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Abstract: This paper presents a technique for automatic distribution of points on 3D-surfaces that are defined as 
meshes of polygons (usually triangles) such that the distribution has a low discrepancy. The work is moti-
vated by the quest for representing arbitrary 3D-objects by a minimal number of surface points such that dif-
ferent views and arbitrary occlusions of objects can be effectively distinguished by simply using the visible 
surface points. The approach exploits low-discrepancy sequences on the unit square such as those proposed 
by Hammersley or Halton.  

1 INTRODUCTION 

In computer graphics, a standard technique for mod-
elling the geometry of 3D-objects is to represent 
their surface as polygon meshes, mostly consisting 
of triangles. The question we want to address in this 
work is: how to distribute points on a polygonal 
mesh of a 3D-object such that for each possible view 
(2D-projection) of the object, the visible fraction of 
points can be used as representative for the visible 
fraction of its total surface in that view? Of course, 
for economic reasons the question should be extend-
ed by “with as few points as possible”.  

A hint for a possible answer can be found in 2D-
geometry. Consider you want to distribute a set P of 
n points on a square U such that for any sub-area R 
 U, larger than some given minimum, the ratio of 
points contained in R to n is as close as possible to 
the ratio of the areas of R and U; i.e. the number of 
points found in R can be used as a good approxima-
tion for the size of R relative to U. It turns out that 
both regular and random distributions are not well 
suited for that purpose, while in the case of continu-
ous uniform distributions, the local point density is 
proportional to the surface area covered by these 
points. This is illustrated in Figure 1.  

The measure for the deviation between the real 
size and that indicated by the number of covered 
points is called geometric discrepancy (see chapter 2 

for precise definitions and more background). Evi-
dently, the smaller this value the better. 

 
Figure 1: Point distribution examples on a square: (a) the 
points arranged in a lattice; (b) random (Monte Carlo) 
points; (c) Hammersley points. 

Actually, low-discrepancy point sets have been 
widely used in computer graphics and image pro-
cessing for point based object representation (Quinn 
et al., 2007), for improving image quality (Wong et 
al., 1997), for the purpose of antialiasing (Wand and 
Straßer, 2003), for half-toning (Hanson, 2003) or for 
illumination (Dachsbacher and Stamminger, 2006).  

Several methods for producing low-discrepancy 
sequences on the unit square have been proposed by 
Hammersley (Hammersley, 1960), Halton (Halton, 
1960), Sobol (Sobol, 1967), Niederreiter (Nieder-
reiter and Chao, 1995) and have been further inves-
tigated by other scientists or research groups (Cheng 
and Druzdzel, 2000, Grabner et al., 2012). 

This work addresses uniform distribution of 
points on arbitrary polygonal 3D-surfaces. The idea 
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is to unfold the polygon resulting in a 2D- represen-
tation, then to place low-discrepancy distributed 
points on it, and finally, to map these placements 
back to the 3D object. The discrepancy is treated in 
this work only analytically. To control the quality of 
the performed technique, the irregularity measure as 
a comprehensible geometric interpretation is pre-
sented and is explained by the algorithm and several 
examples. The proposed approach concentrates only 
on triangular meshes. However, the method could 
also be extended for surfaces represented by arbi-
trary polygons. 

This paper is structured as follows. In the next 
section, similar work found in literature is shortly 
discussed, while Section 3 introduces the mathemat-
ical background of geometric discrepancy. Section 4 
describes our method and its evaluation criteria. 
Section 5 presents and discusses some application 
examples and Section 6 draws a conclusion. 

2 RELATED WORK 

Previous research in the area of sampling techniques 
mainly concentrated on uniform scattering of points 
on planar domains (Pillards and Cools, 2005, Hofer 
and Pirsic, 2011) and on spherical surfaces (Rakh-
manov et al., 1994, Cui and Freeden, 1997).  

More recent investigations address low-
discrepancy point distributions on an arbitrary sur-
face. They include different sampling strategies 
based on uniform distribution of lines in the 3D 
space, on space filling curves. For instance, Quinn 
(Quinn et al., 2007) use Hilbert curves to fill param-
eterized meshes and map them onto the surface. The 
low-discrepancy sampling happens along the Hilbert 
curves. The parameterization methods are based on 
solving the sparse linear system and can be applied 
only to surface-sections that are homeomorphic to a 
disk. Thus, the pre-processing step is also applied to 
cut an arbitrary mesh into a set of topological disks 
and to generate the Hilbert curves. Because the 
choices of parameterization and cutting algorithms 
have little effect on the final sampling due to the 
adaptive nature of the Hilbert curve and the re-
meshed surface of the object can be slightly changed 
during this process, the Hausdorff distance is used to 
assess how well the new shape is preserved. Our 
approach, however, is shape accurate and is easy to 
implement. The initial mesh is not changed when 
providing the low-discrepancy distribution over the 
planar domain and mapping it back to the original 
surface. 

Rovira (Rovira et al., 2005) suggest a sampling 
technique based on intersecting of lines uniformly 
distributed in 3D-space with polygonal models. 
Several algorithms to generate the set of uniformly 
distributed lines are proposed. Each of them utilizes 
the low-discrepancy point set in four dimensions and 
is based on the approximation of a binomial distribu-
tion by a Poisson distribution. Such approximation is 
only suitable for large number of lines. Thus, the 
proposed approach causes the large number of uni-
formly distributed lines and, therefore, the large 
number of intersecting points. In contrast, using the 
scattering of the 2D low-discrepancy points set onto 
the surface our algorithm can deal with a small 
number of sampling points.  

Our approach is also related to prior works on 
mesh segmentation and mapping the segments onto 
a planar domain (also called mesh unwrapping or 
unfolding). The partitioning techniques of boundary 
meshes is often application dependent. In fact, it can 
be distinguished between two general types: seg-
mentation of the whole object into meaningful, vol-
umetric parts and partitioning of the surface mesh 
into segments under some criteria. A detailed over-
view of these methods is given in (Shamir, 2008). 
The work described in this paper does not concern 
optimal segmentation, but a simple unfolding algo-
rithm has been designed to fulfil the given goals. 

3 MATHEMATICAL 
BACKGROUNDS 

Let P be a set of nU points that are distributed on the 
unit square U=[0,1)[0,1). 

Collection S2 is the set of sampling figures on 
the unit square U. In general, it can be any set con-
sisting of scaled and translated copies of fixed poly-
gons or polytopes (Matousek, 1999 p.10). Therefore, 
S2 can include such sample figures F which contain 
the unit square or some part of it or do not overlap 
with U. As only overlap with U is of interest, the 
collection shall be reduced to the set { R | R=F∩U}. 
Without any further notation, let R be an element 
from collection S2 and R  U. 

N(R) is the number of points of P within R and, 
therefore, N(U)=nU. The geometric discrepancy D 
for the unit square U can be defined (Matousek, 
1999, p.13, Alexander, 2004, p.283) by taking a 
norm of the difference between the actual number of 
points within any sampling figure R and the ex-
pected number of points hitting R, i.e. 

D U, P, , ≔ ‖ ‖ 	, ((1)
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where ∈ . vol(R) denotes the area of R, as frac-
tion of U, i.e. vol(R):=area(R)/area(U), and  
	  is the expected number of points hitting 

R. The function ∆ 	  is de-
noted as discrepancy function with the following 
norm: 

‖∆ ‖ ∆  , 1		  , (2)

‖∆ ‖∞ sup ∈ |∆ |, 						 . .  ; (3)

Let dm:=1/nU be the mean distance between clos-
est neighbour points, where nU=#P is the cardinali-
ty of P that is equal to the prescribed density. 

In our work we use the Hammersley or Halton 
sequences to calculate the potentially infinite uni-
formly distributed sequence W on the unit square, 
and utilize the first n points to build the set P. These 
sequences are based on radical inversion and modi-
fications of this inversion (Halton, 1960, Hammers-
ley, 1960). The sequences are defined in an arbitrary 
number of dimensions. An implementation of them 
is described in (Wong et al., 1997).  

For every natural number n, the discrepancy for 
both Hammersley or Halton sequences is bound, i.e. 
there is an absolute positive constant c such that 
	|D U, P, ,∞ | 	|log |, where S2  Sr is a set 
of axis-parallel rectangles (Matousek, 1999, p.41). 
We can also say in this case that the discrepancy 
satisfies D U, P, S ,∞ log . 

If S2  Sd is a set of two-dimensional disks of ra-
dius r, and n=#P, then there are two absolute posi-
tive constants c1 and c2 (Alexander, 2004, theorem 
13.3.6) that depend on the radius. The discrepancy 
can be estimated as follows: 

	 ⁄ D U, P, S ,∞  

	 ⁄ log  
(4)

Some further discrepancy estimations are also 
given in (Alexander, 2004, Berg, 1996, Chen and 
Travaglini, 2007). 

Because the estimation of the discrepancy de-
pends on the collection S2 and used norm, we further 
assume that the collection is a set of different convex 
figures and is large enough; and the lower and upper 
bounds of discrepancy exist:  

#  D U, P, , L 		 # . (5) 

As already mentioned in the introduction, we 
want to distribute points on 3D-surfaces by unfold-
ing their meshes, mapping them to U, and re-
mapping the “caught” points of P back to the sur-
face.  

If we apply only rotation, translation and iso-
tropic scale for the mapping between planar surface 
elements and U, the transformed set of points is also 
uniformly distributed with only minor change in the 
discrepancy, see also concept of isotropic discrepan-
cy in (Matousek, 1999).  

To measure the discrepancy D O ,Q, S ,  of 
the points set Q on the surface of a 3D-object, a 
feasible collection SOM of the sample figures should 
be selected. The collection proposed in (Quinn et al., 
2007) is a sub-set of the triangulated object’s mesh 
(OM or OM) that is chosen as “a contiguous set of 
triangles, grown from a random seed triangle to a 
random number of triangle rings”. The mesh seg-
ments with random number of triangles could also 
be used instead of the ring of triangles. 

As an example, consider some sphere with set of 
points Q={qi} scattered over its surface. The sphere 
is scaled in such a way that its unfolded mesh is 
measure-preserving mapped to the unit square, as is 
shown in Figure 2, where the mapped points 
Q={qi}OM and the initial points Q*={qi

*}  U are 
given in red colour. 

The part of the unit square, which is not covered 
by the unfolded mesh, is completed with points 
Q={qi}, i.e. P* = Q  Q*,  P* U. The points Q 
are shown in Figure 2 in black colour.

 

Figure 2: Example of the discrepancy calculation on the surface of a 3D-object.
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Let SOM
*={Ri

*} be the set of the unfolded sample 
figures. For instance, in the given example the sam-
ple figure R1 is unfolded to R1

*, the figure R2 is un-
folded to convex figures R2

* and R3
* and the unfold-

ed figure R3 is the set of triangles pairs Rk
*. 

Assume also that the set SOM
* is reasonably ex-

tended to S2
* and used to measure the discrepancy of 

P* in the unit square, i.e. SOM
*  S2

* and 
	 #P∗ 		D U, P∗, ∗, L 		 #P∗ . Thus, each 

discrepancy function calculated in the unit square 
has an upper bound ∆ ∗ 	 #P∗ 	, ∀	 ∗ ∈ ∗.  

Consider the discrepancy function calculated for 
the set of points on the spherical surface. Because 
isotropic mapping is used, the expected number of 
points and the real one inside the sample figure will 
not change after unfolding and, therefore, the dis-
crepancy function of R1 is ∆ ∆ ∗ 	, where 
R1SOM and  R1

*S2
*. For the sample figure R1SOM 

the discrepancy function is calculated as  (R2) = 
(R2

*) + (R3
*) . 

The strongest influence on the discrepancy 
D O , Q, ,  is given by a sample figure like 
R3SOM, i.e. ∆ ∑ ∆ ∗ , 39. The 

influence of the sample figures ∗  on the discrepan-
cy decreases with increased density of distributed 
points, i.e. with increase of the cardinality of Q. For 
each ∗  there exists an absolute positive constant 

# 1, such that each discrepancy function 
∗  is smaller than 	 #P∗  by the factor of 

#  , i.e.  ∆ ∗ # 	 #P∗ , where ki 

 fi . Therefore,   

‖∆ ‖ ∑ # 	 #P∗

max # 		 #P∗ , 
(6)

where Ri  SOM  fd =max{ fi }. 
The unfolded sample figure is decomposed into a 

maximum of fd compact convex parts/bodies. fd is 
called decomposition degree and depends on object 
shape and its unfolding. In this example, fd=39.  

Thus, the discrepancy can be estimated as fol-
lows: 

D O , Q, , # 		 #P∗ , (7)

where c(#Q)  1 is inversely proportional to the 
density as well. 

Thus, the discrepancy on the surface of the 3D-
objects could be compared under the assumptions 
stated above with the discrepancy of the points dis-
tributed on the unit square. 

Hence, the discrepancy D O ,Q, S ,  calcu-
lated over the total object mesh depends on the de-

composition degree in the case of small points set; if 
the point set Q has the cardinality significantly larg-
er than fd, the decomposition degree fd does not have 
a major impact on the discrepancy. Note also, that 
the discrepancy could be exactly equal to #P∗  
on some local parts of the surface.  

Such dependency of discrepancy on size and 
shape of the test figures containing the respective 
uniformly distributed point sets is investigated in 
detail in the next section. 

4 ALGORITHMS 

In order to minimize the geometric discrepancy over 
the whole surface, the triangles should be assembled 
to as large as possible segments while retaining the 
original neighbourhood of the triangles. 

To distinguish between 3D and 2D domains, we 
denote a (connected) subsection of a triangulated 
surface as segment and its unfolded (flattened) coun-
terpart as strip. The effect of discrepancy increase 
not only applies to edges where segments touch, but 
everywhere along their edges where their 2D projec-
tions are split with a distance smaller than mean 
distance dm. A similar effect is caused by the in-
verse, namely when parts of segments mapped to a 
strip overlap in a zone up to width dm. These effects 
are illustrated in Figure 3. Interstices may likely 
appear when a polygon mesh representing a curved 
surface like that of a sphere is flattened; see Figure 2 
for an example. The elongated parts of a strip be-
tween interstices are denoted as “fingers”. If fingers 
extend over saddle regions in the segment, they may 
overlap in the strip. In general, the zone of width dm 
along the edges of a strip contributes most to the 
increase of discrepancy, because here the continuity 
of the point distribution as taken over from unit 
square U is broken whenever it touches another 
border. 

 

Figure 3: Zones of the strip with larger discrepancy in 
interstices (left) and overlaps (right). Because the points in 
overlap regions are mapped to multiple segments, the 
distances between their copies on the 3D-surface would be 
smaller than d. 
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Following these observations, the minimization of 
the “irregular border zone” A can be achieved by 
following goals:  

 Maximize size of segments. 
 Minimize ratio edge length / area of strips. 
 Minimize elongation of strips.  
 Minimize concave zones. 
 Minimize number of strips and, therefore, the de-

composition degree of the sample figures.  
 Planes should not be split. 

Optimizing all goals with a single algorithm is 
difficult if not impossible. This approach will focus 
on achieving a good balance between these require-
ments. 

4.1 Mesh Segmentation and Unfolding 

The simple segmentation-unfolding algorithm we 
are using works as follows: 

1) Find the 2D skeleton of the (first) strip: 
Starting with the triangle Tl(ei(vi,vj), ej(vj,vk), 

ek(vk,vi)) with the largest edge, e.g. ei(vi,vj), its or-
dered set of vertices is congruently mapped to the 
plane. The triangle Tl and vertex vi are saved in cor-
responding look-up tables with a mark “is mapped”. 

The next triangle Tl+1 that is chosen is the one at-
tached to the longest of the remaining mapped edg-
es, e.g. vr, of the previous triangle; and its non-
considered vertex is also mapped to the plane, in the 
same way as vertex vk. The triangle Tl+1 and vertex 
vr are saved in corresponding look-up tables with 
mark “is mapped” as well. The process continues 
until a chosen triangle has already been mapped.  

If the longest edge of the start-triangle has a non-
mapped adjacent triangle, the process can be pur-
sued in the other direction. When no more triangles 
can be added to the strip, the ordered sequence of 
outer edges is saved as strip-boundary. 

2) In the next step, the algorithm moves along 
the strip-boundary and adds to the strip those trian-
gles which were not yet added to any strip and 
which, together with their neighbours from the seg-
ment, establish a plane or ”almost” a plane, i.e. the 
minimal angle between them is closed to 180°. By 
adding the new triangle to the strip, the correspond-
ing boundary edge is replaced by the new edges. 

3) Next, we look once more along the boundary 
to find such leftover triangles that are not yet 
mapped but are surrounded by unfolded segments.  

4) If the cardinality of the strip is smaller than a 
given threshold, the strip will be allowed to grow 
again along its boundary, and the steps 2 and 3 will 
be repeated as long as possible. 

5) The accumulation of the next segment and 
strip starts from the largest edge of the saved strip-
boundaries.  

The unfolding of the segments onto the plane 
does not change the area or the geometry of the 
individual triangles but creates splits and overlap-
ping regions inside or at the border of the strips. 

As already mentioned, even tiny gaps can lead to 
missing sampling points and very small overlapping 
can cause doubling of points, which both increase 
the discrepancy. One source of such regions is float-
ing-point operations, because when performed in 
different orders they do not always lead to exactly 
the same result. The second one is the roughness of 
the object surface. In our approach we extract and 
handle thin interstices and thin overlaps using a 
correction algorithm (see Section 4.2).  

4.2 Low-discrepancy Points Wrapping 

The distribution of points on the arbitrary surface is 
operated in the following manner: 

1) The strips generated with the algorithm de-
scribed before are mapped to a planar domain.  

2) Points are scattered on the planar domain that 
contains the strips. The cardinality of the points set 
depends of the area of the planar domain and some 
default density. The default density can be given, for 
instance, by the user. Because used algorithm gener-
ates points in the unit square, the set of points need 
to be isotropic scaled to the planar domain.  

3) The strips are positioned on the planar do-
main, using another low-discrepancy set of points 
with cardinality that is equal to the number of strips. 

4) The total area of “irregular zones” is calculat-
ed for the whole object. If the irregularity ratio, i.e. 
the ratio of the area of “irregular zone” to the total 
surface area (see Section 4.3), is larger than a given 
threshold, the used point density is increased (and 
hence the mean distance dm between neighbours 
decreased). All points inside each planar triangle are 
mapped back to the 3D-surface.  

5) The points inside thin interstices and thin 
overlaps are mapped to the corresponding edges 
using the following correction algorithm: 

a) For each strip find thin interstices and thin 
overlapping regions. A region width of 0.1 dm is 
used in the examples below; 

b) If the interstice contains a point, project it or-
thogonally onto the closest edge; 

c) If the overlapping contains a point, find all 
corresponding points on the 3-D surface and remove 
all copies but one.  
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The next section describes how the accuracy of 
the approach is estimated by the using of irregularity 
ratio. 

4.3 Unfolding Accuracy 

Let R be the irregularity ratio R=A/Atot, where Atot 
is the total surface area of the object and A is the 
area of the “irregular zone”. A=A(b) is estab-
lished along each boundary edge b. Besides dm, the 
boundary length and the shape of the strip where b 
belongs influence A(b) as well. 

The area of the irregular zone can be calculated 
exactly for simple objects. For complex objects, we 
establish A for each strip, where the boundary 
consists of a sequence of ordered edges: {e1, … , ej-1, 
ej, ej+1, eNe}, where Ne is the number of boundary 
edges of a strip and edges e1 and eNe are neighbours. 
A rough estimate of A can be calculated as fol-
lows: 

∆ ∑ len 	2	 	 , (8)

where len  is the length of the edge ej and  
is a number of concave strip vertices. 

To calculate a more precise estimation of value 
for A, the following cases could be considered: 

a) the “irregular zone” adjacent to ej is a triangle; 
b) the “irregular zone” adjacent to ej  is a rectan-

gle, avoid in this case that some areas do not calcu-
lated twice; 

c) at least one of the half-angle between the edg-
es adjacent to ej is larger than 90°, the corresponding 
corner of the “irregular” trapezoid or parallelogram 
could be reduced to a circular sector. 

The whole value of A is accumulated along the 
boundary of the strip. Note, that the irregular area 
within thin “fingers” or zones with a width < 2 dm 
could be calculated twice. In our approach we do not 
search for such overlaps but use them to weight the 
irregularity ratio if the strip has unwanted thin “fin-
gers” or zones. Therefore, in some cases the ratio R 
can be larger than 1. 

An important concept in computer graphics is 
that of level-of-detail (LoD): a prescribed resolution 
depending on the distance between camera and the 
object (more precisely, some fixed point of the ob-
ject, e.g. its centre). Evidently, calculated points set 
with large R can be effectively used at large LoD to 
estimate the visible surface fraction. In general, the 
balance between the irregularity ratio and density 
should be deciding for each LoD. 

 

5 EXPERIMENTAL RESULTS 
AND DISCUSSION 

The low-discrepancy points wrapping approach is 
tested by using the different surface meshes, includ-
ing meshes of geometrically simple objects (Figure 
4), analytically calculated meshes (Figure 5), and 
meshes which are produced by a laser scanner with 
adaptive re-meshing (Figure 7) and without re-
meshing (Figure 6). Such meshes do not only differ 
in topology and in the number of connected compo-
nents, but some of them are also not optimized to 
achieve a regular and/or structured grid. 

Figure 4 shows the scattering of points onto a 
sphere. The mesh has a structured curvilinear grid. 
The segmentation algorithm yields one segment, of 
which the two-dimensional projection (Figure 4e) 
has many tiny interstices. The points provided by the 
correction algorithm are shown in Figure 4f in pink 
colour. To achieve the irregularity ratio of 0.95, 770 
points shall be scattered, while the distribution of the 
192 points leads only to irregularity of R=1.32. 
By using the Hammersley algorithm in the spherical 
coordinates (Wong et al., 1997) we can also calcu-
late the low-discrepancy points set distributed direct-
ly onto the spherical surface and compare them with 
our approach, see Figures 4a and 4b versus 4c and 
4d, respectively. 

In the next example the low-discrepancy points 
wrapping approach is applied to an object created 
analytically by a cup-generator, the object is shown 
in Figure 5. The mesh has a block structured grid, 
but, in general, is not regular. The planar strips have 
a lot of gaps and overlapping regions because of the 
smoothed surface and non-trivial geometry. The 
algorithm distributes 550 points with irregularity 
R=0.3. Figures 5b, 5c and 5d show the obtained 
points from different point of view. 
The approach is also tested for some natural objects, 
which were produced using a laser scanner. One of 
them, “Fruit Drink” we can see in Figure 6 (see also 
www.iaim.ira.uka.de/ObjectModel/). The original 
object surfaces are not perfectly smoothed and have 
a lot of knack, wrinkles and bowings. The meshes 
have not been optimized and have, therefore, un-
structured grid arrangements. The mesh is automati-
cally segmented in 32 segments, which cuts are 
given in Figure 6a in different colours. The largest 
strip with 21963 triangles is shown in Figure 6b. 
(The remaining 31 segments together contain no 
more than 3031 triangles.) The Figures 6c and 6d 
illustrate the distribution of 56 and 315 sample 
points, respectively, onto object surface with irregu-
larity rate R=1.07 and R=0.22, respectively. In Fig-
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Figure 4: Sphere: #vertices =382;   #edges=1140;  #triangles=760;  #strips=1; Hammersley algorithm in the spherical coor-
dinates: (a) #points=192, (b) #points=770; low-discrepancy points wrapping approach: (c) #points=192, R=1.32;  (d) 
#points=770, R=0.95; (e) 2D strip; (f) image enlargement. 

 

Figure 5: Cup: #vertices =7024, #edges =20976, #triangles =13952, #strips=4; (a) segmentation; (b), (c) and (d) different 
views of #points=550, R=0.30; (e), (f) and (g) 2D strips with #points=65 and R=1.73. 

 

Figure 6: Fruit Drink: #vertices =12487, #edges =37495, #triangles =24994, #strips=32; (a) segmentation; (b) the largest 
strip with 21963 triangles; (c) #points=56, R=1.07; (d) #points=315, R=0.22. 
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Figure 7: Horse: #vertices=48485, #edges=145449, #triangles=96966‚ #strips=28; (a) segmentation; (b) and (c) small 2D 
strips with 252 and 520 triangles, respectively, (d) the largest 2D strips with 93754 triangles; (e) R=1.65, #points=57; (f) 
R=0.25, #points=335. 

ure 6b we also can see the pink points added by the 
correction algorithm. 

The last example in Figure 7 demonstrates the 
application of our approach to a large model (see 
http://www.cc.gatech.edu/projects/large_models/hor
se.html), whose mesh is produced by laser scanner 
and has an unstructured grid, but it is well smoothed. 
The mesh is cut into 28 segments. The mapping of 
the largest one to the plane is shown in Figure 7d 
and two smaller strips are given in Figure 7b and 7c. 
The distribution of 335 points occurs with irregulari-
ty ratio R=0.25 and 28 sample points are scattered 
with R=1.65. 

6 CONCLUSIONS 

In this work, we describe an approach for low-
discrepancy distribution of sample points on triangu-
lated surfaces of arbitrary 3D objects within a wide 
density range.  The accuracy of the performed tech-
nique is determined by the ratio between the area of 
the irregular zone and the total area. A wide range of 
possible point densities can be used to conform to 
different level-of-details.  

Our intent was to distribute as few points as pos-
sible on a 3D-surface so that from each view a suffi-
cient number of points is visible, which corresponds 
to the visible fraction of the surface (with respect to 
the required LoD). Examples indicate that good 
results can already be achieved with less than 100 
points, which is clearly smaller than the numbers 
usually reported in literature (see Section 2).  

An important question is how to perform the 
segmentation and the unfolding in a way which 
minimizes the raise in the discrepancy. The further 
research will focus, therefore, on the mesh segmen-
tation and the unfolding as an optimisation problem. 

Additional work will address the direct meas-
urement of the resulting geometric discrepancy on 
the surface itself. 
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