Easily Reprogrammable embedded Logic Control

Václav Dvořák and Petr Mikušek
Faculty of Information Technology, Brno University of Technology, Bozutechova 2, Brno, Czech Republic

Keywords: Logic Control, Multiple-output Logic Functions, Look-Up Table (LUT) Cascades.

Abstract: The paper deals with software implementation of logic-intensive control algorithms in a form of look-up table cascades. Provided that logic control is described by multiple-output Boolean function, control output evaluation then reduces to several table look-ups. Depending on a required speed, one or more input variables are used for the look-ups in a single step, and the size of tables varies accordingly. Trade-offs between performance and memory footprint are thus possible. Changes in logic control can be implemented rapidly by reloading data into look-up tables. The presented method is thus useful for logic control embedded in microcontroller software.

1 INTRODUCTION

Micro-controller-based systems such as automobile engine control systems, implantable medical devices, remote controls, appliances, office machines etc. are ubiquitous. Reducing the size and cost of these systems is essential. One area susceptible to such reduction is customized logic that frequently uses separate devices (PLAs or FPGAs). As we will show later, logic devices can be replaced by fast enough evaluation of Boolean functions in software, often without additional space requirements.

Traditional serial evaluation of Boolean functions one at a time, e.g in programmable logic controllers, has been done with redundant reading of input variables. Representing logic functions by means of binary decision diagrams (BDD) helped to remove that redundancy and implement single-output logic functions using a RAM and a sequencer (Sasao et al., 2001). However, evaluation of multiple outputs was still done serially by means of auxiliary variables. The similar partitioning of outputs was used even in special purpose processors (Decision Diagram Machines, DDMs) that evaluate decision diagrams via branching programs (Nakahara et al., 2010a). Parallel evaluation of Boolean functions specified by Multi-terminal BDDs (MTBDDs) was done on parallel branching machine (Nakahara et al., 2010b), but with quaternary branching only. This evaluation can be much too slow, unless we use a number of branching machines.

In this paper we will try to avoid branching programs and MTBDDs completely. Our approach is based on the iterative decomposition of the given function, one variable at a time, producing a cascade of look-up tables (LUTs). The next step is optimal clustering of these LUTs into larger ones. The goal is the minimum total size of look-up tables or the number of LUTs in a cascade (corresponding to evaluation time from reading the input to appearance of the output).

The main contribution of the paper is the upgraded algorithm of iterative decomposition (Mikušek and Dvořák, 2008) accepting a set of incomplete Boolean functions in cube notation and its implementation. The paper is structured as follows. In the following Section 2 we explain representation of logic functions in cube notation and then the concept of simple decomposition. In Section 3 we deal with iterative decomposition and related software tools. The decomposition method is applied to two sorts of examples in Section 4. The results are commented on in Conclusions.

2 LOGIC FUNCTIONS

To begin our discussion, we define the following terminology. A system of m Boolean functions of n Boolean variables,

$$f_i^{(i)}: (Z_2)^r \rightarrow Z_2, \quad i = 1, 2, ..., m$$

will be simply referred to as a multiple-output Boolean function F_m. We denote $Z_2 = \{0, 1\}$.
Function F_ϕ is incomplete if it is defined only on set $X \subset (Z_2)^n$; $(Z_2)^n \setminus X = DC$ is the don’t care set. The elements in DC are input vectors that for some reason cannot occur. Our concern will be an incompletely specified, multiple-output function of n Boolean variables

$$F_\phi: X \rightarrow Z, \quad X \subseteq (Z_2)^n, Z \subseteq \{0, 1, ~\}^m.$$ \hspace{1cm} (2)

Function F_ϕ is not defined on a don’t care set $DC = (Z_2)^n \setminus X$. Binary output cubes $b \in \{0, 1\}^m$ will be alternatively coded by integer values from $Z_R = \{0, 1, 2, \ldots, R - 1\}$, $R \leq 2^n$.

Espresso input format fr is assumed for function $f^{(10)}$; it means that each input vector belongs to the ON-set, to the OFF-set, or to the DC-set depending on the ternary value 1, 0, or "~" of the output. If the function is given in Espresso format f (PLA format), only the ON-set is specified and an extra step is required to generate the OFF-set.

Instead of full input vectors from $(Z_2)^n$ we prefer to use a compact cube notation [Brzozowski, 1997]. $(n+m)$-tuples are called function cubes, in which an element of $\{0, \sim, 1\}^n$ is called an input cube and an element of $\{0, \sim, 1\}^m$ is called an output cube. The value of symbol "~" is 0 or 1, so that one cube can cover several input vectors.

Def. 1. Compatibility relation. Two cubes c, c' are compatible, $c \equiv c'$, if they are compatible component-wise; except pairs [0, 1] and [1, 0], all other component pairs are compatible.

In other words, two cubes c and c' are compatible if and only if they have a non-empty common subcube. The compatibility relation \equiv is reflexive and symmetric.

3 DECOMPOSITION METHOD

Def. 2. Functional decomposition of function

$$F_\phi(x_1, x_2, \ldots, x_n) = F_\phi(X)$$

is a serial disjunctive separation of F into two functions G and H such that

$$F_\phi(X) = H_{k+n}(U, G_{k}(V)),$$ \hspace{1cm} (3)

where U, V are disjunctive subsets of set X,

$$U \cap V = \emptyset, U \cup V = X,$$

see Fig.1. Of course, we are interested only in non-trivial decompositions when functions G and H have strictly fewer inputs than F, i.e.

$$h < n, \quad k + n - h < n \rightarrow k < h < n.$$ \hspace{1cm} (4)

In a functional decomposition, the minimization of the value of k is important.

![Figure 1: Disjunctive decomposition of multiple output Boolean function F of n variables.](image)

Decomposition can be applied iteratively to a sequence of residual functions with a decreasing number of variables. The method to decompose multiple-output logic functions by means of the BDD for characteristic function [Nakahara, 2004c] required large data structures. In this section we will present a more efficient method of iterative disjunctive decomposition based on notion of blankets (Brzozowski et al., 1997) simplified for the iterative removal of a single input variable ([U^1]).

Instead of the exact formulation of a decomposition algorithm, we prefer to illustrate it on a small example, an incomplete function F_ϕ in Table 1. Let us note that a set of $(n+m)$-tuples does not always define a Boolean function, because it is possible to assign conflicting output values. Acceptable functions must satisfy the consistency condition, which guarantees that there are no contradictions; shortly, if two input cubes are compatible, their corresponding output cubes must also be compatible.

<table>
<thead>
<tr>
<th>F_ϕ</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

For now we will select input variables for iterative decomposition simply in a natural sequence x_1, x_2, x_3, x_4. Optimization of variable ordering will be discussed later on. A single variable will be removed from the function in one decomposition step. Starting with variable x_1 in our example, we first create two-block blankets $\beta_2, \beta_3, \beta_4$ for each input variable x_2, x_3, x_4:

$$\beta_2 = \{1, 2, 3, 4, 7; 4, 5, 6, 7\}$$

$$\beta_3 = \{1, 2, 3, 6, 7; 1, 2, 4, 5, 6\}$$

$$\beta_4 = \{1, 2, 3, 5; 3, 4, 6, 7\}.$$ \hspace{1cm} (5)
Blankets consist of subsets (blocks) of cubes denoted by line numbers from Table 1. The first block in each blanket includes cubes which contain “0” or “-” in place of variable x_i, cubes in the second block have value “1” or “-” in place of variable x_i. The input blanket for the subset V is then obtained as an intersection (*) of two-block blankets (5):

$$\beta_V = \beta_2 * \beta_3 * \beta_4 = \{1, 2, 3; 3, 7; 1, 2; 4, 6, 7; 5; 6, 4, 6\}. \quad (6)$$

The main task in a serial decomposition of a function F with given sets U and V is to find a blanket β_V by merging blocks of β_V as much as possible. A condition for two blocks be mergeable is $\beta_U \cap \beta_V = \emptyset$. Let us note that all relevant min-terms of G_1 must be covered in the cube table as well. Function G_1 in our example is specified by four cubes (7) in Table 2.

Table 2: Cube specification of function G_1.

<table>
<thead>
<tr>
<th>block β_U</th>
<th>block β_V</th>
<th>x_1 x_2 x_3 x_4</th>
<th>G_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 6 7 8</td>
<td>1 2 3 4 6 7 8</td>
<td>0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>2 3 7 4 6 7 8</td>
<td>1 2 3 4 6 7 8</td>
<td>1 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>3 1 2 3 4 6 7</td>
<td>1 2 3 4 6 7 8</td>
<td>1 0 1 0</td>
<td>0</td>
</tr>
<tr>
<td>4 5 6 7 8 9 10</td>
<td>1 2 3 4 6 7 8</td>
<td>1 1 0 1</td>
<td>1</td>
</tr>
<tr>
<td>5 6 7 8 9 10 11</td>
<td>1 2 3 4 6 7 8</td>
<td>1 1 1 1</td>
<td>0</td>
</tr>
<tr>
<td>6 7 8 9 10 11 12</td>
<td>1 2 3 4 6 7 8</td>
<td>1 1 1 1</td>
<td>0</td>
</tr>
</tbody>
</table>

To construct function $H1$, we need two more blankets:

$$\beta_{U_1} = \{1, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6\}, \quad \beta_{U_2} = \{1, 3, 7; 5, 6, 7; 4, 6; 2, 3; 5; 6; 4, 6\}. \quad (7)$$

The truth table of function $H1$ is given in Table 3.

Table 3: The truth table of function $H1$.

<table>
<thead>
<tr>
<th>β_{U_1}</th>
<th>x_1</th>
<th>G_1</th>
<th>$H1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1, 3, 7$</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$6, 7$</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$4, 6$</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$2, 3$</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>~1</td>
</tr>
<tr>
<td>$4, 6$</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

LUT cascade composed of p-input/q-output LUTs can be implemented by storing all LUTs in one memory. Cascaded LUTs are accessed one by one under a supervision of a controller. Outputs from the previous LUT and external input(s) address together the next LUT, until the last LUT is reached. LUTs are stored in a RAM and can be changed at will. Even if the memory is accessed once for each LUT in the cascade, operation is approximately ten times faster than branching programs (Sasao et al., 2001).

The most important characteristics of logic functions targeted for cascade implementation is their profile. It is cardinality of blanket β_G along the LUT cascade. The random functions have the profile (the upper bound) in the shape of a mountain peak with slope that rises as powers of 2 at the beginning of the cascade and descending much faster as 2 to the power of R at its end. E.g. the function implemented as a case study (n = 13 inputs, m = 8 outputs, see Appendix) has had a profile

$$2, 4, 8, 14, 25, 41, 62, 81, 88, 103, 90, 77, 256 \quad (9)$$

The log2 of these values give the number of binary values transferred between neighbor LUTs. To minimize the total size of all LUTs in a cascade, it is thus necessary

1. to minimize the values in the profile
2. to combine consecutive LUTs in an optimal way.

As regards the first option, the program tool
HIDET1 (Heuristic Iterative Decomposition Tool) was developed to aid LUT cascade synthesis (Mikušek and Dvořák, 2008). The HIDET1 made use of iterative decomposition of multiple output Boolean functions specified by cubes with the restriction that input cubes must be disjoint and output cubes use only binary elements 0 and 1. This restriction has been removed in HIDET3 used at present: don’t cares are allowed in output cubes and input cubes may overlap (share one or more input vectors). It also uses a variable-ordering heuristic to order variables optimally, because the ordering of variables may sometimes influence the profile dramatically (Drechsler and Becker, 1998).

Another optimization tool has been developed for clustering of cascade LUTs, which explores all possible groupings of \(n \) inputs, \(n \leq 32 \). The input to this tool is a profile of the given function obtained by HIDET. There are three optional optimization criteria, searching a minimum of:

- the memory area, regardless the number of LUT inputs;
- the product of memory area and cascade length;
- the memory area when the number of LUT inputs is the given value \(N \) or less.

4 EXPERIMENTAL RESULTS

Two types of functions have been explored: functions specified by weight and the real-world function implemented in MCS 51 microcontroller as a PLA.

Def. 3 The weight of function \(F_w \), denoted by \(u \), is the cardinality of set \(X \) in Def. 2, \(u = |X| \).

Theorem 1 (Dvořák and Mikušek, 2011) Let the function specified by weight \(F_w: (Z_2)^n \rightarrow Z_R \) attains non-zero values \(1, 2, \ldots, R \) in \(|X| = u \) binary vectors, \(X \subseteq (Z_2)^n, R \leq u \ll 2^n \). Then the profile of the function is upper-bounded by

\[
(2, 4, 8, \ldots, 2^h, \ldots, 2^2, 2, 2, 2, 2, \ldots, 2, R)
\]

where \(h = \lfloor \log_2 (u+1) \rfloor \) and \(i = \lfloor \log_2 |\beta_G| \rfloor \) and \(\beta_G \) is the given function.

It is therefore possible to estimate the size of LUTs for the given clustering of input variables.

Experiments have been done on benchmark index-generating (i.e. \(u = R \)) functions with \(n = 10, 16 \) and 20 variables. Maximal optimum profiles of these functions have been found by HIDET tool and are given in Table 4. The optimum LUT cascades for random index-generating functions are listed in Table 5. The table gives memory requirements for the cascades with only a single cell, two cells, generic cascades with \(n \) cells, and then cascades optimized for memory area or for memory area - cascade length product. The fraction of memory in % obtained when several #LUTs are used in place of a single LUT is also given. The interesting result is that the memory consumption has a local minimum for #LUTs < \(n \). The generic cascades with the finest granularity (\(\#LUTs = n \)) are not optimal in this respect.

The biggest drop in memory area comes from dividing a single cell into two. Further benchmark-specific subdivision of cascades to 4-12 cells produces some additional decrease in memory area, but after reaching a minimum, the memory area goes up again. This typical trend is illustrated on the example of lrs6 benchmark with 21 input variables in Fig. 4. Optimization for area-time product leads to slightly shorter cascades (2 – 6 cells) and slightly larger memory area.

The second example has to do with LUT cascade replacing 13-input, 8-output PLA1 in MCS-51 chip. Here \(u = 175 \), but only logic equations are known, see the Appendix. Equations have been converted to PLA matrix in f format via eqntott tool and further converted to fr format by means of Espresso synthesizer. The resultant matrix of 147 cubes has been processed by HIDET3 and the profile (9) obtained. By inspection, this profile suggests 2 LUTs, first one indexed by 10 variables, the second one by 7 outputs from the first LUT (given by \(|\beta_G| = 103 \)) plus 3 remaining variables, Fig.3. By contrast, had we relied on Theorem 1, then for any function of (one more) \(n = 14 \) variables with \(u \leq 256 \) we would need 3 LUTs with 10, 2 and 2 input variables, all generating 8-bit outputs, Fig.3.
5 CONCLUSIONS

The decomposition technique based on blankets has been found quite suitable for engineering applications, such as designing application-specific systems. It has been successfully applied to random functions specified by weight, for which the size of the LUT cascade is computable beforehand, and to PLA1 used in microcontroller MCS 51. Output vectors are computable by few accesses to LUTs.

The HIDET3 tool used for decomposition has no restrictions on input functions; scalability is at present limited to functions with around 20 input variables, but the work on extending this range is in progress. One way to reduce complexity is
partitioning of binary outputs and parallel execution of resulting LUT cascades. The future research should address this issue as well as optimal packing of LUTs into memory when the number of LUT inputs varies.

ACKNOWLEDGEMENTS

This research has been carried out under the financial support of the research grants "Natural Computing on Unconventional Platforms", GAČR GP103/10/1517, and "Security-Oriented Research in Information Technology", the research plan MSM0021630528.

REFERENCES

APPENDIX

Description of PLA1 in MCS-51: