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Abstract: In the field of action recognition, the design of features has been explored extensively, but the choice of
action classification methods is limited. Commonly used classification methods like k-Nearest Neighbors and
Support Vector Machines assume conditional independency between features. In contrast, Hidden Conditional
Random Fields (HCRFs) include the spatial or temporal dependencies of features to be better suited for rich,
overlapping features. In this paper, we investigate the performance of HCRF and Max-Margin HCRF and their
baseline versions, the root model and Multi-class SVM, respectively, for action recognition on the Weizmann
dataset. We introduce the Part Labels method, which uses explicitly the part labels learned by HCRF as a new
set of local features. We show that only modelling spatial structures in 2D space is not sufficient to justify the
additional complexity of HCRF, MMHCRF or the Part Labels method for action recognition.

1 INTRODUCTION

Action recognition is split into feature selection and
classificiation. Having extracted features, assigning
action labels to videos becomes a classification prob-
lem. Next to conventional classifiers like k-Nearest
Neighbor (Blank et al., 2005) and Support Vector Ma-
chines (SVM) (Jhuang et al., 2007), more complex
models have been introduced for action classification,
which are either generative or discriminative.

Generative approaches model a joint probability
distribution over both the features and their part la-
bels, implying the need of a prior model over the fea-
tures. To model this prior tractably, generative ap-
proaches assume features are conditionally indepen-
dent of their labels. A typical example is the Hidden
Markov Model using hidden states to represent differ-
ent phases in an action (Yamato et al., 1992).

Discriminative approaches do not need to model
the prior on features, since they directly model a con-
ditional distribution over action classes from the fea-
tures. Therefore, the independence assumption is re-
laxed. Conditional Random Fields (CRFs) (Kumar
and Hebert, 2003) is such a discriminative approach.
However, CRF requires fully labelled data where
each observation node has an intermediate level la-
bel, like ”hands up” or ”put down leg”. Since most
available datasets do not provide this intermediate la-
belling, Quattoni et al. (Quattoni et al., 2004) propose

the HCRF model, which extends CRF to incorporate
these intermediate part labels as hidden variables. The
assignments of these hidden variables are learned dur-
ing training, not required in the dataset. HCRF was
originally proposed for object recognition. Wang and
Mori (Wang and Mori, 2011) extended HCRF to ac-
tion recognition by modelling the spatial dependen-
cies of patches within a frame as they model a human
action as a constellation of parts conditioned on im-
age features. They improved the classification perfor-
mance by combining the flexibility of local represen-
tation and the large-scale global representation under
the unified framework of HCRF.

Max-margin methods set separating hyperplanes
such that the margin between the correct label and
all others is maximized, ensuring the score of the
correct label is much higher than the incorrect ones.
Felzenszwalb et al. (Felzenszwalb et al., 2008) pro-
pose the Latent Support Vector Machine (LSVM),
which learns a discriminative model with structured
hidden (or latent) variables similar to HCRF with a
max-margin approach. LSVM is a binary classifier
which does not directly handle multi-class classifi-
cation. Crammer and Singer (Crammer and Singer,
2002) introduce the multi-class SVM which extends
the binary SVM to support multi-class classification.
Similarly, Wang and Mori (Wang and Mori, 2011)
proposed MMHCRF to extend LSVM to directly han-
dle multi-class classification.
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Our work is based on HCRF and MMHCRF. Both
methods model the spatial structure of an image by
structured hidden variables. However, HCRF learns
the model parameter with a maximum likelihood ap-
proach, while MMHCRF adopts a max-margin ap-
proach. We propose a new method that combines the
advantages of both HCRF and MMHCRF, leading to
more accurate classification results.

2 CLASSIFICATION METHODS

To compare and analyze the value of HCRF and
MMHCRF, the theory behind these methods is briefly
explained, including their baseline method where the
hidden labels are removed.

2.1 Hidden Conditional Random Fields

To classify a frameI in a video sequence, letx
be the feature extracted fromI , and y be its ac-
tion label. DenoteY as the set of possible ac-
tion classes. AssumeI contains a set of patches
{I1, I2, . . . , Im}, and its corresponding features can be
written asx= {x0,x1, . . . ,xm}. x0 is the global feature
vector which is extracted from the whole frame, and
xi (i = 1, . . . ,m) is the local feature vector extracted
from patchIi . Our training set consists of labelled
frames(xt ,yt) for t = 1, . . . ,T.

Assume we can assign each patchIi with a hidden
part labelhi from a finite set of possible part labelsH ,
each frameI has a vector of hidden part labelsh =
{h1,h2, . . . ,hm}. A hidden part label represents the
motion pattern of a body part, such as move forward
for the head. As the values ofh are learned during
training, they are the hidden variables of the model.

The hidden part labels can depend on each other.
For example, in the case of walking, head and torso
might tend to move forward. Assuming an undi-
rected graph structureG = (V,E) for each frame,
hi (i = 1,2, . . . ,m) are the verticesV and the depen-
dence betweenh j andhk is an edge( j,k) ∈ E. In-
tuitively, G models the conditional dependencies be-
tween the hidden part labels. The structure ofG is
assumed to be a tree (Quattoni et al., 2007). Note that
the graph structure can be different from image to im-
age. Figure 1 shows the graphical model.

Given the featurex, part labelsh, and class la-
bely, we can define a potential functionθ⊺ ·Φ(x,h,y)
which is parametrized by the model parameterθ:
θ⊺ ·Φ(x,h,y) = ∑

j∈V

α⊺ ·φ(x j ,h j)+ ∑
j∈V

β⊺ ·ϕ(y,h j)

+ ∑
( j ,k)∈E

γ⊺ ·ψ(y,h j ,hk)+η⊺ ·ω(y,x0) , (1)
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Figure 1: The undirected graph model. The circles and
squares correspond to variables and factors, respectively.

whereα, β, γ and η are the components ofθ, i.e.
θ = {α,β,γ,η}. Φ is linear with respect toθ. φ(·),
ϕ(·), ψ(·) and ω(·) are functions defining the fea-
tures of the model. The unary potentialα⊺ ·φ(x j ,h j)
models how likely patchx j is assigned with part la-
bel h j , while the unary potentialβ⊺ · ϕ(y,h j) mea-
sures how likely an image with class labely con-
tains a patch with part labelh j . The pairwise po-
tentialγ⊺ ·ψ(y,h j ,hk) measures how likely an image
with class labely contains a pair of part labelsh j
andhk, where( j,k) ∈ E. Finally, the root potential
η⊺ ·ω(y,x0) measures the compatibility of class label
y and the global feature of the whole image.

Given the potential functionθ⊺ · Φ(x,h,y), the
conditional probabilistic model is given as

P(y,h|x,θ) =
exp(θ⊺ ·Φ(x,h,y))

∑y′∈Y ∑h exp
(

θ⊺ ·Φ(x,h,y′
)
) . (2)

Its denominator is a normalization term which sums
over all possible class labelsy

′
∈ Y and all possible

combinations ofh. When the feature of an imagex
and model parameterθ are known, the probability of
this image having class labely is the summation of
conditional probabilitiesP(y,h|x,θ) over all possible
assignments of part labelsh:

P(y|x,θ) = ∑
h

P(y,h|x,θ) (3)

The joint conditional probabilityP(y|x,θ) is maxi-
mized for all training samples. The objective function
used for training parametersθ is defined as:

L(θ) = ∑
t

logP(yt |xt ,θ)−
1

2σ2 ||θ||
2
. (4)

The first term in Eq.(4) is the conditional log-
likelihood on the training images. The second term
penalizes large values ofθ. The optimalθ is learned
by maximizing the objective function in Eq.(4). The
optimal θ∗ cannot be computed analytically; instead
we need to employ iterative gradient-based optimiza-
tion methods such as limited-memory BFGS (Byrd
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et al., 1994) to search for the optimalθ. Similarly
as with other hidden state models like HMMs, adding
hidden statesh makes the objective functionL(θ) not
convex (Quattoni et al., 2004). Therefore, this method
cannot guarantee a global optimal point.

2.2 Root Model

The baseline model of HCRF, called the root model,
only uses the global featurex0 to train the root filterη
and does not include the hidden part labels. We only
use the last part of the potential function in Eq.(1) for
modelling. The probability of class labely given the
global featurex0 and root filter parameterη is:

Proot(y|x0;η) =
exp(η⊺ ·ω(y,x0))

∑y′∈Y exp(η⊺ ·ω(y′,x0))
. (5)

The η∗ that optimizes this probability is computed
analogously asθ∗ for the HCRF.

Besides being a simplified version of HCRF, the
root model can also be used to initialize the root fil-
ter η of HCRF. Since the objective function of HCRF
is not convex, a good starting point of the model pa-
rameters lead to a good local optimum. The trained
model parameter of the root model, called root filter,
can be a good estimation of the root filterη in the
HCRF model. The other parametersα, β andγ are
initialized randomly.

2.3 Max-Margin HCRF

Instead of using maximum likelihood, theMax-
Margin Hidden Conditional Random Fields
(MMHCRF) uses a max-margin criterion to set the
model parameter to maximize the margins between
the correct label and the other labels. MMHCRF
uses the potential function and its parametrization
in Eq.(1) as HCRF does. For a training image, its
feature vector and action label pair(x,y) are scored
by the potential function with the best assignment of
hidden variables:

fθ(x,y) = max
h

θ⊺ ·Φ(x,h,y). (6)

Given the training samples(x1,y1), . . . ,(xT ,yT), we
want to find θ that maximizes the margin between
the score of the correct label and the score of other
labels. Similar to multi-class SVM (Crammer and
Singer, 2002), this training process can be formulated
as an optimization problem:

min
θ,ξ

1
2
||θ||2+C

T

∑
t=1

ξt (7)

s.t. max
h

θ⊺ ·Φ(xt ,h,y)−max
h′

θ⊺ ·Φ(xt ,h
′
,yt)

6 ξt − δ(y,yt),∀t,∀y,

whereδ(y,yt) is 1 if y 6= yt and 0 otherwise. Intu-
itively, we want to findθ whose L2-norm is as small
as possible, and satisfies the constraints that the score
for the correct labelyt is at least one larger than the
scores of the other labels for each training sample.ξt
is the slack variable for thet-th training image to han-
dle the soft margin when data is not fully linearly sep-
arable, andC controls the trade-off between the slack
variable penalty and the size of the margin.

Note that the constraints of Eq.(7) are not con-
vex. Therefore, this method is not guaranteed to reach
the global optimum. Using a coordinate descent al-
gorithm similar to (Felzenszwalb et al., 2008), a lo-
cal optimum of Eq.(7) can be computed by iterating
through these two steps:

1. Holdingθ, ξ fixed, optimize the hidden part labels
h
′
for the training example(xt ,yt):

ht,yt = argmax
h′

θ⊺ ·Φ(xt ,h
′
,yt). (8)

2. Holdinght,yt fixed, optimizeθ, ξ by solving this
optimization problem:

min
θ,ξ

1
2
||θ||2+C

T

∑
t=1

ξt (9)

s.t. max
h

θ⊺ ·Φ(xt ,h,y)−θ⊺ ·Φ(xt ,ht,yt ,yt)

6 ξt − δ(y,yt),∀t,∀y.

These two steps are repeated until convergence.
During testing, for every new imagex, we first

calculate the optimalh for every possible class label
y: hy = argmaxh θ⊺ ·Φ(x,h,y). Next, we calculate
the score of each class label and pick the label with
the highest score:y∗ = argmaxyθ⊺ ·Φ(x,hy,y).

2.4 Multi-class SVM

In a similar way as the root model is the base-
line model for HCRF, we can derive a root model
for MMHCRF, which only uses the root potential
η⊺ · ω(y,x0) as its potential function and trains the
model parameter with a max-margin approach. Set-
ting fθ(x,y) = η⊺ ·ω(y,x0), we obtain:

min
θ,ξ

1
2
||θ||2+C

T

∑
t=1

ξt (10)

s.t. η⊺ ·ω(y,xt,0)−η⊺ ·ω(yt ,xt,0)6 ξt −1,∀t,∀y 6= yt

ξt ≥ 0,∀t.

This quadratic program is the standard multi-class
SVM (Crammer and Singer, 2002).
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3 PART LABEL METHOD

Inspired by the concept of bag-of-words (Niebles and
Fei-Fei, 2007), we introduce the Part Labels method
to find the best part label assignment for each im-
age using the model parameter trained by HCRF. The
main idea behind this method is that if the model pa-
rameter is well trained, its learned part labels are de-
scriptive enough for the image, and thus can improve
the performance compared to the root model.

3.1 Model Formulation

When the model parameterθ is trained by the HCRF
model, ideally, the trainedθ should give the correct
assignments of part labels higher probabilities, and
the incorrect ones lower probabilities. Therefore, we
could safely use thisθ to find the assignment of part
labels with the highest probabilityh∗ = argmaxh θ⊺ ·
Φ(x,h,y) as the correct part labels. Our method is dif-
ferent from MMHCRF since it only adopts the maxi-
mization approach to pick the best assignment of part
labels once, after the HCRF training process. To ob-
tain the best assignment of part labelsh∗ for each
training sample, we can use the decoding process of
Belief Propagation (Yedidia et al., 2003).

The vector of part labels could be considered as
a refined set of local features for the images, like the
”words” for the bag-of-words approach. For example,
the part label for the patch on the head describes the
movement pattern of the head. It is an abstraction of
the patch features. We use these part labels as the lo-
cal features of this image and combine them with the
global feature vector by concatenation:x

′
= (h∗

,x0).
Next, we train the new feature vectorx

′
in a sim-

ilar way with the root model. For a training image
(x

′
,y), we define its potential function:

η
′
⊺ ·ω

(

y,x
′
)

= ∑
a∈Y

η
′
⊺

a ·1{y=a} ·x
′
, (11)

whereη′
is the model parameter,ω(·) is the feature

function,η′

a measures the compatibility between fea-
ture x

′
and class labely= a. η′

is the concatenation
of η′

a for all a∈ Y . The length of vectorη′
is |Y ||x

′
|.

Using the potential function defined above, we
could define the probability or likelihood of class la-
bely given the feature vectorx

′
:

P(y|x
′
;η

′
) =

exp
(

η′
⊺ ·ω

(

y,x
′
))

∑y′∈Y exp
(

η′⊺ ·ω
(

y′,x′
)) . (12)

The objective function for the set of all training
samples can be formulated as the summation of log-

likelihood of all samples:

L
(

η
′
)

=
T

∑
t=1

Lt

(

η
′
)

=
T

∑
t=1

logP
(

yt |x
′

t ;η
′
)

. (13)

The training process can be formulated as an opti-
mization problem to find the optimalη′∗ that gives the
maximum of the objective function. We use gradient
ascend to search for the optimalη′∗.

3.2 Testing

Given a test imagex, we cannot calculate its
part labels directly because its class label is un-
known. Instead, we calculate the part labels for
each class label to obtain a set of|Y | part labels
{h(1)

,h(2)
, . . . ,h(|Y |)}, where each part label vector

h(k) is obtained by finding patches using class la-
bel y = k. Then, we concatenate them with global
feature x0 to form a new set of feature vectors
{x

′(1)
,x

′(2)
, . . . ,x

′(|Y |)}. We can calculate the proba-
bilities of all possible assignments of the part labels
usingη′

and classify it by the class label that gives
the maximum probabilities.

3.3 Analysis

This method uses the learned part labels as a new
set of features and sends them to the training pro-
cess again. It uses the abstract information contained
in the part labels explicitly. The model parameter is
learned with a method similar to the root filter learn-
ing method. Figure 2 shows the flow chart of the train-
ing and testing process. The output of the training
process are two model parametersθ andη′

, which are
learned using HCRF and gradient ascent respectively.

This method is similar to the bag-of-words ap-
proach, since the part labels can be considered as
words. But the way they assign part labels and words
is different. This method uses the model trained by
HCRF to find the part labels, while bag-of-words first
computes a word vocabulary and assigns words to
patches by calculating the Euclidean distance. An-
other difference is that this method combines both
global and local features together. The global features
contain rich overall information for classification, and
local part labels provide a higher level of abstraction
from local patch features.

The Part Labels method can be considered as a
hybrid of the root model and the HCRF model. It
uses the part labels learned by HCRF and trains them
using the root model. Compared with the root model,
it uses more information than the global feature alone,
and compared with the HCRF model, it has an extra
maximization step.
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Figure 2: Flow chart of the Part Labels method.

4 EXPERIMENTATION

We test the performance of HCRF, MMHCRF, Root
Model, Multiclass SVM and the Part Labels method
on the popular publicly available Weizmann dataset
(Blank et al., 2005). It contains 83 video sequences
at 180×144 pixel resolution and 25 frames per sec-
ond. The sequences contain nine different people,
each performing nine different natural actions: bend,
jumping jack (or shortly ”jack”), jump forward on
two legs (or ”jump”), jump in place on two legs (or
”pjump”), run, gallop sideways (or ”side”), walk,
wave one hand (or ”wave1”), wave two hands (or
”wave2”). The dataset is captured under laboratory
settings with fixed background and camera location.

We choose the videos of five subjects as the train-
ing set, and the videos performed by the other four
subjects as the testing set. All frames in the training
set are randomly shuffled so that the training process
converges faster. During testing, we classify frame-
by-frame in a video (per-frame classification). We can
obtain the action label for the whole video by majority
voting of its frame labels (per-video classification).

We calculate the motion features of these video se-
quences in the way similar to what has been proposed
in (Efros et al., 2003). This feature is based on pixel-
wise optical flow to capture the motion information
invariant to appearances (see Figure 3(b)). The optical
flow vectorF is split into two vectors corresponding
to the horizontal and vertical components of the op-
tical flow: Fx andFy (see Figure 3(c)).Fx andFy are
further split into four non-negative channels:F+

x , F−
x ,

F+
y andF−

y , so thatFx = F+
x −F−

x andFy = F+
y −F−

y
(see Figure 3(d)). To capture only the essential posi-
tion information, each channel is blurred with a Gaus-
sian kernel and normalized to obtainFb+x , Fb−x , Fb+y
andFb−y (see Figure 3(e)). The foreground figure is
extracted using the mask provided in the dataset (see

Figure 3(f)). Next, move the salient region of the per-
son to the center of the view to obtain the final motion
features (see Figure 3(g)). This last step is different
from the original feature in (Efros et al., 2003), which
requires to track and stabilize the video first and com-
pute the optical flow next. With this adjustment we
avoid that the correspondence of pixels gets lost due
to tracking and stabilizing the person first.

The obtained motion feature vector is the global
feature of a frame. We find the local patches on
this frame from this global feature vector using the
root model. The concatenation of the four channels
[

Fb+x ,Fb−x ,Fb+y ,Fb−y
]

within the salient region is the
motion feature of this patch. To describe the loca-
tion of a patch, we divide the image into a grid of
w×h bins. The bin where the patch is located is set
to 1, all other bins are set to 0. This lengthw× h
vector is the location feature of this patch. The mo-
tion feature vector and location feature vector are con-
catenated as the feature vector of a patch. The tree
structure among the local patches are built by run-
ning a minimum spanning tree algorithm over these
patches, using the distances between patches as edge
weights. The resulting tree structure can be different
from frame to frame.

4.1 Root Model Evaluation

The root model only uses the global feature to train
the root model parameterη. Since the root model
does not contain hidden part labels, it does not need to
solve the inference problem for parameter estimation.
This makes this method very efficient. In addition, it

(a) Original image (b) Optical flow (c) Fx and Fy

(d) F+
x ,F−x ,F+

y , F−y (e) Fb+x ,Fb−x ,Fb+y , Fb−y

(f) Foreground mask (g) Motion features

Figure 3: Calculation of motion features.

VISAPP�2014�-�International�Conference�on�Computer�Vision�Theory�and�Applications

244



bend jack jump pjump run side walk wave1 wave2 

bend 0.9502 0.0000 0.0000 0.0000 0.0000 0.0083 0.0000 0.0415 0.0000 

jack 0.0199 0.8458 0.0025 0.0771 0.0000 0.0000 0.0000 0.0025 0.0522 

jump 0.1090 0.0128 0.7756 0.0000 0.0000 0.0897 0.0128 0.0000 0.0000 

pjump 0.0051 0.2335 0.0051 0.7513 0.0000 0.0051 0.0000 0.0000 0.0000 

run 0.0000 0.0058 0.0000 0.0000 0.8480 0.0526 0.0643 0.0000 0.0292 

side 0.0000 0.0056 0.0056 0.0000 0.0167 0.9667 0.0056 0.0000 0.0000 

walk 0.0000 0.0000 0.0318 0.0000 0.0058 0.1012 0.8613 0.0000 0.0000 

wave1 0.1545 0.0091 0.0000 0.0000 0.0000 0.0000 0.0000 0.8318 0.0045 

wave2 0.0080 0.0040 0.0000 0.0000 0.0161 0.0000 0.0000 0.0321 0.9398 

(a) Per-frame classification
bend jack jump pjump run side walk wave1 wave2 

bend 1 0 0 0 0 0 0 0 0 

jack 0 1 0 0 0 0 0 0 0 

jump 0 0 1 0 0 0 0 0 0 

pjump 0 0.25 0 0.75 0 0 0 0 0 

run 0 0 0 0 1 0 0 0 0 

side 0 0 0 0 0 1 0 0 0 

walk 0 0 0 0 0 0 1 0 0 

wave1 0.25 0 0 0 0 0 0 0.75 0 

wave2 0 0 0 0 0 0 0 0 1 

(b) Per-video classification

Figure 4: Confusion matrices for the root model.

gives a global optimal solution because its objective
function is convex.

Figure 4 gives the confusion matrices of the per-
frame and per-video classification on our feature.
For most actions the classification result is good.
One ”wave1” video is misclassified ”bend” and one
”pjump” video as ”jack”. The first error is caused
by the angle between arm and body is similar for
”wave1” to the angle between upper body and lower
body in ”bend”. The second error is due to moving the
person to the center of the view, the information about
whole body movement in vertical direction is ignored,
causing the body torso movements of ”pjump” and
”jack” to be similar to each other. The root filterη
for ”pjump” shows that the whole body moves up,
while η for ”jack” shows limbs waving around and
the torso moves up. After applying the feature onη
for ”jack”, the movement of limbs is eliminated and
only the torso movement remains, making it hard to
distinguish ”pjump” from ”jack”.

The root model does not explicitly include tempo-
ral information, since it only uses the time informa-
tion between two consecutive frames contained in the
optical flow feature. As a result, movement patterns
of all frames over time in an action are stacked. Move-
ment patterns of arms and legs are projected onto the
root filter. A new image is classified as the action
whose movement pattern overlaps most. This char-
acteristic of the root model causes confusion if two
actions have similar frames and causes the root model
to prefer actions with more variations to actions with
less variations.

Overall, the root model is efficient and powerful
with 0.8659 accuracy on per-frame classification and
0.9474 accuracy on per-video classification.

  pjump  wave1 wave2 

  pjump  wave1 wave2 

(a) Bend (b) Pjump

(c) Walk (d) Wave1

Figure 5: Learned part labels on the Weizmann dataset.

4.2 HCRF Evaluation

The HCRF model is evaluated with the root filterη
initialized using the root filter learned in the previous
root model. The parameter settings in these experi-
ments are kept the same with (Wang and Mori, 2011).
The size of possible part labelsH = 10. The num-
ber of salient patches on each frame is set to 10. The
size of each patch is 5×5. The other parameters not
specified in (Wang and Mori, 2011) are experimen-
tally tuned. The grid division of each frame is set
to 10× 4. The model parametersα, β andγ are ini-
tialized randomly using a Gaussian distribution with
mean 0 and standard deviation 0.01. All these param-
eters are tuned specifically for the Weizmann dataset.

Figure 5 is a visualization of the learned part la-
bels. The patches are labeled with their most likely
parts. From this visualization we can make observa-
tions about the meaning of the part labels. For exam-
ple, the part label No.1 in yellow seems to represent
the pattern ”moving down” which occurs in ”bend”.
The part label No.8 in purple seems to present ”mov-
ing up” which happens most in ”pjump”. The part la-
bel No.6 in blue seems to represent ”rotating” which
could happen in ”walk” and ”wave”.

Figure 6 shows the confusion matrix of per-frame
HCRF classification results. If we compare the clas-
sification results of the root model and the HCRF
model (see Table 1) and their confusion matrix, sur-
prisingly, their outputs are not significantly different

Table 1: Comparison of the root model with HCRF.

root model HCRF
Per-frame 0.8659 0.8737
Per-video 0.9474 0.9474
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bend jack jump pjump run side walk wave1 wave2 

bend 0.9378 0.0083 0.0124 0.0000 0.0000 0.0000 0.0000 0.0415 0.0000 

jack 0.0000 0.8930 0.0000 0.0796 0.0000 0.0000 0.0000 0.0025 0.0249 

jump 0.0705 0.0385 0.8141 0.0000 0.0000 0.0577 0.0128 0.0000 0.0064 

pjump 0.0051 0.2487 0.0000 0.7411 0.0000 0.0051 0.0000 0.0000 0.0000 

run 0.0000 0.0585 0.0000 0.0000 0.8187 0.0409 0.0643 0.0058 0.0117 

side 0.0000 0.0167 0.0167 0.0000 0.0111 0.9500 0.0056 0.0000 0.0000 

walk 0.0000 0.0087 0.0202 0.0000 0.0116 0.0636 0.8960 0.0000 0.0000 

wave1 0.1682 0.0000 0.0000 0.0000 0.0045 0.0000 0.0000 0.8227 0.0045 

wave2 0.0080 0.0000 0.0000 0.0000 0.0482 0.0000 0.0000 0.0241 0.9197 

Figure 6: Per frame confusion matrix of HCRF model.

from each other. This implies the root filter has domi-
nated the HCRF model and lowered the contributions
of the other parts. One possible reason of this result
is that the global feature and local patch features are
the same type of feature. The local patch feature is
simply part of the global feature. Therefore, the dis-
criminative power of the global feature and the local
patch feature is overlapping with each other. Another
reason is that the local patch features in 2D space are
not informative enough for action recognition, since
the temporal structure of an action is not taken into
account. Although this type of features work well on
recognition tasks in the 2D domain, like object recog-
nition, it is not sufficient for challenging tasks like
action recognition. In Table 2 the classification re-
sults of previous work are shown which only use local
patch features in 2D space. Their performance is not
satisfactory, regardless of their classification results.

Overall, the performance of the HCRF model is
comparable to the root model.

Table 2: Classification results of works using only 2D patch
features on Weizmann dataset.

Method
Classification
result (%)

(Scovanner et al., 2007) 30.4
(Niebles and Fei-Fei, 2007) 55.0

4.3 MMHCRF Evaluation

We have implemented the MMHCRF model for the
Weizmann dataset. Unfortunately, we are not able to
get a satisfactory result. To prove that the failure is
not caused by the dataset itself or the max-margin ap-
proach, we evaluated the Weizmann dataset on a sim-
pler model which only has the root potential and trains
its model parameter with a max-margin approach.

Figure 7 shows the confusion matrix of the per-
frame multi-class SVM classification results on the
Weizmann dataset. The overall accuracy is 0.8867
for per-frame classification and 0.9737 for per-video
classification. If we compare this model with the root
model, we can see that the Multi-class SVM slightly
outperforms the root model. This experiment proves

  pjump  wave1 wave2 bend jack jump pjump run side walk wave1 wave2 

bend 0.9544 0.0041 0.0000 0.0041 0.0000 0.0083 0.0000 0.0290 0.0000 

jack 0.0050 0.8383 0.0000 0.1294 0.0000 0.0000 0.0000 0.0025 0.0249 

jump 0.0769 0.0000 0.8654 0.0000 0.0064 0.0513 0.0000 0.0000 0.0000 

pjump 0.0000 0.1726 0.0000 0.8223 0.0000 0.0051 0.0000 0.0000 0.0000 

run 0.0000 0.0351 0.0058 0.0000 0.8304 0.0468 0.0702 0.0000 0.0117 

side 0.0000 0.0056 0.0056 0.0000 0.0000 0.9833 0.0056 0.0000 0.0000 

walk 0.0000 0.0058 0.0029 0.0000 0.0087 0.0751 0.9075 0.0000 0.0000 

wave1 0.1455 0.0045 0.0000 0.0091 0.0000 0.0000 0.0000 0.8364 0.0045 

wave2 0.0161 0.0201 0.0040 0.0080 0.0000 0.0000 0.0000 0.0040 0.9478 

Figure 7: Per frame confusion matrix of multi-class SVM.

the strength of the max-margin approach, because the
Multi-class SVM trains its model parameter with a
max-margin approach and it proves that it is not the
dataset why MMHCRF fails.

MMHCRF trains the model parameter in a similar
way as the multi-class SVM, but since MMHCRF in-
troduces the hidden part labels, the optimization prob-
lem becomes not convex and only a local optimum
can be obtained. Different ways of model parameter
initialization lead to different local optimal solutions.
Hence, the performance of MMHCRF is heavily de-
pendent on its model parameter initialization.

Additionally, MMHCRF is very sensitive to its
trade-off parameterC, which controls the trade off
between margin size and training error. The bigger
C, the less tolerable the system is to the training error.

Finally, the computational complexity of
MMHCRF is much higher compared to HCRF,
because it needs to solve both inference problem
and a quadratic program for every training sample,
whereas HCRF only needs to do the inference.

4.4 Part Labels Evaluation

Our novel Part Labels method utilizes the model pa-
rameter trained by HCRF to find the most likely part
labels for each frame, which are concatenated with the
global feature for training. Table 3 shows the compar-
ison of the root model, HCRF, multi-class SVM and
this Part Labels method. Figure 8 shows the confusion
matrices of the per-frame and per-video classification
results of the Part Labels method.

The per-frame classification results of these four
models are not really significantly different from each
other, most likely since they essentially use the same
information. The part labels are learned from the local

Table 3: Comparison of the root model, HCRF, multi-class
SVM and Part Labels.

root
model

HCRF
multi-
class
SVM

Part
Labels

Per-frame 0.8659 0.8737 0.8867 0.8705
Per-video 0.9474 0.9474 0.9737 0.9737
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bend jack jump pjump run side walk wave1 wave2 

bend 0.9046 0.0124 0.0124 0.0041 0.0000 0.0000 0.0000 0.0415 0.0249 

jack 0.0075 0.9030 0.0000 0.0746 0.0000 0.0025 0.0000 0.0025 0.0100 

jump 0.0449 0.0064 0.8269 0.0000 0.0256 0.0833 0.0128 0.0000 0.0000 

pjump 0.0000 0.2487 0.0000 0.7360 0.0000 0.0000 0.0000 0.0051 0.0102 

run 0.0000 0.0000 0.0000 0.0000 0.8363 0.0643 0.0994 0.0000 0.0000 

side 0.0000 0.0111 0.0167 0.0000 0.0056 0.9611 0.0056 0.0000 0.0000 

walk 0.0000 0.0000 0.0318 0.0000 0.0116 0.0925 0.8642 0.0000 0.0000 

wave1 0.1045 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8318 0.0636 

wave2 0.0080 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0723 0.9197 

(a) Per-frame classification
bend jack jump pjump run side walk wave1 wave2 

bend 1 0 0 0 0 0 0 0 0 

jack 0 1 0 0 0 0 0 0 0 

jump 0 0 1 0 0 0 0 0 0 

pjump 0 0.25 0 0.75 0 0 0 0 0 

run 0 0 0 0 1 0 0 0 0 

side 0 0 0 0 0 1 0 0 0 

walk 0 0 0 0 0 0 1 0 0 

wave1 0 0 0 0 0 0 0 1 0 

wave2 0 0 0 0 0 0 0 0 1 

(b) Per-video classification

Figure 8: Confusion matrices of the Part Labels method.

patches which are included in the global feature.
The performance of the Part Labels method is still

slightly better than the performance of the root model.
This is because the Part Labels method use the part
labels in addition to the global feature. In the con-
fusion matrix of per-video Part Labels classification,
”wave1” is not misclassified as ”bend”. Even though
the global features of these two actions are similar,
their part labels are different, as we can see from Fig-
ure 5. Using this information in the Part Labels model
helps to distinguish them from each other.

5 CONCLUDING REMARKS

This paper introduces a new method for action recog-
nition called the Part Labels method which finds the
best assignment of part labels for each image using
the model parameters trained by HCRF. By analysing
the root model, HCRF, Multi-class SVM, MMHCRF
and the newly proposed Part Labels method on a
benchmark dataset for human actions, we noticed that
the performance of simpler models (the root model
and the multi-class SVM) is comparable to the more
complex models (HCRF and Part Labels). This is be-
cause both HCRF and Part Labels only model the spa-
tial structure, and neglects the temporal structure over
frames. For challenging tasks such as action recogni-
tion, the spatial structure changes over time and be-
comes too complex to model.

A natural extension of our work is to include the
temporal information. This could be done by includ-
ing the temporal information in spatio-temporal fea-
tures or by directly modelling the temporal structure
among frames.
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