholder intentions

Create the Functional Design: Define single system functions, their
interactions and dependencies and each function’s behavior such
that their interplay fulfills the behavioral requirements.

[A] [B]

Artifact

[C]

Problem Space Solution Space

Figure 1: Function-centered engineering process.

interplay of system functions as defined in the func-
tional design is correct. Yet, due to the circumstanc-
es described above, correctness here means that the
functional design satisfies the current stakeholder
intentions. Thus, correctness of [C] in Figure 1 has
to be ensured against [A].

Existing approaches do not provide sufficient
support regarding validation of the functional design
of an embedded system against stakeholder inten-
tions: Approaches dealing with model-driven devel-
opment and model-transformations support the crea-
tion of a functional design from defined behavioral
requirements ([C] from [B]). However, they are not
applicable, since they do not take into consideration
that stakeholder intentions might have changed after
the requirements have been specified.

Approaches dealing with automated correctness
checking only allow for checking [C] against [B],
but not against [A]. Even if the behavioral require-
ments [B] were correct, automated approaches for
checking design artifacts against requirements arti-
facts would not adequately support the correction of
detected deficiencies (cf. (Borges, Garcez & Lamb.
2010)), since they only offer a single counterexam-
ple and do not make explicit where the detected
deficiency is located in the original model.

Beside such automated approaches for correct-
ness checking, manual review approaches have been
evaluated as effective for checking and establishing
correctness of a specification in general (cf. (Boehm
& Basili. 2001), (Gilb & Graham. 1993)). Especial-
ly, perspective-based reviews conducted by the re-
quirements engineer seem to be promising in our
case (cf. (Basili et al. 1996)). Note that they have to
be conducted by the requirements engineer and not
the functional architect because the requirements
engineer is the expert regarding the stakeholder
intentions and can communicate with the stakehold-
ers regarding them, if necessary. However, since the
requirements engineer is usually not familiar with
the functional design and its notation and the overall
behavior of the system is spread across various dia-
grams in the functional design, the requirements
engineer needs a more abstract and consolidated
view of the functional design in order to be able to

validate its correctness with regard to the stakehold-
er intentions.

In this paper, we suggest an approach which is
based on a specific kind of review model that repre-
sents a consolidated view on the behavioral require-
ments and the functional design. The review model
is documented in a notation that is frequently used to
specify behavioral requirements for embedded sys-
tems. Thus, the requirements engineer can conduct
the validation of the functional design against the
stakeholder intentions based on a well-understood
language.

The remainder of this paper is structured as fol-
lows. In Section 2, we discuss the related work. In
Section 3, we sketch our solution approach and de-
scribe the underlying ideas in more detail. We illus-
trate our approach and its application by excerpts
from an industrial case study on a lane keeping sys-
tem in the automotive domain that we conduct to
initially evaluate our solution idea. In Section 4, we
draw conclusions and describe our future work.

2 RELATED WORK

A large number of approaches is proposed that ad-
dress the correctness of design artifacts. In the fol-
lowing, we differentiate between four groups of
techniques that offer potential solutions or could be
part of potential solutions for achieving the correct-
ness of the functional design.

I. Techniques supporting the Manual creation
of Design Artifacts. The development of design
artifacts from requirements is typically done manu-
ally to a large extent. To ensure correctness, rule-
based or checklist-based approaches may be used
(e.g. (Fagan. 1986) or (Leveson. 1995)). Note that
manual approaches in general, especially if applied
to large and complex systems, are highly time-
consuming and lead to error-prone specifications
(Arthur et al. 1999). According to our experience,
these approaches are neither efficient nor effective
for achieving the correctness of the functional design
as regarded in this paper.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

334

II. Techniques in Model-driven Development.
Approaches dealing with model transformations
(e.g. (Milicev. 2002)), model merging (e.g. (Abi-
Antoun et al. 2008), (Sabetzadeh & Easterbrook.
2006)) and model synthesis (e.g. (Damas et al.
2009)) offer techniques for generating design arti-
facts from artifacts that were specified before in a
consistent way. These approaches can potentially be
used in our case to achieve correctness of the func-
tional design by automating its creation from correct
behavioral requirements (from [B] to [C] in Figure
1). However, the existing approaches have several
deficiencies: First, they are generic and not model-
specific, or only deal with the transformation be-
tween different kinds of behavioral models within
the same engineering discipline (e.g. architectural
design), for example, from interaction-based design
models into state-based design models (e.g. (Uchitel,
Brunet & Chechik. 2009), (Whittle & Jayaraman.
2010)). Second, they assume natural language re-
quirements and do not support model-based re-
quirements (Margaria & Steffen, 2009). Third, they
do not consider the fact that new stakeholder inten-
tions might have been elicited during development
of the functional design and therefore, the behavioral
requirements might be outdated.

III. Techniques for Automated Correctness
checking. Performing correctness checks of design
artifacts is typically done using model checking
techniques (cf. (Clarke, Emerson & Sifakis. 2009),
(Larsen. 1993), (Kupferman & Vardi. 2001),
(Holzmann. 1997)). While approaches checking
models of the same model type (cf. (Blanc et al.
2008)) cannot address correctness checking of the
functional design, approaches dealing with different
model types (cf. (Grundy, Hosking & Mugridge.
1998), (Fradet, Le Métayer & Périn. 1999)) could be
used to check the functional design against the be-
havioral requirements ([C] against [B] in Figure 1).
While model checking is widely used for verifying
the correctness of design artifacts against a require-
ments specifications (commonly formulated in tem-
poral logic), it suffers from insufficient support to
resolve incorrect properties (Borges, Garcez &
Lamb. 2010): The correctness checking tools in
general provide the engineers with a single counter-
example, not saying whether there are other incor-
rect properties in the design or not. Furthermore, the
given counterexample in temporal logic or by a
finite state machine would not support the require-
ments engineer in detecting and resolving a defi-
ciency in the design, which is documented in a dif-
ferent notation. In addition, also these approaches do
not address the issues of outdated behavioral

requirements when validating the functional design.
IV. Techniques for Manual Correctness

Checking. Within the field of manual approaches
the relevant literature comes to the conclusion that
performing reviews is in general the most effective
manual technique (cf. (Boehm & Basili. 2001), (Gilb
& Graham. 1993)). Many enhanced review tech-
niques have been proposed and evaluated, e.g.
checklist-based reviews (cf. (Fagan. 1986)), defect-
class-based reviews (cf. (Porter, Votta & Basili
1995)), usage-based reviews (cf. (Abdelrabi et al.
2004) or perspective-based reviews (cf. (Basili et al.
1996)). Especially perspective-based reviews seem
to be very effective (cf. (Shull et al. 2002)). By ap-
plying perspective-based reviews from a require-
ments engineering perspective to the functional
design, the functional design cannot only be checked
against the defined requirements ([C] against [B] in
Figure 1). In addition, it can be checked against the
stakeholder intentions ([C] against [A] in Figure 1).
Since these techniques are conducted completely
manually their application to large and complex
specifications is highly time-consuming and error-
prone.

3 SOLUTION APPROACH

Our approach combines several of the techniques
discussed above to support the requirements engi-
neer in conducting reviews of the functional design.
We use, for instance, techniques from model-driven
development to automatically generate a consolidat-
ed view of the defined behavioral requirements and
the functional design that supports the requirements
engineer in his task.

In addition, we use techniques for automated cor-
rectness checking in order to detect mismatches
between the functional design and the defined (and
maybe outdated) behavioral requirements.

As depicted in Figure 2, our solution approach
distinguishes between four process steps (Steps to
) which have to be applied systematically in order
to validate the functional design against the current
stakeholder intentions and to correct the functional
design, if necessary. In the following, we provide
some insights into our solution approach. We first
describe the two input artifacts in more detail. Af-
terwards, we explain the process steps.

Validating�the�Functional�Design�of�Embedded�Systems�against�Stakeholder�Intentions

335

Stakeholder
Intentions

Generation of the
review model

Behavioral
Requirements

Artifact
Functional
Design

Artifact

Review
Model

Artifact

Automated analysis and correction
of the review model

Manual analysis and
correction of the
review model

Automated correction of
the functional design

Requirements
Engineer

Figure 2: Overview of our solution approach.

3.1 The Behavioral Requirements

In general, behavioral requirements models can be
differentiated into state-based and interaction-based
models. During requirements engineering, especially
interaction-based models are widely used, for exam-
ple, to document scenarios and to specify the essen-
tial interfaces.

In the engineering of embedded software, mes-
sage sequence charts (MSCs) are commonly used for
the specification of interaction-based behavioral
requirements models (cf. (Weber & Weisbrod.
2002)). The Z.120 standard (ITU. 2011) distin-
guishes between basic message sequence charts
(bMSCs) and high-level message sequence charts
(hMSCs). bMSCs define specific scenarios detailing
the behavior in terms of messages exchanged be-
tween the system and entities in the environment.
hMSCs structure the bMSCs according to their exe-
cution order and create a complete system specifica-
tion.

The bMSC depicted on the left hand side of Fig-
ure 3 is an excerpt of the behavioral requirements
specification for the lane keeping system. It specifies
how the system should use video processing signals
to determine unwanted deviations from the steering
angle. More precisely, the diagram documents the
behavioral requirement that the lane keeping system
shall monitor the steering angle and check whether
the steering angle will lead to departing the desig-
nated lane. The car’s yawrate and a videostream of
the lane are needed to determine whether the steer-
ing angle is acceptable or not.

3.2 The Functional Design

The functional design consists of specifications of
the system functions to be implemented and their
hierarchical structure. Additionally, the intended

behavior of each system function is specified as well
as the interactions and dependencies between system
functions (cf. (Brinkkemper & Pachidi. 2010)).

Different diagram types are used to document the
functional design. The hierarchical structure of the
system functions is documented in function hierar-
chy diagrams. Feature trees may be used for that.
The function network diagram documents the func-
tional dependencies between system functions,
which are embedded in given context functions.
Context functions are functions that can be used by
the system to be built, but are not subject of the
development process. Afterwards each function is
detailed by a function behavior diagram which spec-
ifies the behavior of the function in terms of an au-
tomaton (Alfaro & Henzinger. 2001). The right hand
side of Figure 3 shows an excerpt of the functional
design of the lane keeping system. The excerpt
shows a functional network diagram and a corre-
sponding function behavior diagram which specifies
the behavior of the system function “Situation Eval-
uation”.

In comparison to the behavioral requirements di-
agram on the left hand side, the functional design
does, among others, not only document that a vide-
ostream and the yawrate should be used. Due to
design decisions, it is specified that there are context
functions dealing with video sensing and yawrate
sensing and that these context functions shall be
used.

3.3 Generation of the Review Model

To generate the review model, an overall behavioral
model of the functional design has to be derived (
in Figure 2). This is done by using the composition
operator proposed in (Alfaro & Henzinger. 2001)
and enhancing the operator in such a way that the
dependencies and relations specified within a

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

336

Figure 3: Excerpts from the behavioral requirements (left) and the functional design (right).

function network diagram are considered.
Thereafter, the refined interaction sequences of

single bMSCs can be detected within the behavioral
model of the functional design (e.g. by use of graph
analysis (Cox, Delugach & Skipper. 2001)). The
refined sequences are again documented in a new
bMSC, this bMSC is a consistent refinement of the
behavioral requirements that takes design decisions
contained in the functional design into account.
Figure 4 illustrates the generation of the review
model based on the behavioral requirements and the
functional design and sketches the procedural steps
that have to be performed when generating the re-
view model. The review model consists of MSC sets
as shown in Figure 4. It is a refined version of the
behavioral requirements that takes the information
specified in the functional design into account. Thus,
the bMSC shown in Figure 4 represents a refinement
of the bMSC shown in Figure 3 with additional
information from the functional design shown in
Figure 3. The input signals in the functional design
are mapped to concrete context functions derived
from the function network diagram and the refined
interaction sequence is derived from the function
behavior diagrams.

Beside refined bMSCs, unrefineable bMSCs of
the behavioral requirements are detected, marked as
unrefineable and copied into the review model. In
addition, interaction sequences contained in the
overall behavioral model of the functional design
that are not specified in the behavioral requirements
have to be detected as well. These sequences are
also transformed into bMSCs, which have to be
marked specifically. To support the comprehensibil-
ity of the review model, parts of newly created
bMSCs that are already represented by existing
bMSCs are detected and discarded from the new
bMSC. Thereafter, the hMSC is enhanced, such that

the new bMSC is inserted at the correct position.

3.4 Automated Analysis and
Correction of the Review Model

To detect error-prone parts in the review model
which indicate deficiencies in the functional design
or mismatches between the defined behavioral re-
quirements and the functional design, several auto-
mated techniques can be used (in Figure 2). For
example, techniques for estimating the probability of
potential deficiencies which are based on pattern
detection or graph analysis may be used. To support
also the revision of the review model, techniques
which derive a set of recommendations for correct-
ing the review model can be used.

While applying automated techniques for analyz-
ing the review model, emergent properties may be
subject of investigation. For example, MSC-based
specifications may contain implied interaction se-
quences (often referred to as implied scenarios
(Uchitel, Kramer & Magee. 2001)). In this case, it is
necessary that the requirements engineer decides
whether these interaction sequences are desired or
not. These decisions cannot be made automatically.
However, the requirements engineer is supported
since the implied sequences are detected and dis-
played to him/her. He/she may communicate with
the stakeholders if necessary.

3.5 Manual Analysis and Correction
of the Review Model

The requirements engineer analyses the review
model to detect deficiencies that have not been de-
tected by the application of the automated tech-
niques (in Figure 2).

Special attention has to be paid to the unrefinea-
ble bMSCs as well as the new bMSCs derived from

Validating�the�Functional�Design�of�Embedded�Systems�against�Stakeholder�Intentions

337

Review
Model

Artifact

Automated Refinement

for each bMSC from the behavioral requirements
{
determine the interaction sequences;
for each interaction sequence
{
locate the interactions in the functional design;
calculate all paths through the functional design;
remove paths that are wrong ordered;
remove paths that contain interactions also defined in the

behavioral requirements but not used in the bMSC to be refined;
determine the functions from the functional design involved

in the detected paths;
}
create a refined bMSC in the review model;
use the determined functions as instances;
display the detected refined paths in the bMSC;

}

Functional
Design

Artifact

Behavioral
Requirements

Artifact

Figure 4: Generation of the review model with example (excerpt from lane keeping system case study).

the functional design, as they result from mismatch-
es between defined behavioral requirements and the
functional design.

When in doubt, the requirements engineer has to
perform further elicitation and negotiation activities
with the stakeholders to clarify their intentions in
order to be able to decide whether specified behavior
in the functional design has to be corrected to be in
accordance with the stakeholder intentions. The
corrections that are performed by the requirements
engineer apply to both: deficiencies that are detected
during the manual analysis of the review model and
mismatches that were detected by the application of
automated techniques but could not be corrected
automatically.

Some automated analysis techniques that can be
used in process step derive propositions for cor-
recting the review model. If these are applied, the
requirements engineer can chose the best-fitting
recommendation for correcting the review model. To
do so, it can again be necessary to communicate
with stakeholders to decide what the best recom-
mended correction is.

3.6 Automated Correction
of the Functional Design

The back-transformation from the corrected review
model to the functional design can be performed by
the use of model transformations techniques (in
Figure 2). For each bMSC, a partial function net-
work diagram is created. These partial diagrams are
merged resulting in the final function network dia-
gram. In addition, for each function, a function be-
havior diagram has to be derived. This can also be

done using model-transformations as proposed in
(Uchitel, Brunet & Chechik. 2009), or (Whittle &
Jayaraman. 2010).

If incorrect or outdated behavioral requirements
have to be corrected as well, composition techniques
for MSCs as proposed in (Mauw & Reniers. 1999)
and (Hélouët & Maigat. 2001) might be used to
derive a corrected behavioral requirements specifica-
tion. However, this is not within the scope of our
approach.

4 CONCLUSIONS

The approach we presented in this paper addresses
the validation of the correctness of the functional
design in the sense that the requirements engineer
can assess the interplay of systems functions that is
specified in the functional design to validate the
resulting system behavior against the current stake-
holder intentions. We conducted an initial evaluation
of our approach based on a case study of a lane
keeping system in the automotive industry. From the
case study, we gained first certain evidences con-
cerning the applicability and usefulness of our ap-
proach. However, our approach is not finalized yet.
So far, is only directly applicable if the behavioral
requirements and the functional design are specified
as described in this paper. We will examine the
question of generalizability in further evaluation
activities in the future. We intend to apply our ap-
proach to case studies from other domains like avi-
onics and to more complex automotive systems.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

338

ACKNOWLEDGEMENTS

This research was partly funded by the German
Federal Ministry of Education and Research
(BMBF), grant “SPES XTCore” (01IS12005C).

REFERENCES

Abdelrabi, Z., Cantone, E., Ciolkowski, M. & Rombach,
D. (2004), Comparing code reading techniques applied
to objectoriented software frameworks with regard to
effectiveness and defect detection rate. Proc. of the
ISESE, pp. 239-248.

Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B. &
Garlan, D. (2008), Differencing and Merging of archi-
tectural views. ASE Journal, pp. 35-74.

Alfaro, L. & Henzinger, T. (2001), Interface Automata.
Proc. of the ESEC/FSE, pp. 109-120.

Arthur, J., Göner, M., Hayhurst, K. & Holloway, C.
(1999), Evaluating the effectiveness of independent
verification and validation. IEEE Computer, October
pp. 79-83.

Basili, V., Green, S., Lanubile, O., Laitenberger, F., Shull,
F., Sorumgard, S. & Zelkowski, M. (1996), The em-
pirical investigation of perspective-based reading. Intl.
J. Emp. SW. Eng., pp. 133-164.

Beeck, M. (2007), Development of logical and technical
architectures for automotive systems. Software Sys-
tems Modelling, pp. 205-219.

Blanc, X., Mounier, I., Mougenot, A. & Mens, T. (2008),
Detecting model inconsistency through operation-
based model construction. Proc. of ICSE, pp. 511-520.

Boehm, B.& Basili, V. (2001), Software Defect Reduction
Top 10 List." IEEE Computer, January, pp. 135-137.

Borges, R., Garcez, A. & Lamb, L. (2010), Integrating
Model Verification and Self-Adaptation. Proc. of the
ASE, pp. 317-320.

Brinkkemper, S. & Pachidi, S. (2010), Functional Archi-
tecture Modeling for the Software Product Industry.
Proc. of the ECSA, pp. 198-213.

Broy, M., Gleirscher, M., Merenda, S., Kluge, D., Wild,
P., & Krenzer, W. (2009), Toward a Hollistic and
Standardized Automotive Architecture Description.
IEEE Computer, pp. 98-101.

Clarke, E., Emerson, E. & Sifakis, J. (2009), Model check-
ing: algorthmic verification and debugging. Commun.
ACM, pp. 74-84.

Cox, L., Delugach, H. & Skipper, D. (2001), Dependency
Analysis Using Conceptual Graphs. Proc. of the ICCS,
pp. 117-130.

Damas, C., Lambeau, B., Roucoux, F. & van Lamsweerde,
A. (2009), Analyzing Critical Process Models through
Behaviour Model Synthesis. Proc. of the ICSE, pp.
441-451.

Fagan, M. (1986), Advances in Software Inspections. TSE,
pp. 744-751.

Fradet, P., Le Métayer, D. & Périn, M. (1999), Consisten

cy Checking for Multiple View. Proc. of the
ESEC/FSE, pp. 410-428.

Gilb, T. & Graham, D. (1993), Software Inspection. Addi-
son-Wesley.

Grundy, J., Hosking, J. & Mugridge, W. (1998), Incon-
sistency Management for Multiple-View Software
Development Environments. TSE, pp. 960-981.

Hélouët, L., & Maigat, P. (2001), Decomposition of Mes-
sage Sequence Charts. SDL Forum, pp. 348-364.

Holzmann, G. (1997), "The Model Checker SPIN." TSE,
May, pp. 279-295.

ITU. (2011), Recommendation Z.120.
Kupferman, O., & Vardi, M. (2001), Model Checking of

Safety Properties. Formal Methods in System Design,
pp. 291-314.

Larsen, K. (1993), Efficient Local Correctness Checking.
Computer Aided Verification, pp. 30-43.

Leveson, N. (1995), Safeware: System Safety and Com-
puters. Addison Wesley, Reading.

Margaria, T., & Steffen, B. (2009), Continuous Model-
Driven Engineering. IEEE Comp., Oct., pp. 106-109.

Mauw, S., & Reniers, M. (1999), Operational Semantics
for MSC'96. Journal of Computer Networks, June pp.
1785–1799.

Milicev, D. (2002), Automatic Model Transformations
Using Extended UML Object Diagrams in Modeling
Environments. TSE, April, pp. 413-431.

Porter, A., Votta, L. & Basili, V. (1995), Comparing De-
tection Methods for Software Requirement Inspection:
a Replicated Experiment. TSE, June pp. 563-575.

Pretschner, A., Broy, M., Kruger, I. & Stauner, T. (2007),
Software Engineering for Automotive Systems: A
Roadmap. Proc. of FOSE, pp. 55-71.

Sabetzadeh, M. & Easterbrook, S. (2006), View merging
in the presence of incompleteness and inconsistency.
RE Journal, pp. 174-193.

Shull, F. et al. (2002), "What we have learned about
fighting defects." Proc. of the Intl. Conf. SW Metrics,
pp. 133-154.

Uchitel, S., Brunet, G. & Chechik, M. (2009), Synthesis of
Partial Behavior Models from Properties and Scenari-
os. TSE, May/June pp. 384-406.

Uchitel, S., Kramer, J. & Magee, J. (2001), Detecting
Implied Scenarios in Message Sequence Chart Speci-
fications. Proc. of the ESEC/FSE, pp. 74-82.

Weber, M. & Weisbrod, J. (2002), "Requirements Engi-
neering in Automotive Development - Experiences
and Challenges." Proc. of the RE.

Whittle, J. & Jayaraman, P. (2010), "Synthesizing Hierar-
chical State Machines from Expressive Scenario De-
scriptions." TOSEM, January, pp. 8:1-8:45.

Validating�the�Functional�Design�of�Embedded�Systems�against�Stakeholder�Intentions

339

