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Abstract: Particle swarm optimization (PSO) algorithms are attracting attentions in recent years, due to their ability of 
keeping good balance between convergence and diversity maintenance. Several attempts have been made to 
improve the performance of the original PSO algorithm. Inspired by trajectory analysis of the PSO and 
quantum mechanics, a quantum-behaved particle swarm optimization (QPSO) algorithm was recently 
proposed. QPSO has shown some important advantages by providing high speed of convergence in specific 
problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to 
improve solution accuracy by fine tuning. In this paper, a modified and efficient version of the QPSO 
combined with chaotic sequences (CQPSO) is proposed and evaluated. We conduct simulations to estimate 
the unknown variables of an inverse heat transfer problem to verify the performance of the proposed 
CQPSO method and show that the method can be competitive when compared with the classical QPSO. 

1 INTRODUCTION 

The particle swarm optimization (PSO) has been 
introduced in the middle of 90’s (Kennedy and 
Eberhart, 1995); (Eberhart and Kennedy, 1995) and 
it is based on a ”social interaction” metaphor in 
which the parameter space is searched by controlling 
the trajectories of a set of particles according to a 
swarm- or flock-like set of rules.  

PSO is a fertile research paradigm and its simple 
structure has encouraged the exploration of 
algorithmic variations. Furthermore, PSO 
approaches are well known for their ability to deal 
with nonlinear and complex optimization problems. 
Details of different PSO approaches are presented in 
Parsopoulos and Vrahatis (2002), Eslami et al., 
(2012), and Khare and Rangnekar (2013).  

One of the recent developments in PSO is the 
application of quantum laws of mechanics to 
observe the behavior of PSO. Inspired by quantum 
mechanics, Sun et al. (2004a, 2004b) proposed 
quantum-behaved particle swarm optimization 
(QPSO) which the state of a particle is depicted by 

wavefunction, instead of position and velocity. A 
wavefunction is a probability amplitude in quantum 
mechanics describing the quantum state of a particle 
and how it behaves.  

The success of the search in QPSO is dependent 
on a good balance between two processes: 
exploration and exploitation. Exploration allows 
searching the entire search space by ensuring the 
redirection of the search toward new regions, while 
exploitation favors a quick convergence toward the 
optimum. Several studies (Coelho and Mariani, 
2008); (Sun and Lu, 2010); (Sun et al., 2012) 
propose modifications in the QPSO algorithm to 
improve its performance in continuous optimization. 
A review of QPSO is presented in Fang et al. (2010). 

On the other hand, due to its certainty, ergodicity 
and stochastic properties, chaotic sequences have 
been used to replace random numbers and to 
enhance the performance of metaheuristic 
optimization algorithms (Coelho and Pessôa, 2011); 
(Coelho and Mariani, 2012); (Peitgen et al., 2004). 
In this paper, a novel version of QPSO namely 
CQPSO is proposed in which QPSO is combined 
with chaotic sequences generated by a Hénon’s map 
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(Peitgen et al., 2004) to modify the local attractor 
strategy. The idea behind the inclusion of chaotic 
sequences is to facilitate the CQPSO to enhance the 
global search performance in preventing premature 
convergence to local minima when compared with 
the classical PSO and QPSO algorithms.  

The goal of this study is to explore and analyze 
the performance of CQPSO when compared with 
classical PSO and QPSO estimating accurately the 
time-varying temperature field. The enthalpy 
formulation of the heat conduction process utilizes 
two dependent variables, enthalpy and temperature.  

This paper is structured as follows: Basics of 
PSO approaches are presented in Section 2. Details 
of the inverse heat transfer problem and its 
formulation are explained in Section 3. The 
numerical results and discussions are presented in 
Section 4. Finally, the conclusions are given in 
Section 5.  

2 PSO APPROACHES 

In the next subsections first, a brief overview of the 
classical PSO and QPSO are provided; and finally, 
the proposed CQPSO is explained. 

2.1 Classical PSO Algorithm 

The PSO algorithm consists of changing the velocity 
that accelerates each particle (potential solutions) 
toward its pbest (personal best) and gbest (global 
best) locations. The procedure for implementing the 
global version of classical PSO is given by the 
following steps: 
Step 1: Initialization of Swarm Positions and 
Velocities: Initialize a population (array) of particles 
with random positions and velocities in the n 
dimensional problem space using uniform 
probability distribution function. 
Step 2: Evaluation of Particle’s Fitness: Evaluate 
each particle’s fitness value. 
Step 3: Comparison to pbest (personal best): 
Compare each particle’s fitness with the particle’s 
pbest. If the current value is better than pbest, then 
set the pbest value equal to the current value and the 
pbest location equal to the current location in n-
dimensional space. 
Step 4: Comparison to gbest (global best): Compare 
the fitness with the population’s overall previous 
best. If the current value is better than gbest, then 
reset gbest to the current particle’s array index and 
value.  
Step 5: Updating of each Particle’s Velocity and 

Position: Change the velocity, vi, and position of the 
particle, xi, according to equations (1) and (2): 
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where i=1,2,…,N indicates the number of particles 
of population (swarm); t=1,2,…tmax, indicates the 

generations (iterations);  T,...,2 ,1 inviviviv   stands 

for the velocity of the i-th 

particle,  T,...,2 ,1 inxixixix   stands for the position 

of the i-th particle of population, and 

 T,...,2 ,1 inpipipip  represents the best previous 

position of the i-th particle. The inertia weight w   
plays the role of balancing the global and local 
searches. Parameter c1 represents the “self-
cognition” that pulls the particle to its own historical 
best position, helping explore local niches and 
maintaining the diversity of the swarm. Parameter c2 
represents the “social influence” that pushes the 
swarm to converge to the current globally best 
region, helping with fast convergence. In other 
words, positive constants c1 and c2 are the cognitive 
and social components, respectively (Ratnaweera et 
al., 2004). Index g represents the index of the best 
particle among all the particles in the swarm. 
Variables ud and Ud are two random numbers 
generated in the range [0,1]. Equation (2) represents 
the position update, according to its previous 
position and its velocity, considering 1t . 

Step 6: Repeating the evolutionary cycle: Return to 
Step 2 until a stop criterion is met, usually a 
sufficiently good fitness or a maximum number of 
generations. 

2.2 QPSO Algorithm 

In the quantum model of a PSO called here QPSO, 
the state of a particle is depicted by wavefunction 
(x, t) (Schrödinger equation), instead of position 
and velocity of classical PSO. The probability of the 
particle’s appearing in position xi from probability 
density function |(x,t)|2, the form of which depends 
on the potential field the particle lies. Employing the 
Monte Carlo method, the particles move according 
to the following iterative equation (Sun et al., 2004a; 
2004b): 

i, j i j i, j

i, j i j i, j

x (t 1) p (t) β Mbest (t) x (t) ln(1/ u),  if k  0.5

x (t 1) p (t) β Mbest (t) x (t) ln(1/ u),  if k  0.5

      

      





(3)
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where xi,j(t+1) is the position for the j-th dimension 
of i-th particle in t-th generation (iteration); Mbestj(t) 
is the global point called Mainstream Thought or 
Mean Best (Mbest) for the j-th dimension;  is a 
design parameter called contraction-expansion 
coefficient; u and k are values generated according 
to a uniform probability distribution in range [0,1]; 
and pi(t) is local point (local attractor) defined in 
(Clerc and Kennedy, 2002). The Mainstream 
Thought or Mean Best (Mbest) is defined as the 
mean of the pbest positions of all particles and it 
given by 
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where g represents the index of the best particle 
among all the particles’ swarm in j-th dimension. In 
this case, it is adopted  
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where pk,i (pbest) represents the best previous i-th 
position of the k-th particle and pg,i (gbest) 
represents the i-th position of the best particle of the 
population. In the same form that the classical PSO, 
constants c1 and c2 are the cognitive and social 
components, respectively. The procedure for 
implementing the QPSO is given by the following 
steps (Sun et al., 2004a, 2004b):  
Step 1: Initialization of Swarm Positions: Initialize a 
population (array) of particles with random positions 
in the n dimensional problem space using a uniform 
probability distribution function. 
Step 2:  Evaluation of Particle’s Fitness: Evaluate 
the fitness value of each particle. 
Step 3: Comparison of each Particle’s Fitness with 
its Pbest (personal Best): Compare each particle’s 
fitness with the particle’s pbest. If the current value 
is better than pbest, then set a novel pbest value 
equals to the current value and the pbest location 
equals to the current location in n-dimensional 
space. 
Step 4: Comparison of each Particle’s Fitness with 
its Gbest (global best): Compare the fitness with the 
population’s overall previous best.  If the current 
value is better than gbest, then reset gbest to the 
current particle’s array index and value.  
Step 5: Updating of Global Point: Calculate the 
Mbest using equation (4). 
Step 6: Updating of Particles’ Position: Change the 
position of the particles using equations (3) and (5). 
Step 7: Repeating the Evolutionary Cycle: Loop to 
Step 2 until a stopping criterion is met. In this paper, 

it is adopted a maximum number of iterations 
(generations). 

2.3 The Proposed CQPSO Algorithm 

Recently, some applications of chaotic sequences in 
PSO and its variations have been investigated by the 
literature (Chuang et al., 2011; Mukhopadhyay and 
Banerjee,  2012; Yang et al., 2012; Wang et al., 
2011; Coelho and Lee, 2008; Acharjee and 
Goswami, 2010; Araujo and Coelho, 2008). 
Numerous examples and statistical results show that 
some chaotic sequences applied to PSO are able to 
increase the algorithm-exploitation capability in the 
search space and enhance its convergence rate. 

An interesting dynamic system evidencing 
chaotic behavior is the Hénon’s map. Hénon (1976) 
introduced this map as a simplified version of the 
Poincaré map of the Lorenz system (Lorenz, 1963), 
whose equation is given by: 

  )1(2
2)1(11)(1  tytyaty  (6)

)1(1)(2  tybty  (7)

where t is the iteration number. The map depends on 
two parameters, a and b. The Hénon’s map is used 
in this work for a=1.4 and b=0.3. The adopted 
values for a and b for which the Hénon’s map has a 
strange attractor (details in Cao and Kirik, 2000). 

This work proposes the CQPSO, a combination 
of classical QPSO and the Hénon’s map sequences 
are represented by modification of c1 and c2 values. 
Furthermore, in CQPSO design, another Hénon’s 
map using the same equations (6) and (7) where 

]3819.0,3854.0[2 y are used to generate the 

variables h1(t) and h2(t) normalized in the range 
[0.001, 1]. The initial value of )(2 ty  and )1(2 ty  

are given by random numbers generated in the range 
[0,1] in each run of CQPSO. 

In the CQPSO approach, the parameters c1 and c2 
used in the equation (5) are substituted by h1(t) and 
h2(t), respectively, and equation (8) is employed in 
Step 6. In this case, it is adopted 
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3 PHYSICAL PROBLEM 

To solve inverse heat transfer problem (IHTP) there 
are several optimization techniques, allowing the 
determination of more than one thermo-physical 
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property and the understanding of complex materials 
(Da Silva et al., 2009). Unlike the conventional 
techniques, the resolution of the IHTP permits the 
determination of more than one thermo-physical 
property and the understanding of complex 
materials. 

Nonlinear heat conduction problem, involving 
phase change, without internal heat generation, can 
be described by  

 TTk
ti

H



 

)(. , (9)

where k (W/moC) is the apparent thermal 
conductivity, T (oC) is the temperature, and ti (s) is 
the time (Scheerlinck et al., 2001). The present work 
considers one-dimensional geometry in rectangular 
coordinates, simulating a product slab. The initial 
condition associate to equation (9) is given by 
 

T(xc, ti) = T0(xc); ti = t0, xc  [0, L], (10)
 

where T0 (oC) is known temperature in initial time 
obtained through of experiment, t0 (s) is initial time. 
In the surface (xc=0) the convective condition is 
considered, 

)()( 



 TTh
x

T
Tk ; x = 0, ti  0, (11)

 

where T (oC) is the ambient temperature, h 
(W/m2oC) is the surface heat transfer coefficient, and 
L is the half length in x direction. The boundary 
condition used in the center of the product slab 
(xc=L) was the classical zero flux, which is 
expressed by 

0)( 


xc

T
Tk ; xc = L, ti  0. (12)

 

Due to the characteristics of the mathematical 
problem, the simpler finite difference technique can 
be used for the solution of that partial differential 
equation. Knowing the food geometry and physical 
properties, as the boundary and initial conditions, 
enables one to solve the equations (9)-(12), thus 
determining the transient temperature distribution in 
the food. This kind of problem is called a direct 
problem. If any of these magnitudes or a 
combination of them is unknown, but experimental 
data are available on the temperature measured 
inside and/or on the external surface of the food, one 
has an inverse problem that allows one to determine 
the unknown magnitudes, provided those data 
contain sufficient information.  

For the inverse problem of interest here, the 
apparent thermal conductivity is regarded as 
unknown quantity. For the estimation of such 
parameters, we consider known transient 

temperature measurements n (oC) taken at the 

center node of the food. Thus, in this work is desired 
to minimize the difference between experimental 
and predicted temperatures. Mathematically 
optimization problem to solve is: 

 

Min  f(k) (13)
 

where the objective function f (fitness function) is 
given by  

N
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t kt
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where Tn (oC) is the temperature of the product at 
node central calculated numerically by finite 
difference method and Ns is the number of samples. 
It was proposed the use of a nonlinear function 
dependent of temperature to thermal conductivity,  









. -1,32

 -1,),/1exp(1
TATA

TTA
k  (15)

 

The proposed approach was analyzed for the case in 
which three parameters, Aj, were treated as 
unknowns where the lower and upper boundaries 
constraints used for them were ]05.0,1010[1

A , 

]1,1[2 A  and ]1,0[3A . 

4 RESULTS AND DISCUSSION 

In the next subsections first, we applied the PSO 
approaches to two algebraic test functions. In a next 
stage, we utilized the PSO approaches for the 
solution of IHTP. 

4.1 Benchmark Functions 

To validate the effectiveness of PSO approaches, 
two well-known benchmark functions of 
unconstrained minimization problems with 30 
dimensions are used. 

Rastrigin function has many local minima and 
maxima, making it difficult to find the global 
optimum. Rastrigin function is a fairly difficult 
problem for optimization algorithms due to the large 
search space and large number of local minima. The 
Rastrigin function is given by 

  



  n

i ixixxf 1 )2cos(10210)(1   (16)
 

with upper and lower bounds given by [-5.12, 5.12] 
for each dimension. 

Rosenbrock’s valley or Rosenbrock function 
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(Rosenbrock, 1960) is a classic optimization 
problem, also known as Banana function. The 
Rosenbrock function [31] is given 

 

 
 





  1

1
2)1(2)1

2(100)(2
n
i ixixixxf  (17)

 

with upper and lower bounds given by [-30,30] for 
each dimension. It is important mention here that the 
Rosenbrock function can be treated as a multimodal 
problem (Shang and Qiu, 2006). It has a narrow 
parabolic-shaped deep valley from the perceived 
local optima to the global optimum. To find the 
valley is trivial, but to achieve convergence to the 
global minimum is a difficult task. 

The settings adopted in the tested PSO 
approaches for the benchmarks functions is the 
swarm size (population size) equal to 50 particles, 
30 runs and the stopping criterion is 10,000 
generations. In terms of classical PSO, c1 = c2 = 2.05 
and the inertia factor linear decreasing of 0.9 to 0.4 
during the iterations is adopted.  QPSO and CQPSO 
use a linearly decreasing contraction-expansion 
coefficient () is used which starts at 1 and ends at 
0.2.  

Simulation results presented in Tables 1 and 2 
showed that the CQPSO outperform the adopted 
PSO and QPSO on the basis of mean and standard 
deviation of the best objective function value of the 
total runs for the two benchmark functions. 

Table 1: Optimization results of f1(x) in 30 runs. 

Index PSO QPSO CQPSO 

Maximum (Worst) 0.9803 0.9723 0.8914 

Mean 0.2105 0.1603 0.1297 

Minimum (Best) 0.19×10-8 0.23×10-15 0.89×10-12 

Standard Deviation 0.3272 0.7218 0.0632 

Table 2: Optimization results of f2(x) in 30 runs. 

Index PSO QPSO CQPSO 

Maximum (Worst) 23.7934 22.1930 22.1185 

Mean 42.7117 31.3839 25.0847 

Minimum (Best) 23.1006 21.0594 19.0059 

Standard Deviation 1.5973 0.6301 0.3421 

4.2 IHTP Case 

The setup adopted in IHTP for the PSO approaches 
is the swarm size (population size) equal to 20 
particles and the stopping criterion is 100 

generations. Optimization results are presented in 
Table 3. The CQPSO found the best convergence 
(mean) and best solution (minimum f) with f = 
0.4213. The best parameters obtained by tested 
optimization methods are presented in Table 4 where 
can be observed that the CQPSO presented a 
promising R2 in comparison to the classical PSO. 
Best result using CQPSO is illustrated by 
temperature profiles shown in Figure 1. 

Table 3: Optimization results of f(k) in 30 runs. 

Index PSO QPSO CQPSO 

Maximum 
(Worst) 

30.9319 29.3703 29.3252 

Mean 18.0494 18.0468 17.9352 

Minimum 
(Best) 

0.4889 0.4669 0.4213 

Standard 
Deviation 

9.4806 9.4842 8.9836 

Table 4: Best parameters obtained by methods. 

Index PSO QPSO CQPSO 

A1 0.02610 0.02605 0.02602 

A2 -0.00091 -0.00111 -0.00116 

A3 0.6545 0.6531 0.6637 

R2 0.9885 0.9898 0.9912 

f(k) 0.4658 0.4469 0.4213 

5 CONCLUSIONS 

Simulation results demonstrate the feasibility and 
validity of the proposed CQPSO in terms of solution 
quality when compared with the classical PSO and 
QPSO algorithms in the IHTP and also two well-
know benchmark functions. 

CQPSO may be a promising and viable tool to 
deal with complex inverse heat problems. The future 
work includes the studies on how to improve the 
proposed CQPSO in terms of the self-tuning of 
control parameters. Furthermore, more extensive 
experimentation, hypothesis tests and statistical 
significance tests to compare different optimization 
approaches with CQPSO will be carried out to 
different case studies. 
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