
The ETSI Test Description Language TDL and its Application

Andreas Ulrich1, Sylvia Jell1, Anjelika Votintseva1 and Andres Kull2
1Siemens AG, Corporate Technology, Munich, Germany

2Elvior, Tallinn, Estonia

Keywords: Model-based Testing, Domain-Specific Languages, Meta-modelling, Rail Application.

Abstract: The wide-scale introduction of model-based testing techniques in an industrial context faces many obsta-
cles. One of the obstacles is the existing methodology gap between informally described test purposes and
formally defined test descriptions used as the starting point for test automation. The provision of an explicit
test description becomes increasingly essential when integrating complex, distributed systems and providing
support for conformance and interoperability tests of such systems. The upcoming ETSI standard on the
Test Definition Language (TDL) covers this gap. It allows describing scenarios on a higher abstraction level
than programming or scripting languages. Furthermore, TDL can be used as an intermediate representation
of tests generated from other sources, e.g. simulators, test case generators, or logs from previous test runs.
TDL is based on a meta-modelling approach that expresses its abstract syntax. Deploying this design ap-
proach, individual concrete syntaxes of TDL can be designed for different application domains. The paper
provides an overview of TDL and discusses its application on a use case from the rail domain.

1 INTRODUCTION

The trend towards a higher degree of system integra-
tion such as in case of cyber-physical systems or
service-oriented architectures leads to a growing im-
portance of integration testing of such distributed,
concurrent, and real-time systems. Integration test-
ing, which is a black-box testing approach, encom-
passes also conformance testing of a system against
a standard and interoperability testing of two or
more systems of different vendors.

Test automation is required for many phases in
the quality assurance process such as regression
tests, smoke tests, or acceptance tests. Automating
tests is a software development activity that involves
the production of test code/scripts. Moving towards
a model-based approach in testing, there are some
obstacles to overcome for the wide-scale introduc-
tion of model-based testing. One of these obstacles
is the existing divergence between manually created
testing artefacts (which must be understood and
managed by humans) and the need for defining them
formally to allow automation. As a consequence,
there has been a methodology gap between the sim-
ple expression of a test purpose described frequently
in prose and the complex coding of executable tests
scripts. TDL (ETSI ES 203 119, 2013) covers that

gap. Dedicated test descriptions will have a positive
impact on the quality of the tests through better de-
sign and by making them easier to review by non-
testing experts. This will improve the general
productivity of test development. Moreover, it is al-
so important to provide a fault-free transfer of speci-
fications between tools participating in the develop-
ment of tool-chains where manual interaction by a
test engineer is often needed.

The language design of TDL centres on the me-
ta-modelling approach for the abstract syntax. A
number of concrete syntaxes can be defined that all
map to the same meta-model to provide dedicated
support for different application domains. Given that
the elements of the meta-model are formally de-
fined, TDL specifications can be analysed before-
hand for consistency and internal correctness to en-
sure a high quality of the test descriptions. Being an
abstract test specification language, different test
implementations can be derived to reflect the partic-
ularities of concrete test environments, e.g. a distrib-
uted tester could be derived supporting asynchro-
nous message-passing communication between test-
er and system under test (SUT) or a sequential tester
that puts emphasis on validating real-time con-
straints between tester/SUT interactions.

The publicly funded European ARTEMIS

601Ulrich A., Jell S., Votintseva A. and Kull A..
The ETSI Test Description Language TDL and its Application.
DOI: 10.5220/0004708706010608
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MBAT-2014), pages 601-608
ISBN: 978-989-758-007-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

project MBAT (MBAT, 2013) focuses on delivering
a methodology on combining Model-based Analysis
and Testing in the development process for embed-
ded software in the transportation domain (avionics,
automotive, rail). In this context, the work on stand-
ardising TDL at ETSI is one piece of dissemination
activities of some project partners to distribute es-
sential results from this project. Though, it shall be
noted that the actual standardisation activity on TDL
is not performed by MBAT partners solely. A huge
interest on TDL from industry could be observed in
private communications.

The paper is structured as follows. After review-
ing related work (Section 2), the paper provides an
overview of TDL and its principal design approach
(Section 3). The advantageous usage of this upcom-
ing standard is demonstrated in Section 4 by a use
case from the rail domain at Siemens developed
within the MBAT project. Section 5 provides an
overview about the used technology implementing
TDL. Section 6 concludes the paper by providing di-
rections of application and further research.

2 RELATED WORK

Testing complex systems becomes such a complex
activity that it needs to follow a development pro-
cess on its own. ETSI has defined such a test devel-
opment process for its own purpose (Figure 1).
While most phases of this process are covered with
efficient methods, notably TPlan (ETSI ES 202 553,
2009) for the specification of test purposes and
TTCN-3 (ETSI ES 201 873-1, 2013) for the specifi-
cation of test cases, a method that provides support
for the specification of test descriptions is lacking.
This gap shall be closed with TDL.

In the testing domain, a variety of languages and
frameworks are used to express tests at different lev-
els of abstraction (from concrete, executable tests to
high-level test descriptions), e.g. xUnit test frame-
work (xUnit.net, 2013), CCDL (Razorcat, 2010),
TTCN-3, UTP (OMG UTP, 2013). However, tests
expressed at a higher abstraction level using existing
technologies tend to get syntactically and semanti-
cally loose such that implementations of those ap-
proaches become heavily tool-dependent. Thus, dif-
ferent language features are supported by different
tools and the execution of the same test specifica-
tions in different environments leads to different,
possibly unexpected results. Approaches based on a
concrete executable language, e.g. TTCN-3, deliver
precise execution semantics. But their fixed syntax
makes it hard to comprehend the tests without ex-

plicit knowledge of the language and the tool, in
which the tests are represented.

Figure 1: ETSI test development process
(ETSI EG 203 130, 2013).

Some specific domains have initiated standardisation
efforts to allow for exchangeable test specifications
between tools such as the meta-model for test of
avionics embedded systems (Guduvan et al, 2013) or
the Automotive Test Exchange Format (ASAM
ATX, 2012) and TestML (Grossmann, J., Müller,
W., 2006) in the automotive domain. These lan-
guages typically cover only one abstraction level in-
heriting the challenges of very high-level specifica-
tions (for the Guduvan et al method) with very loose
or even no semantics or suffering from the complex-
ity of scripting languages (as ASAM ATX and
TestML). Also these languages, being very effective
within one domain and specific testing activities,
cannot be easily reused in other settings.

The generic standards for different application
domains like ISO/IEC 29119 Software Testing
(ISO/IEC 29119, 2013) provide guidelines for the
testing process and its techniques, which are com-
plemented with notations for testing artefacts, but
without strict semantics. The Precise UML (Bouquet
et al, 2007) considers subsets of the UML (OMG
UML, 2011) and OCL (OMG OCL, 2012) to define
a behavioural model of the system under test (SUT).
This approach combines graphical models with for-
mal descriptions of the expected system behaviour
as OCL expressions. Its drawback is that it covers
only one single testing activity, the test case genera-
tion out of a SUT model.

New testing techniques that stem from agile de-
velopment methods such as test-driven development
(TDD) rely heavily on the specification of so-called
‘user stories’ represented as scenarios, i.e. interac-
tion flows, between the system and a user of this

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

602

system. The principles of testing such systems are
well stated by Cem Kaner (Kaner, 2003). Agile
methods appear in today’s industrial practice some-
how contrary to model-based testing approaches that
rely heavily on the creation of sufficiently detailed
test models and consider the derivation of executable
tests only as a simple generation step based on sim-
plistic assumptions on test coverage.

The International Telecommunication Union’s
(ITU) Message Sequence Chart MSC was one of the
first languages to specify scenarios (ITU, 2004).
Later its features were included into the OMG’s lan-
guage UML 2 under the name Sequence Diagram.
While conceptually well suited for the specification
of scenarios, the many different usages of sequence
diagrams result in quite different interpretations of
their semantics (as discussed, for example, in Mics-
kei, 2011) limiting its use as a universal, tool-
independent test description language.

Another OMG’s standard, the UML Testing Pro-
file (UTP), covers most of the artefacts from test
modelling. Being UML-based, it inherits advantages
and drawbacks of the UML. In particular, its loose
semantics relies heavily on tool-specific solutions.
This makes test models hardly transferrable. Alt-
hough having a wide scope, UTP still does not cover
some aspects important for testing activities. For ex-
ample, the MARTE UML profile is additionally
needed to capture timing aspects. In contrast to UTP,
TDL focuses on test descriptions for the real-time
interactions between testers and the SUT with a
formal semantics. The common meta-model for test
in TDL fosters reuse of tests and tools while various
concrete syntaxes can be used aligned to the com-
mon abstract syntax.

A forerunner to TDL is the approach described in
(Ulrich et al, 2010). It discusses the ScenTest tool for
scenario-based testing that supports the generation
of concurrent tests from a special sub-class of UML
sequence diagrams.

3 THE TEST DESCRIPTION
LANGUAGE

3.1 General Approach

TDL bridges the gap between high-level test purpose
specifications and executable test cases. It provides a
generic language for the formal specification of test
descriptions which can be used as the basis for the
implementation of concrete tests on a given test exe-
cution platform or simply for the visualisation of test

scenarios for different stakeholders. TDL is designed
to support the black-box test of distributed, concur-
rent real-time systems.

TDL supports a scenario-based approach using
modelling techniques from model-based testing and
UTP. Test scenarios are described at a higher ab-
straction level than what is possible with scripting
languages such as TTCN-3. It is indifferent on the
basic communication mechanism used between test-
er and SUT being message-based, procedural or
communication-based on shared variables or other
types of interfaces. Furthermore, TDL can be used
as an intermediate representation of tests generated
from other sources, e.g. simulators, test case genera-
tors, or logs from previous test runs.

TDL is designed around a meta-model approach
based on the OMG’s meta-object facility MOF
(OMG MOF, 2013) to describe its abstract syntax.
This way, it is able to support different concrete syn-
taxes, also with a different feature set according to
the needs of different application domains.

While the TDL meta-model is based on a well-
defined underlying formal semantics, it is possible to
provide supportive tools for correctness analysis of
(manually) specified test descriptions, the construc-
tion of test cases according to a chosen fault model,
the visualisation of test run results, or the exchange
of test descriptions between different tools. The
formal semantics prevents misinterpretation of the
artefact specifications between different tools. The
approach is driven by industry to foster the benefits
of model-based software engineering in the test pro-
cess.

ETSI has set up Special Task Force (STF) to
standardise TDL. By writing the current paper the
STF has worked out a first stable draft of a meta-
model description of TDL (ETSI ES 203 119, 2013).
Publication of the final ETSI standard is expected in
early 2014.

3.2 TDL Design Principles

TDL makes a clear distinction between concrete
syntax that is adjustable to different application do-
mains and a common abstract syntax, which a con-
crete syntax can be mapped to. The definition of an
abstract syntax for a TDL specification plays the key
role in offering interchangeability and unambiguous
semantics of test descriptions. It is defined in the
TDL standard in terms of a MOF meta-model.

A TDL specification consists of the following
major parts:
 A test configuration consisting of two or more

tester and SUT components and their

The�ETSI�Test�Description�Language�TDL�and�its�Application

603

interconnections reflecting the test setup;
 A set of test descriptions, each of them describing

one test scenario based on interactions between the
components on a given test configuration and ab-
stract tester actions plus behavioural operations
such as sequential, alternative, parallel, iterative
behaviour etc.;
 A set of typed data instances used in the interac-

tions of the test descriptions.

Using these major ingredients, a TDL specification
is abstract in the sense that it does not detail how a
test description is implemented. More specifically:
 Interactions between tester and SUT components

of a test configuration are considered to be atomic
and not detailed further. For example, an interac-
tion can represent a message exchange, a func-
tion/procedure call, or a shared variable access.
 All behavioural elements of a test description are

totally ordered, unless specified otherwise. That is,
there is an implicit synchronization mechanism as-
sumed to exist between the components of a test
configuration. A TDL implementation must ensure
that the specified execution order of interactions is
obeyed.
 The behaviour of a test description represents the

expected, foreseen behaviour of a test scenario as-
suming an implicit test verdict mechanism, if not
specified otherwise.
 The data exchanged in interactions of a test de-

scription or used in parameters of actions are rep-
resented as name tuples without further details of
their underlying semantics, which is implementa-
tion specific.

A TDL specification represents a closed tester/SUT
system. That is, each interaction has a sender and a
receiver component that is contained within the giv-
en test configuration a test description runs on.

All behavioural elements of a test description,
e.g. interactions, actions, timer, time, and verdict op-
erations are totally ordered, unless specified other-
wise, even if they occur at different components of a
test configuration. In particular, synchronization be-
tween components, e.g. by inserting special sync
messages, is assumed to be implicit. It is up to the
concrete implementation of the test description to
ensure the correct ordering during test execution.

Time in TDL is considered to be global and pro-
gresses in discrete quantities of arbitrary granularity.
Progress in time is expressed as a monotonically in-
creasing function. Time starts with the execution of
a test description and is reset at the end of execution.

TDL offers an implicit verdict mechanism. Spec-
ified behaviour of a test description is assumed to
represent correct behaviour (verdict pass). Any de-

viation from the specified behaviour observed dur-
ing a test run is considered a failure (verdict fail). To
overwrite this default rule, one can set verdicts ex-
plicitly in a test description if needed. The standard
verdict values pass, inconclusive, fail are predefined.
In addition further values can be defined by a user.
However, there is no assumption about verdict arbi-
tration, which is left to the concrete realisation of a
test description.

3.3 TDL Meta-Model Overview

The meta-model is structured in packages, which are
briefly described in the following (based on the cur-
rent stable draft TDL specification).

The Foundation package covers the fundamental
concepts needed to express the structure and con-
tents of a TDL specification and defines additional
elements of a test description such as test objectives,
annotations, and comments.

The Test Architecture package describes all ele-
ments needed to define a test configuration consist-
ing of tester and SUT components, gates, and their
interconnections. Connections link two or more
gates of different components. A component can act
either in the role of a tester or a SUT.

The Data package defines the elements needed
to express data sets and data instances used in test
descriptions. TDL does not feature a complete data
type system. Instead, it relies on parameterizable da-
ta instances, which serve as surrogates for concrete
data types and values outside of TDL.

The Test Behaviour package defines all elements
needed to describe the structure and behaviour of a
test description. It is the most elaborated package to
accommodate various behaviour kinds and provides
the definitions for interactions and actions. Moreo-
ver, it defines a way to link a test description or any
of the behavioural elements it contains to test objec-
tives reflecting test purposes or other forms of sys-
tem requirements to be validated.

The Time package defines all elements to express
time and operations over time. There are two differ-
ent concepts in TDL to operate on time:
 A descriptive way to express time in terms of wait

(for the tester) and quiescence (for the SUT) opera-
tions;
 An operational way in terms of timers and opera-

tions over timers start, stop, timeout.
Additionally, time constraints can be specified be-
tween behavioural elements.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

604

4 CASE STUDY

The advantageous usage of TDL as a notation and
approach to specify test descriptions is demonstrated
in a use case from the rail automation domain devel-
oped within the MBAT project. The use case fea-
tures a track warrant control system for regional rail-
roads and a train-borne protection system. Require-
ments for automatic train operation are used to de-
rive test scenarios.

Test scenarios are closely linked to an instance of
a realistic physics simulation of a typical train sys-
tem, which consists of different applications per-
forming different tasks:
 Physics engine (for simulation purposes),
 Interlocking system,
 Automatic Train Protection (ATP),
 Driver Machine Interface (DMI).

All participating applications communicate via a
shared information broker. The topology of the
tracks is stored in a common database accessible by
the interlocking system.

A tester component links itself to the information
broker. This way, it is able to receive status infor-
mation from the telegrams sent between the applica-
tions (observations mode) and to inject its own tele-
grams (stimuli mode) to the train system.

A basic requirement is the collision-free opera-
tion of the ATP application in integration with the
interlocking system featuring:
 Route setting,
 Protection against overlapping routes, and
 Prevention of movement authorities being overrid-

den.

In the following example a basic test configuration
of two components is considered, the train system
(comprising ATP and interlocking) in the role of the
SUT and the operator in the role of the tester that
sets the route on the tracks and operates the train
(Figure 2). The endpoints of the connection between
SUT and tester are denoted as gates g.

A train starts at a given way point in a given
track layout and initially requests the necessary
switch position on the track and its speed. Status
messages from the train system (ATPStatus) are
sent in regular intervals (every 50msec) and collect-
ed by the tester to check the correctness of parame-
ters like train position (way point) and speed.
The test scenario checks that the train stops at a sig-
nal showing ‘Stop’ and does not proceed for a given
period of time until a request to change the signal
aspect to ‘Proceed’ has been honoured. The purpose
of this test is given as a test objective linked to the

test scenario (Figure 3). This test scenario—along
with other test scenarios—constitutes the test model.

Figure 2: Test configuration.

Figure 3: Test description as a scenario (concrete syntax).

A test scenario reflects the expected behaviour of the
SUT that shall be observed by the tester during test
execution. If it is observed, the test verdict will be
set to pass implicitly. Otherwise it will be different,
i.e. inconclusive or fail depending on the concrete
test implementation. The TDL behavioural operation
interrupt is used to discard status messages from the
SUT that are correct per se, but do not contribute to
the test objective.

The example of a test description considered in
this section is composed of a series of test steps:
First the system is triggered by a request to set the
train power to a specific power fraction Request-
TrainPower(1.0) and to set the switch position
at an upcoming way point RequestSwitchPo-
sition(85, Reverse). This enables the train
to proceed until way point 516 that is guarded with a

The�ETSI�Test�Description�Language�TDL�and�its�Application

605

‘Stop’ signal. The expected speed parameter at this
way point is therefore zero in the status message
ATPStatus(516, 0). Status messages with a way
point parameter different from 516 are discarded
ATPStatus(Not_516) until the expected mes-
sage for waypoint 516 with speed 0 is received.

In the next step, the system is not triggered for a
specific time period Wait(5.5). The train is ex-
pected to remain at way point 516 without any fur-
ther movement. That is, only status message
ATPStatus(516, 0) must be received. Status
messages with these parameter values are therefore
expected and can be filtered whereas status messag-
es with other way point or speed parameter values
would lead to a fail verdict.

In the final test step, the system is triggered by a
request to set the signal aspect to ‘Proceed’ Re-
questSignalAspect(516, Proceed). This
signal change enables the train to proceed to way
point 912, which is reached when the status message
ATPStatus(912) is observed. There the test
ends. Status messages at other way points are dis-
carded using the interrupt operation with message
ATPStatus (Not_912).

TDL makes a clear distinction between an ad-
justable concrete syntax and a common abstract syn-
tax (an instance of the TDL meta-model), which a
concrete syntax is mapped to. The test description
discussed in this section can be represented in the
TDL abstract syntax as shown on Figure 4.

A concrete syntax can have a textual or a graph-
ical form or a combination thereof. For our example
the representation of the test description can either
be graphically expressed by means of a TDL se-
quence diagram (Figure 3) or in pure text format
(see Listing 2 below).

Each element of the TDL sequence diagram,
which can be considered as a dialect of a UML se-
quence diagram, is mapped to its corresponding me-
ta-model element which carries a clear and unam-
biguous meaning. The same holds for the textual
representation. This way, TDL is flexible to cope
with different representation needs of test descrip-
tions that stem from different application domains.

5 TOOL SUPPORT FOR TDL

The meta-model for TDL is provided as a MOF me-
ta-model. This approach allows for the selection of a
range of supportive tools that ease the implementa-
tion of the TDL approach for a number of tasks such
as:

Figure 4: Test description as instantiation of the TDL me-
ta-model (abstract syntax).

 Derivation of a TDL concrete syntax along with a
supporting editor,
 Validation against the TDL meta-model,
 Generation of executable test code.

We deploy Eclipse Modelling Framework (EMF,
2013) that provides a code generation facility to
generate Java implementation classes from the meta-
model. It also provides a model editor for creating,
modifying, saving, and loading model elements.

Furthermore, an Eclipse plug-in EMFText tightly
integrated with EMF (EMFText, 2013) is used to
support the definition of a textual syntax correspond-
ing to the TDL meta-model. EMFText has the fol-
lowing advantages:
 It comes with a simple syntax specification lan-

guage (the Concrete Syntax Specification Lan-
guage CS) based on the Extended Backus-Naur
Form (EBNF).
 It offers options to derive an initial concrete syntax

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

606

that can serve as a starting point for a domain-
specific language based on the given meta-model.
 It provides a comprehensive syntax analysis for CS

specifications.
 It generates tool support from CS language speci-

fications. For example, a feature-rich, language
specific editor integrated in Eclipse can be derived.

Listing 1 shows a part of the concrete syntax defini-
tion based on the TDL meta-model. It was automati-
cally derived from the model as a Human-Usable
Textual Notation (OMG HUTN, 2004) and then in-
crementally refined to our needs and language de-
sign requests for the considered case study.

Listing 1: Part of concrete syntax for TDL.

Starting with a default syntax that is derived auto-
matically reduces the efforts to specify the necessary
syntax rules significantly. In addition, EMFText also
provides decent support during refinement, for mod-
el evolvement as well as for syntax alignment. A
number of customization techniques and options are
available to adjust the language specific plug-ins
generated by EMFText to user specific needs, like
preserving manual changes in generated code or
adaptable tokens and resolving of references.

The textual test description as shown in Listing 2
was created using the editor generated by means of
EMFText. It provides features similar to the built-in
Eclipse Java editor such as code completion, syntax
highlighting, code folding, text hovers, and others.
Using EMFText it was possible, to successfully val-
idate the designed TDL meta-model by experiment-
ing with its various features. Moreover this case
study serves as a starting point for the design of tex-
tual test description languages customised to differ-
ent application domains as demonstrated here with
its application to system integration testing in the
rail domain.

The standardisation of TDL currently provides
only the specification of the meta-model (as a Papy-
rus UML project). Follow-up activities in 2014 will
consider the design of a standardized graphical
syntax likely similar to the one shown in Figure 2.

Listing 2: Test description in concrete textual TDL syntax.

Conceptually it will be based on OMG’s Diagram
Definition approach (OMG DD, 2012).

6 CONCLUSIONS

TDL is an upcoming ETSI standard for the specifi-
cation of test descriptions supporting the design of
black-box tests for testing a wide range of systems.
We assume that the following application areas will
benefit from the proposed homogeneous, standard-
ised approach of test design with TDL:
 Model-based design of test descriptions derived

from the given test objectives, e.g. test purpose
specifications (ETSI process), user stories (TDD)
or other sources;
 Representation of test descriptions obtained from

other sources, e.g. generated tests (output from test
generation tools), system simulators, test execution
traces from previous test runs.

Being a new notation, there is naturally little tool
support that is ready to use. However basing the
TDL design on a meta-modelling approach within
the Eclipse development framework unlocks the po-
tentials from many development tools of this well-
established platform, which can be quickly turned
into assets such as the creation of a TDL editor as
demonstrated in this paper. Future tool support will
concentrate on the design of static analysers of TDL
specifications and test code generators.

While the semantics of TDL meta-model ele-
ments is currently specified as free text in the ETSI

The�ETSI�Test�Description�Language�TDL�and�its�Application

607

standard, there are ongoing efforts to define a se-
mantics based on timed automata.

The current version of TDL is designed specifi-
cally for the purpose of representing test scenarios.
However it can be extended to serve also as an input
language to test generators. The necessary amend-
ments to TDL require the support to the design of
higher-order TDL specifications that feature non-
deterministic choices over data and behaviour to aid
the generation of test descriptions according to cho-
sen coverage criteria. This extension is the focus of
future research.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to all
people at ETSI and outside involved in the TDL
standardization effort for their valuable input and
constructive discussion. Moreover the authors are
indebted to their Siemens colleagues for providing
the rail case study.

This work received partial funding from the
ARTEMIS Joint Undertaking, grant agreement no.
269335 (MBAT, 2013).

REFERENCES

ASAM ATX, 2012. Release Presentation: ASAM AE ATX
V1.0.0, Automotive Test Exchange Format.
http://www.asam.net/nc/home/asam-standards.html.

Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F.,
Vacelet, N., Utting, M., 2007. A subset of precise
UML for model-based testing. In Proc. of the 3rd Int.
workshop on Advances in model-based testing (A-
MOST '07). ACM, New York, NY, USA, 95-104.

EMF, 2013. Eclipse Modeling Framework Project (EMF).
http://www.eclipse.org/modeling/emf/

EMFText, 2013. EMFText, concrete syntax mapper.
http://www.emftext.org/

ETSI EG 203 130 Ver. 1.1.1: Methods for Testing and
Specification (MTS); Model-Based Testing (MBT);
Methodology for standardized test specification devel-
opment. 2013-04-09.

ETSI ES 201 873-1 Ver. 4.5.1: Methods for Testing and
Specification (MTS); The Testing and Test Control
Notation version 3; Part 1. 2013-04-30.

ETSI ES 202 553 Ver. 1.2.2: Methods for Testing and
Specification (MTS);TPlan: A notation for expressing
Test Purposes. 2009-06-02.

ETSI ES 203 119 (stable draft): Methods for Testing and
Specification (MTS); The Test Description Language
(TDL), 2013-09-25.

Grossmann, J., Müller, W., 2006. A Formal Behavioral
Semantics for TestML. In Proceedings of the Second

International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (ISO-
LA '06). IEEE Computer Society, Washington, DC,
USA, 441-448.

Guduvan, A., Waeselynck, H., Wiels, V., Durrieu, G.,
Fusero, Y., Schieber, M., 2013. A Meta-model for
Tests of Avionics Embedded Systems. In MODELS-
WARD’13, 2nd International Conference on Model-
Driven Engineering and Software Development.
SCITEPRESS Digital Library.

International Telecommunication Union, 2004. Recom-
mendation Z.120: Message sequence chart (MSC).
http://www.itu.int/rec/T-REC-Z.120.

ISO/IEC/IEEE 29119, 2013. Software and systems engi-
neering – Software testing (5 parts). http://
softwaretestingstandard.org/

Kaner, C., 2003. On Scenario Testing. In STQE Magazine.
September/October 2003, 16-22.

MBAT, 2013. Combined Model-based Analysis and Test-
ing, an ARTEMIS project, https://www.mbat-
artemis.eu/home/.

Micskei, Z., Waeselynck, H., 2011. The many meanings
of UML 2 Sequence Diagrams: a survey. In Software
and Systems Modeling, Springer, Vol. 10, 489-514.

OMG DD, 2012. Diagram Definition (DD) V1.0, for-
mal/12-07-01.

OMG HUTN, 2004. Human-Usable Textual Notation
(HUTN) Specification V1.0, formal/04-08-01.

OMG MOF, 2013. OMG Meta Object Facility (MOF)
Core Specification V2.4.1, formal/2013-06-01.

OMG OCL, 2012. OMG Object Constraint Language
(OCL) V2.3.1, formal/2012-01-01.

OMG UML, 2011. Unified Modeling Language (UML)
V2.4.1, Superstructure specification, formal/2011-08-
06.

OMG UTP, 2013. UML Testing Profile (UTP) V1.2, for-
mal/2013-04-03.

Razorcat, 2010. CCDL Whitepaper. Razorcat Technical
Report, 07 December. www.razorcat.com.

Ulrich, A., Alikacem, E.-H., Hallal, H., Boroday, S., 2010.
From scenarios to test implementations via Promela.
In: Testing Software and Systems (ICTSS 2010),
Springer LNCS 6435, pp. 236–249.

xUnit.net, 2013. Unit Testing Framework for C# and
.NET. http://xunit.codeplex.com/.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

608

