Classification Model using Contrast Patterns

Hiroyuki Morita and Mao Nishiguchi

School of Economics, Osaka Prefecture University, 1-1 Gakumachi Nakaku, Sakai, Osaka, Japan

Keywords: Contrast Pattern, Emerging Pattern, Classification Model.

Abstract: A frequent pattern that occurs in a database can be an interesting explanatory variable. For instance, in market basket analysis, a frequent pattern is used as an association rule for historical purchasing data. Moreover, specific frequent patterns as emerging patterns and contrast patterns are a promising way to estimate classes in a classification problem. A classification model using the emerging patterns, Classification by Aggregating Emerging Patterns (CAEP) has been proposed (Dong et al., 1999) and several applications have been reported. It is a simple and effective method, but for some practical data, it can be computationally costs to enumerate large emerging patterns or may cause unpredicted cases. We think that there are two major reasons for this. One is emerging patterns, which are powerful when constructing a predictive model; however, they are not able to cover frequent transactions. Because of this, some of the transactions are not estimated, and the accuracy of the estimation becomes poor. Another reason is the normalization method. In CAEP, scores for each class are normalized by dividing by the median. It is a simple method, but the score distribution is sometimes biased. Instead, we propose the use of the z-score for normalization. In this paper, we propose a new, CAEP-based classification model, Classification by Aggregating Contrast Patterns (CACP). The main idea is to use contrast patterns instead of emerging patterns and to improve the normalizing method. Our computational experiments show that our method, CACP, performs better than the existing CAEP method on real data.

1 INTRODUCTION

Recently, as so-called big data has been emerged, data with categorical attributes, such as historical purchasing data, has also increased. Historical purchasing data has long existed, but it was often transformed into aggregating data, to save memory. Now that we can accumulate data for each individual transaction, we can analyze large amounts of detailed transaction data. For such data, a pattern mining approach is a promising one for extracting effective knowledge. For example, in market basket analysis, frequent patterns are used as association rules that decide the location of items. In more complex cases, the patterns are used as explanatory variables to construct classification model, such as Classification by Aggregating Emerging Patterns (CAEP). CAEP enumerates characteristic patterns, calculates a score for a transaction which it would like to classify, and estimates the class given these scores. CAEP is a simple and useful method, so some applications have been reported. However, for real business data, some difficulties have emerged.

In this paper, we solve these difficulties by proposing a new classification model, Classification by Aggregating Contrast Patterns (CACP). Computational experiments, we show that our method has better performance than the existing one, especially when the CAEP model is constructed from a small number of patterns.

This paper is organized as follows. Section 2 introduces related works of our research and points out some difficulties CAEP has with real business data. The new classification model is proposed in Section 3. Computational experiments on real data are implemented in Section 4 and observations are discussed.

2 RELATED WORK AND SOME FUNDAMENTALS

The work most closely related to our method is CAEP, a method to predict classes using emerging patterns. Consider a database D of transactions such as the one illustrated in Table 1 that is constructed of five transactions. Each transaction has some items such as ones in a market basket. For example, the transaction whose transaction ID (tid) is 3 has three kinds of items: a, f and g. Here, a subset of items is called
a pattern. A pattern that is constructed by item a and item c is expressed by \{a, c\}. Note that \{a, c\} and \{c, a\} are the same patterns. Given a pattern $x = \{a, c\}$, x is matched with $tid = 1$ and $tid = 4$. Here, the number of occurrences of pattern x is expressed by $cnt(x, D)$, and the support for x is expressed as below:

$$sup(x, D) = \frac{cnt(x, D)}{|D|}, \quad 0 \leq sup(x, D) \leq 1,$$ \hspace{1cm} (1)

where $|D|$ denotes number of elements in D.

Given two different classes pos and neg, the databases D_{pos} and D_{neg}. D_{pos} and D_{neg} are constructed only of transactions that belong to the pos or neg classes, respectively. This leads to two major types of characteristic patterns, the emerging pattern and the contrast pattern. In the emerging pattern, the growth rate is defined by Equation 2, and ρ is defined by Equation 3. When ρ is larger than a predefined minimum ρ value, and $sup(x, D_{pos})$ is larger than predefined minimum support, pattern x is called an emerging pattern for class pos (Dong et al., 1999).

$$gr(x, D_{pos}) = \begin{cases}
\frac{sup(x, D_{pos})}{sup(x, D_{neg})}, & sup(x, D_{neg}) > 0 \\
\infty, & sup(x, D_{neg}) = 0
\end{cases}$$ \hspace{1cm} (2)

$$\rho(x, D_{pos}) = \frac{gr(x, D_{pos})}{gr(x, D_{pos}) + 1}$$ \hspace{1cm} (3)

The other characteristic pattern for a specific class is the contrast pattern (Bay and Pazzani, 1999). It focuses on the difference between support values as expressed by Equation 4.

$$df(x, D_{pos}) = sup(x, D_{pos}) - sup(x, D_{neg}), \quad df(x, D_{pos}) > 0.$$ \hspace{1cm} (4)

When $df(x, D_{pos})$ is larger than a predefined minimum support difference value, pattern x is called a contrast pattern for class pos.

Although the emerging pattern and the contrast pattern are both characteristic patterns, the properties of both are very different. When we consider more powerful emerging patterns, as their growth rate is larger, but there are many cases when the support value of the target class is smaller. On the other hand, when we take more powerful contrast patterns, the support value of target class is larger, but there are many cases when the support value of counter class is larger, as well. Figure 1 illustrates the possible areas for each pattern given a range of support values for the pos and neg classes. In this figure, “area A” and “area B” denote possible areas for emerging patterns and contrast patterns, respectively. Both patterns may exist in “area C”, which is a promising area for both patterns, because a pattern in this area has a large support value in the target class and small support value in the counter class. If there are many patterns in this area, both emerging patterns and contrast patterns become promising explanatory variables to construct classification model. However, this is a rare case in our experience, so real problems are difficult to classify in this way. For difficult cases, there are few patterns in the “area C”, but many patterns in “area A” and “area B”. Then, which is better to consider patterns from “area A” or “area B”? In “area A” where emerging patterns tend to emerge, the growth rate is larger and the support value for the target class is smaller. So many patterns are needed to cover all the transactions needed to predict classes. On the other hand, in the “area B” where contrast patterns tend to emerge, it is easy to cover all transactions, because the support value of such patterns is larger. The support value for the target class is also large.

In CAEP, after enumerating emerging patterns, a score for each emerging pattern is calculated by $\rho(x, D_{pos}) \times sup(x, D_{pos})$. Then using the pattern’s score, a score for each transaction is calculated as below.
We propose a new method called Classification by Aggregating Contrast Patterns (CACP), which uses contrast patterns instead of emerging patterns. We use LCM (Uno et al., 2003) to enumerate contrast patterns, because it is efficient and orders the enumerated patterns by \(df(x, D_{pos}) \) or \(df(x, D_{neg}) \) are larger from the top. After enumerating the contrast patterns, redundant patterns are pruned. Given two contrast patterns \(x \) and \(y \) in the same class, if \(sup(y, D_{pos}) \leq sup(x, D_{pos}) \) and \(df(y, D_{pos}) \leq df(x, D_{pos}) \), then contrast pattern \(y \) is removed and \(x \) is kept. In the example given in Figure 2, \(y \) is removed by \(x \), but \(z \) is not removed by \(x \), because \(sup(x, D_{pos}) \leq sup(z, D_{pos}) \). The pattern \(x \) is not removed by \(z \), because \(df(z, D_{pos}) \leq df(x, D_{pos}) \). In this case, contrast patterns \(x \) and \(z \) are kept, and \(y \) is removed.

We also change the score of a contrast pattern is changed from \(\rho(x, D_{pos}) \times sup(x, D_{pos}) \) to

\[
\text{cpScore}(x, D_{pos}, D_{neg}, \theta) = \sqrt{\theta \cdot (sup(x, D_{pos}) - 1)^2 + (1 - \theta) \cdot (sup(x, D_{neg}) - 1)^2},
\]

where \(\theta \) denotes a weight from \(0 \leq \theta < 1 \) to adjust the importance of support value for each class. The score for transaction \(d \) for each class is then defined as Equation 7.

\[
score(d, D_{pos}, D_{neg}, \theta, CP_{pos}) = \sum_{x \subseteq d, x \in CP_{pos}} \text{cpScore}(x, D_{pos}, D_{neg}, \theta),
\]

In the next section, we propose a classification method to solve these problems.
where \(CP_{\text{pos}} \) denotes the set of contrast patterns for the \(pos \) class. Similarly, \(\text{score}(d, D_{\text{pos}}, D_{\text{neg}}, \theta, CP_{\text{neg}}) \) is calculated so that each transaction has a score for each class. The scores are normalized for each class, and they are transformed into \(z \)-scores. Finally, for each transaction, the \(z \)-scores are compared and the class whose \(z \)-scores is largest becomes the predictive class.

The overall flow of our method is shown in Figure 3. Training data and test data both contain transaction data and class definition data. A predictive model is constructed using the training data only, and from each dataset and model a predictive class is estimated. Finally, from estimating results and practical class definition data, some criteria are calculated for evaluation.

\[
\text{accuracy} = \frac{tp + tn}{tp + tn + fp + fn + up + un}, \quad (8)
\]

\[
\text{precision} = \frac{tp}{tp + fp}, \quad (9)
\]

\[
\text{recall} = \frac{tp}{tp + fn + up}, \quad (10)
\]

\[
F_1 = \frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}. \quad (11)
\]

4 COMPUTATIONAL EXPERIMENTS

Here, we apply our method to real business data, consisting of registered web access log data and historical purchasing data from a coupon website. Using this data, we make two data sets, data1 and data2. Each data set has two types of classes, \(pos \) and \(neg \), and the number of classes for each data set is shown in Table 2. In both data sets, the data is indexed by coupon ID and the content of the input data includes text data (in Japanese) and various marketing control variables, such as discount rate.

The parameters of CACP consist of the minimum support value, \(\theta \), and the top \(K \) contrast patterns \(topK \). From our preliminary experiments, \(\theta \) does not have a large impact on the data, so in the following experiments, we use \(\theta = 0.7 \). We set the minimum support value to 0.5. The parameter \(topK \) is important for the CAEP method, so we use a range of values: 50, 100, 200, 300, 400, and 500. The parameters of CAEP, minimum support value and \(topK \) are set the same as for CACP, while \(\rho \) is set to 0.55. Pattern length is varied from 1 to 3 for both methods.

Table 3: Best performance of each method for data1.

<table>
<thead>
<tr>
<th></th>
<th>CACP</th>
<th>CAEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>accuracy</td>
<td>0.658</td>
<td>0.583</td>
</tr>
<tr>
<td>precision for pos class</td>
<td>0.638</td>
<td>0.600</td>
</tr>
<tr>
<td>precision for neg class</td>
<td>0.700</td>
<td>0.597</td>
</tr>
<tr>
<td>recall for pos class</td>
<td>0.733</td>
<td>0.550</td>
</tr>
<tr>
<td>recall for neg class</td>
<td>0.583</td>
<td>0.617</td>
</tr>
<tr>
<td>(F_1) score for pos class</td>
<td>0.682</td>
<td>0.374</td>
</tr>
<tr>
<td>(F_1) score for neg class</td>
<td>0.636</td>
<td>0.607</td>
</tr>
</tbody>
</table>
Table 4: Best performance of each method for data2.

<table>
<thead>
<tr>
<th></th>
<th>CACP</th>
<th>CAEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>accuracy</td>
<td>0.758</td>
<td>0.750</td>
</tr>
<tr>
<td>precision for pos class</td>
<td>0.767</td>
<td>0.792</td>
</tr>
<tr>
<td>precision for neg class</td>
<td>0.763</td>
<td>0.738</td>
</tr>
<tr>
<td>recall for pos class</td>
<td>0.767</td>
<td>0.700</td>
</tr>
<tr>
<td>recall for neg class</td>
<td>0.750</td>
<td>0.800</td>
</tr>
<tr>
<td>F_1 score for pos class</td>
<td>0.767</td>
<td>0.743</td>
</tr>
<tr>
<td>F_1 score for neg class</td>
<td>0.756</td>
<td>0.768</td>
</tr>
</tbody>
</table>

Tables 3 and 4 give the best results regarding the accuracy for each data set, which occurs when $topK = 400$ for both methods and both data sets. For data1, CACP outperforms CAEP with regard to accuracy and F_1 score. For data2, CACP has a slightly better accuracy and F_1 score for the pos class, however, and CAEP has a better F_1 score for the neg class.

Table 5 gives the best results regarding the accuracy for each data set, which occurs when $topK = 400$ for both methods and both data sets. For data1, CACP outperforms CAEP with regard to accuracy and F_1 score. For data2, CACP has a slightly better accuracy and F_1 score for the pos class, however, and CAEP has a better F_1 score for the neg class.

Figure 5 and 6 illustrate training and test results regarding accuracy and unpredicted ratio for CAEP and CACP. Although at $topK = 400$, the results are similar, at $topK = 50$, CACP significantly outperforms CAEP. The reason for this is the unpredicted ratio. It means that CAEP cannot make a classification model to cover most transactions at $topK = 50$. However, CACP is able to do so.

Figures 7 and 8 illustrate the relationship between $topK$ and accuracy. In these figures, accuracy denotes test results for each method. For data1, both method cannot build an efficient model at small $topK$. However, CACP can make a good model at $topK = 300$, because the unpredicted ratio of CACP is small. For data2, at $topK = 300$, the performance is similar for both methods, but at $topK = 50$ and 100, the gap between the performances is large.

Figures 9 and 10 illustrate scatter plots of emerging patterns and contrast patterns for both classes at $topK = 50$ and 400, respectively. In the figure, “cp” and “ep” denote contrast patterns and emerging patterns. In Figure 9, we can see that CAEP build its model using emerging patterns located only at the lower left corner, because top the 50 emerging patterns are located only in that area. On the other hand, CACP may use contrast patterns located within a broader area. In particular, contrast patterns located at the upper right corner cover more frequently occurring transactions, because the patterns located here have a larger support value. In Figure 10, CAEP can use emerging patterns located within broader area, however compared to CACP, it is still limited.

The performance gap between CAEP and CACP is caused by such a pattern usages. From our test results, it can be seen that CACP performs well on the
5 CONCLUSIONS

In this paper, we proposed a new classification model called CACP, which uses contrast patterns to address existing problems. Computational experiments using real business data showed that our method is better than the existing method. In particular, our method is advantageous in that it constructs a sufficient model using only a small number of contrast patterns. For real, larger-size, and difficult problems, we expect that our method will have further advantage.

REFERENCES

