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Abstract: Social media is a rich source of information. To make use of this information, it is sometimes required to
extract and disambiguate named entities. In this paper, we focus on named entity disambiguation (NED) in
twitter messages. NED in tweets is challenging in two ways. First, the limited length of Tweet makes it hard
to have enough context while many disambiguation techniques depend on it. The second is that many named
entities in tweets do not exist in a knowledge base (KB). We share ideas from information retrieval (IR) and
NED to propose solutions for both challenges. For the first problem we make use of the gregarious nature of
tweets to get enough context needed for disambiguation. For the second problem we look for an alternative
home page if there is no Wikipedia page represents the entity. Given a mention, we obtain a list of Wikipedia
candidates from YAGO KB in addition to top ranked pages from Google search engine. We use Support Vector
Machine (SVM) to rank the candidate pages to find the best representative entities. Experiments conducted on
two data sets show better disambiguation results compared with the baselines and a competitor.

1 INTRODUCTION

1.1 Overview

The rapid growth in IT in the last two decades has led
to a growth in the amount of information available on
the World Wide Web. A new style for exchanging
and sharing information is short text. Examples for
this style of text are tweets, social networks statuses,
SMSs, and chat messages. In this paper, we use twit-
ter messages as an example of short informal context.

Twitter is an important source for continuously
and instantly updated information. The average num-
ber of tweets exceeds 140 million tweet per day sent
by over 200 million users around the world. These
numbers are growing exponentially 1. This huge num-
ber of tweets contains a large amount of unstructured
information about users, locations, events, etc.

Information Extraction (IE) is the research field
that enables the use of such a vast amount of un-
structured distributed information in a structured
way. IE systems analyze human language text in
order to extract information about different types of
events, entities, or relationships. Named entity dis-

1http://www.marketinggum.com/twitter-statistics-2011-
updated-stats/

ambiguation (NED) is the task of exploring which
correct person, place, event, etc. is referred to
by a mention. Wikipedia articles are widely used
as entities’ references. For example, the mention
‘Victoria’ may refer to one of many entities like
‘http://en.wikipedia.org/wiki/Victoria (Australia)’ or
‘http://en.wikipedia.org/wiki/Queen Victoria’. Ac-
cording to Yago KB (Suchanek et al., 2007) the men-
tion ‘Victoria’ may refer to one of 188 entities in
Wikipedia.

1.2 Challenges

NED in Tweets is challenging. Here we summarize
the challenges of that problem:

� The limited length (140 characters) of Tweets
forces the senders to provide dense information.
Users resort to acronyms to reserve space. In-
formal language is another way to express more
information in less space. All of these problems
makes the disambiguation more complex. For ex-
ample, case 1 in table 1 shows two abbreviations
(‘Qld’ and ‘Vic’). It is hard to infer their entities
without extra information.

� The limited coverage of KB is another challenge
facing NED. According to (Lin et al., 2012), 5
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Table 1: Some challenging cases for NED in Tweets (mentions are written in bold).

Case # Tweet Content
1 Qld flood victims donate to Vic bushfire appeal
2 Laelith Demonia has just defeated liwanu Hird. Career wins is 575, career losses is 966.
3 Adding Win7Beta, Win2008, and Vista x64 and x86 images to munin. #wds
4 ”Even Writers Can Help..An Appeal For Australian Bushfire Victims” http://cli.gs/Zs8zL2

million out of 15 million mentions on the web
could not be linked to Wikipedia. This means
that relying only on KB for NED leads to around
33% loss in disambiguated entities. This per-
centage becomes higher on twitter because of its
social nature where people talk more about non
famous entities. For example, case 2 in table
1 contains two mentions for two users on ‘My
Second Life’ social network. One would never
find their entities in a KB but their profile pages
(‘https://my.secondlife.com/laelith.demonia’ and
‘https://my.secondlife.com/liwanu.hird’ ) can be
easily found by any search engine.

� Named entity (NE) representation in KB implies
another NED challenge. Yago KB uses Wikipedia
anchor text as possible mention representation for
named entities. However, there might be more
representations that do not appear in Wikipedia
anchor text. Either because of misspelling or
because of a new abbreviation of the entity.
For example, in case 3 in table 1, the mentions
‘Win7Beta’ and ‘Win2008’ are not representing
any entity in YAGO KB although they refer to the
entities ‘http://en.wikipedia.org/wiki/Windows 7’
and ‘http://en.wikipedia.org/wiki/Windows
Server 2008’ respectively.

� The process of NED involves degrees of un-
certainty. For example, case 4 in table 1, it is
hard to asses whether ‘Australian’ should refer
to ‘http://en.wikipedia.org/wiki/Australia’ or
‘http://en.wikipedia.org/wiki/Australian people’.
Both might be correct. This is why we believe
that it is better to provide a list of ranked candi-
dates instead of selecting only one candidate for
each mention.

� A final challenge is the update of the KBs.
For example, the page of ‘Barack Obama’ on
Wikipedia was created on 18 March 2004. Be-
fore that date ‘Barack Obama was a mem-
ber of the Illinois Senate and you could find
his profile page on ‘http://www.ilga.gov/senate/
Senator.asp?MemberID=747’. It is very common
on social networks that users talk about some non
famous entity who might become later a public
figure.

1.3 Our Approach

According to a literature survey (see section 2), al-
most all researchers use KBs entities as references for
NED. Some of those researchers assign null to men-
tions with no possible reference entity and others as-
sign an entity to a mention once it is in the dictio-
nary containing all candidates for surface strings even
if the correct one is not in the entity repository. Fur-
thermore, researchers who studied NED in Tweets are
mostly entity oriented (i.e. given an entity like ‘Apple
Inc’, it is required to classify the mention ‘Apple’ if it
is a correct representative for that entity or not).

In our opinion, for the NED task in Tweets, it is
necessary to have a generic system that doesn’t rely
only on the closed world of KBs in the disambigua-
tion process. We also believe that the NED task in-
volves degrees of uncertainty. In this paper, we pro-
pose a generic open world NED approach that shares
ideas from NED and IR.

Given a tweet mention, we get a set of possible
entity candidates’ home pages by querying YAGO
KB and Google search engine. We query Google to
get possible candidate entities’ home pages. We en-
rich the candidate list by querying YAGO KB to get
Wikipedia articles’ candidates.

For each candidate we extract a set of context and
URL features. Context features (like language model
and tweet-document overlapped terms) measure the
context similarity between mention and entity candi-
dates. URL features (like path length and mention-
URL string similarity) measure how likely the candi-
date URL could be a representative to the entity home
page. In addition we use the prior probability of the
entity from YAGO KB. An SVM is trained on the
aforementioned features and used to rank all candi-
date pages.

Wikipedia pages and home pages are different in
their characteristics. Wikipedia pages tend to be long,
while home pages tend to have short content. Some-
times it has no content at all but a title and a flash
introduction. For this reason we train the SVM to
distinguish between three types of entity pages, a
Wikipedia page (Wiki entity), a Non-Wikipedia home
page (Non-Wiki entity), and a non relevant page.

Furthermore, we suggested an approach to enrich
the context of the mention by adding frequent terms
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from other targeted tweets. Targeted tweets are a set
of tweets talking about same event. This approach
improves the recognition of NonWiki entities.

We conduct experiments on two different datasets
of tweets having different characteristics. Our ap-
proach achieves better disambiguation results on both
sets compared with the baselines and a competitor.

1.4 Contributions

The paper makes the following contributions:

� We propose a generic approach for NED in
Tweets for any named entity (not entity oriented).

� Mentions are disambiguated by assigning them to
either a Wikipedia article or a home page.

� Instead of just selecting one entity for each men-
tion we provide a ranked list of possible entities.

� We improve NED quality in Tweets by making
use of the gregarious nature of targeted tweets to
get enough context needed for disambiguation.

1.5 Paper Structure

The rest of the paper is organized as follows. Sec-
tion 2 presents related work on NED in both formal
text and Tweets. Section 3 presents our generic ap-
proach for NED in Tweets. In section 4, we describe
the experimental setup, present its results, and dis-
cuss some observations and their consequences. Fi-
nally, conclusions and future work are presented in
section 5.

2 RELATED WORK

NED in web documents is a topic that is well cov-
ered in literature. Several approaches use Wikipedia
or a KB derived form Wikipedia (like DBPedia and
YAGO) as entity store to look up the suitable entity
for a mention. (Cucerzan, 2007) proposes a large-
scale system for disambiguating named entities based
on information extracted from Wikipedia. The system
employs a vast amount of contextual and category in-
formation for better disambiguation results. (Kulka-
rni et al., 2009) introduce the importance of entity-
entity coherence measure in disambiguation. Simi-
larly, (Hoffart et al., 2011) combine three measures:
the prior probability of an entity being mentioned,
the similarity between the contexts of a mention and
a candidate entity, as well as the coherence among
candidate entities for all mentions together. AIDA 2

2https://d5gate.ag5.mpi-sb.mpg.de/webaida/

(Yosef et al., 2011) is a system built on (Hoffart et al.,
2011)’s approach. We used AIDA as a competitor in
our paper.

Ad-hoc (entity oriented) NED represents another
direction in NED research. Given a set of predefined
entities and candidate mentions, it determines which
ones are true mentions of the given entities. An ex-
ample of such approach is the work done by (Wang
et al., 2012).

NED in Tweets has attracted researchers recently.
Most of these researches investigate the problem of
entity oriented disambiguation. Within this theme,
(Spina et al., 2011), (Yerva et al., 2012) and (Del-
gado et al., 2012) focus on the task of filtering
Twitter posts containing a given company name, de-
pending of whether the post is actually related with
the company or not. They develop a set of fea-
tures (co-occurrence, Web-based features, Collection-
based features) to find keywords for positive and neg-
ative cases. Similarly, (Christoforaki et al., 2011) pro-
pose a topic centric entity extraction system where in-
teresting entities pertaining to a topic are mined and
extracted from short messages and returned as search
results on the topic.

A supervised approach for real time NED in
tweets is proposed by (Davis et al., 2012). They fo-
cused on the problem of continually monitoring the
Twitter stream and predicting whether an incoming
message containing mentions indeed refers to a prede-
fined entity or not. The authors propose a three-stage
pipeline technique. In the first stage, filtering rules
(colocations, users, hash tags) are used to identify
clearly positive examples of messages truly mention-
ing the real world entities. These messages are given
as input to an Expectation-Maximization method on
the second stage, which produces training informa-
tion to be used during the last stage. Finally, on the
last stage they use the training set produced by the
previous stage to classify unlabeled messages in real
time. Another real time analysis tool proposed by
(Steiner et al., 2013). The authors provide a browser
extension which is based on a combination of several
third party NLP APIs in order to add more semantics
and annotations to Twitter and Facebook micro-posts.

Similar to our problem, the problem of entity
home page finding was part of TREC web and entity
tracks. The task is to extract target entity and find its
home page given an input entity, the type of the target
entity and the relationship between the input and the
target entity. One of the proposed approaches for this
task was (Westerveld et al., 2002). The authors com-
bine content information with other sources as diverse
as inlinks, URLs and anchors to find entry page. An-
other approach for entity home page recognition was
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introduced by (Li et al., 2009). It selects the features
of link or web page content, and constructs entity
homepage classifiers by using three kinds of machine
learning algorithms of Logistic, SVM, AdaBoost to
discover the optimal entity homepage.

Although the TREC problem looks similar to ours,
the tweets’ short informal nature makes it more tricky
to find entity reference page. Moreover, distinguish-
ing Wikipedia pages for Wiki entities from home
pages for Non-Wiki entites adds another challenge to
our problem.

3 OUR GENERIC OPEN WORLD
APPROACH

We can conclude from the previous section that al-
most all NED approaches in tweets are entity ori-
ented. In contrast, we present a generic open world
approach for NED for any named entity based on
the mention context and with support from targeted
tweets if available.

First of all let us formalize the problem. Given a
mention mi that belongs to tweet t, the goal is to find
a ranked list of entities’ home pages ei j that mi rep-
resents. We make use of the context of the mention
fwg= fmi;w1;w2; ::wng to find the best entity candi-
date. fwg is the set of words in the Tweet after re-
moving the stop words. A set of features is extracted
from each ei j measuring how relative is it to mi and
its context. An SVM is trained over training set of
manually annotated mentions and used for ranking of
entity pages for unseen mentions.

Figure 1 illustrates the whole process of NED in
Tweets. The system is composed of the three mod-
ules; the matcher, the feature extractor, and the SVM
ranker.

3.1 Matcher

This module contains two submodules: Google API,
and YAGO KB. Google API is a service provided
by Google to enable developers from using Google
products from their applications. YAGO KB is
built on Wikipedia. It contains more than 447
million facts for 9.8 million entities. A fact is
a tuple representing a relation between two enti-
ties. YAGO has about 100 relation types, such
as hasWonPrize, isKnownFor, and isLocatedIn
. Furthermore, it contains relation types connect-
ing mentions to entities such as hasPreferredName,
means, and isCalled. The means relation repre-
sents the relation between the entity and all pos-
sible mention representations in wikipedia. For

example, the mentions f“Chris Ronaldo”, “Chris-
tiano”, “Golden Boy”, “Cristiano Ronaldo dos San-
tos Aveiro”g and many more are all related to the en-
tity “http://en.wikipedia.org/wiki/Cristiano Ronaldo”
through the means relation.

This module takes the mention mi and looks for
its appropriate web pages using Google API. A list
of top 18 web pages retrieved by Google is crawled.
To enlarge the search space, we query YAGO KB for
possible entities for that mention. Instead of taking
all candidate entities related to that mention, we just
take the set of candidates with top prior probabilities.
Prior probability represents the popularity for map-
ping a name to an entity. YAGO calculates those prior
by counting, for each mention that constitutes an an-
chor text in Wikipedia, how often it refers to a partic-
ular entity. We sort the entities in descending order
according to their prior probability. We select the top
entities satisfying the following condition:

Prior(ei j)

Maximum(Prior(ei j))
> 0:2 (1)

In this way we consider a set of most probable entities
regardless of their count instead of just considering
fixed number of top entities.

For all the YAGO selected entities we add their
Wikipedia articles to the set of Google retrieved web
pages to form our search space for the best candidates
for the input mention.

After crawling the candidate pages we apply a
wrapper to extract its title, description, keywords and
textual content. For this task we used HtmlUnit li-
brary3.

3.2 Feature Extractor

This module is responsible for extracting a set of con-
textual and URL features that give the SVM indica-
tors on how likely the candidate entity page could be
a representative to the mention. The mention tweet
is tokenized with a special tweet tokenizer (Gimpel
et al., 2011). Similarly, other target tweets (revolving
the same event as the mention tweet) are tokenized
and top frequent k words are added to the mention
context. Only proper nouns and nouns are considered
according to the part of speech tags (POS) generated
by a special tweet POS tagger (Gimpel et al., 2011).
Target tweets can be obtained by considering tweets
with the same hashtag. In this paper, we just use the
target tweets as provided in one of the two datasets
we used in the experiments.

On the candidate pages side, for each candidate
page we extract the following set of features:

3http://htmlunit.sourceforge.net/
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Figure 1: System Architecture.

Table 2: URL features.

Feature Name Feature Description
URL Length The length of URL.

Mention-URL Similarity
String similarity between the mention and the URL domain name (for
non Wikipedia pages) or the Wikipedia entity name (for Wikipedia
pages) based on Dice Coefficient Strategy (Dice, 1945).

Is Mention Contained Whether or not the mention is contained in the whole URL.

Google Page Rank The page order as retrieved by Google. Wikipedia pages added from
YAGO are assigned a rank after all Google retrieved pages.

Title Keywords Whether or not page title contains keywords like (‘Official’, or ’Home
page’).

#Slashes Path length of the page (i.e number of slashes in the URL).

� Language Model (LM). We used a smoothed un-
igram LM (Zhai and Lafferty, 2001). We treat the
mention along with its tweet keywords as a query
and the entity pages as documents. The probabil-
ity of a document being relevant to the query is
calculated as follows:

logP(qjd) = å
w2q;d

log
Ps(wjd)

adP(wjc)
+

å
w2q

logP(wjc)+nlogad

(2)

where q = fmi;wi1; ::wing, d is the ei j candidate
page, c is the collection of all the candidate pages
for mi, n is the query length and ad is document
length normalization factor, P(wjc) is the collec-
tion LM and Ps(wjd) is the Dirichlet conjugate
prior (MacKay and Peto, 1994). These probabili-
ties can be calculated as follows:

P(wjc) = t f (w;c)
cs

(3)

Ps(wjd) =
t f (w;d)+µP(wjc)

jDj+µ
(4)

where t f is the term frequency of a word w in
a document d or in the entire collection c, cs is
raw collection size (total number of tokens in the
collection) and µ is a smoothing parameter that is
calculated as the average document length in the
collection c.
We calculated a separate LM for each of the entity
pages parts (the title, description, keywords, and
content).

� Tweet-page Overlap. The difference in length
between Wikipedia pages and non Wikipedia
pages in addition to the document length nor-
malization in the LM led to favor short docu-
ments (non Wikipedia pages) over long docu-
ments (Wikipedia pages). This is why we looked
for another feature that does not favor documents
based on its length. The feature Tweet-Page Over-
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lap is inspired by Jaccard distance with disregard-
ing lengths. This feature represents the count of
the overlapped words between the query q and the
document d. It can be calculated as follows:

Overlap(q;d) = jq\dj

Again 4 versions of this feature are calculated for
pages title, description, keywords, and content.

� Entity Prior Probability. It is a value provided
by YAGO KB as described in section 3.1. Only
Wikipedia pages have Prior Probabilities. Non
Wikipedia pages are just assigned zero for this
feature.

In addition to the context features we also extract a set
of URL features shown in table 2.

3.3 SVM Ranker

After extracting the aforementioned set of features, an
SVM classifier (Chang and Lin, 2011) with RBF ker-
nel function is trained to rank candidate entities of a
mention. The SVM is trained on three types of entity
classes; Wikipedia home page, non Wikipedia home
page, and non relevant page. The reason behind this is
that the characteristics of Wikipedia home pages and
non Wikipedia home pages are different, and we don’t
want the classifier to get confused. In this way, the
classifier would use the best set of features for each
of the relevant classes. Wikipedia home pages have
rich contents and thus context features would be bet-
ter for calculating how relevant is the Wikipedia page
to the mention context. While non Wikipedia home
pages tend to be short and sometimes with almost no
content. In this case URL features might be more use-
ful to find the relevant entity page of a mention.

Moreover, we automatically look into the
Wikipedia page infobox for a home page URL
for the entity. If found, we remove that
home page from the candidate list. For ex-
ample, for the mention ‘Barcelona’, if we find
among the candidate pages the Wikipedia page
‘http://en.wikipedia.org/wiki/FC Barcelona’ and we
find in the infobox of this page that the official site
for ‘Barcelona’ is ‘http://www.fcbarcelona.com/’, we
remove the latter page if found among the candidate
pages. The idea behind this action is that our training
data is annotated by assigning only one entity page for
each mention with the priority for Wikipedia pages.
We don’t want to confuse the classifier by assigning
a non relevant class to a home page for one mention
and assigning a relevant class for home page of an-
other mention that doesn’t have a Wikipedia entity.

The SVM is trained to provide three probabilities
for the three mentioned classes. Due to the imbalance
in the training data between the first two classes and
the third (only one page is assigned to the mention and
the rest is treated as non relevant page), the probabil-
ities of majority class (non relevant) are dominating.
Dealing with the task as a ranking task instead of hard
classification enables us to overcome this problem.

For testing and evaluating, we rank the mentions
candidate pages according to the highest probabili-
ties of the two relevant classes. Evaluation is done
by looking at the quality of finding the correct entity
page of the mention at top k rank.

3.4 Targeted Tweets

Due to the limitation of tweet context which some-
times affect the disambiguation process, we intro-
duce an improvement by making use of the gregari-
ous nature of tweets. Given a targeted set of tweets
(tweets about the same topic), we find the most fre-
quent nouns and add those terms to the context of each
tweet in the targeted set. This approach improves the
recognition of NonWiki entities as will be shown in
the next section.

4 EXPERIMENTAL RESULTS

4.1 Datasets

To validate our approach, we use two twitter
datasets4. The two datasets are mainly designed for
named entity recognition (NER) task. Thus to build
our ground truth we only annotated each NE with
one appropriate entity page. We gave higher prior-
ity to Wikipedia pages. If Wikipedia has no page for
the entity we link it to a home page or profile page.
The first dataset (Brian Collection) is the one used in
(Locke and Martin, 2009). The dataset is composed
of four subsets of tweets; one public timeline subset
and three subsets of targeted tweets revolving around
economic recession, Australian Bushfires and and gas
explosion in Bozeman, MT. The other dataset (Mena
Collection) is the one used in (Habib and van Keulen,
2012) which is relatively small in size of tweets but
rich in number of NEs. It is composed mainly from
tweeted news about players, celebrities, politics, etc.
Statistics about the two data sets are shown in table 4.
The two collections are good representative examples
for two types of tweets: the formal news titles tweets

4Our datasets are available at https://github.com/
badiehm/TwitterNEED
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Table 3: Candidate Pages for the mention “Houston”.

http://www.houstontx.gov/
http://en.wikipedia.org/wiki/Houston
http://www.visithoustontexas.com/
http://www.chron.com/
http://www.tripadvisor.com/Tourism-g56003-Houston_Texas-Vacations.html
http://www.forbes.com/places/tx/houston/
http://www.nba.com/rockets/
http://www.uh.edu/
http://www.houstontexans.com/
http://www.houston.org/
http://www.citypass.com/houston
http://www.portofhouston.com/
http://www.hillstone.com/
http://wikitravel.org/en/Houston
http://houston.craigslist.org/
http://houston.astros.mlb.com/

(Mena Collection) and the users targeted tweets that
discuss some events (Brian Collection).

4.2 Experimental Setup

Our evaluation measure is the accuracy of finding the
correct entity page of a mention at rank k. We con-
sider only top 5 ranks. The reason behind focusing on
recall instead of precision is that we can’t consider
other retrieved pages as a non-relevant (false posi-
tives). In some cases, there may exist more than one
relevant page among the candidate pages for a given
mention. So that, as we link each mention to only one
entity page, it is not fair to consider other pages as a
non relevant pages. For example, table 3 shows some
candidate pages for the mention ‘Houston’. Although
we link this mention to the Wikipedia page http://
en.wikipedia.org/wiki/Houston, we could not con-
sider other pages (such as http://www.houstontx.gov/
and http://wikitravel.org/en/Houston) that appear in
the top k ranks as non-relevant pages.

All our experiments are done through a 4-fold
cross validation approach for training and testing the
SVM.

4.3 Baselines and Upper Bounds

Table 5 shows our baselines and upper bounds in
terms of the percentage of correctly finding the entity
page of a mention. Three baselines are defined. The
first is Prior, which represents the disambiguation re-
sults if we just pick the YAGO entity with the highest
prior for a given mention. The second is the AIDA
disambiguation system. We used the system’s RMI to

Table 4: Datasets Statistics.

Brian Col. Mena Col.
#Tweets 1603 162
#Mentions 1585 510
#Wiki Entities 1233(78%) 483(94%)
#Non-Wiki Entities 274(17%) 19(4%)
#Mentions with no
Entity 78(5%) 8(2%)

#Avg Google rank
for correct entity 9 5

Table 5: Baselines and Upper bounds.

Brian Col. Mena Col.
Prior 846(53%) 394(77%)
AIDA 766(48%) 389(76%)
Google 1st rank 269(17%) 197(39%)
YAGO coverage 990(62%) 449(88%)
Google coverage for:

All entities 1218(77%) 476(93%)
Wiki entities 1077(87%) 462(96%)
Non-Wiki entities 141(51%) 14(74%)

disambiguate mentions. The third is Google 1st rank
which represents the results if we picked the Google
1st ranked page result for the input mention. It might
be surprising that AIDA gives worse results than one
of its components which is Prior. The reason behind
this is that AIDA matching of mentions is case sen-
sitive and thus could not find entities for lower case
mentions. It was not possible to turn all mentions
to initials upper case because some mentions should
be in all upper case to get matched (like ‘USA’). For
Prior, we do the match case insensitively. AIDA and
Prior are upper bounded by the YAGO coverage for
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(a) Brian: All Entities (b) Brian: Wiki Entities (c) Brian: Non-Wiki Entities

(d) Mena: All Entities (e) Mena: Wiki Entities (f) Mena: Non-Wiki Entities

Figure 2: Disambiguation results at rank k using different feature sets.

mentions entity. Coverage means how much mention-
entity pairs of our ground truth exist in the KB. Note
that more mentions might have a Wikipedia entity but
it is not covered in YAGO because it doesn’t have the
proper surface mention (like ‘Win7Beta’).

On the other hand, we have an upper bound we
can not exceed. The set of candidates retrieved by
Google and enriched through KB does not cover our
ground truth completely. Hence, we could not exceed
that upper bound.

4.4 Feature Evaluation

To evaluate the importance of each of the two feature
sets used, we conduct an experiment to measure the
effect of each feature set on the disambiguation re-
sults. Figure 2 shows the disambiguation results on
our datasets using each of the introduced feature sets.
It also shows the effect of each feature sets on both
types of entities, Wiki and Non-Wiki.

Figures 2(b) and 2(e) show that context features
are more effective than URL features in finding Wiki
entities. On the other side, figures 2(c) and 2(f) show
the superiority of URL features over context features
in finding Non-Wiki entities.

Although Wikipedia URLs are normally quite
informative, the context features have more data
to be investigated and used in the selection and
ranking of candidate pages than the URL fea-

tures. Furthermore, some Wiki URLs are not
informative for the given mention. For exam-
ple, the mention ‘Qld’ refers to the Wikipedia en-
tity ‘http://en.wikipedia.org/wiki/Queensland’ which
is not informative regarding the input mention. This
is why context features are more effective than URL
features in finding Wiki entities.

On the other hand, context features are less effec-
tive than URL features in finding Non-Wiki entities
because many home pages nowadays are either devel-
oped in flash or have at least some flash and graphics
contents and hence contains less textual content to be
used.

All sub figures of figure 2 show that usage of both
sets of features yields better entity disambiguation re-
sults. The only exception is the first two ranks in fig-
ure 2(f). However, it is not an indicator for the failure
of our claim as the number of Non-Wiki entities in
Mena collection is very small (19 entities).

Compared to table 5, our approach shows im-
provements on the disambiguation quality for all en-
tities by about 12% on Brian Collection and by about
8% on Mena Collection over the best baseline (prior)
at rank k = 1. At rank k = 5, the improvements over
the best baseline are 21% and 15% respectively.
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Table 6: Top 10 frequent terms in Brian col. targeted tweets.

Bozeman Explosion Australian Bushfires Economic Recession , MT Public Timeline
bozeman, montana,
bozexplod, mt, twit-
ter, gov, boodles,
schweitzer, nw,
twitterers

bushfire, sitepoint,
appeal, australia, vic-
toria, aussie, coles,
brumby, friday, vic

intel, reuters, u.s.,
fargo, job, san, den-
ver, tuesday, wells,
grad

twitter, la, youtube,
god, black, mac, tx,
iphone, itunes, queen

(a) Brian: All Entities (b) Brian: Wiki Entities (c) Brian: Non-Wiki Entities

Figure 3: Disambiguation results over different top k frequent terms added from targeted tweets.

4.5 Targeted Tweets Improvement

Due to the limitation of tweet context which some-
times affect the disambiguation process, we intro-
duce an improvement by making use of the gregari-
ous nature of tweets. Given a targeted set of tweets
(tweets about the same topic), we find the most fre-
quent nouns and add those terms to the context of
each tweet in the targeted set. An experiment is per-
formed on Brian collection to study the effect of the
frequent terms on the disambiguation results. Table 6
shows top 10 frequent terms in each of the targeted
sets. Figure 3 shows the disambiguation results at
rank 1 over different top k frequent terms added from
targeted tweets. The overall trend is that disambigua-
tion results of all entities are improved by 2% on av-
erage by adding frequent terms to tweet context (see
figure 3(a)). Non-Wiki entities in figure 3(c) make
better use of the frequent terms and achieve improve-
ment of about 4%-5% on average. While Wiki enti-
ties in figure 3(b) achieve an improvement of about
1% only. The reason behind this is that Non-Wiki en-
tities’ pages are much shorter in contents so that an
extra term in the tweet context helps more in finding
the correct entity page.

5 CONCLUSIONS AND FUTURE
WORK

Named entity disambiguation is an important step to
make better use of the unstructured information in
tweets. NED in tweets is challenging because of the
limited size of tweets and the non existence of many
mentioned entities in KBs. In this paper, we introduce

a generic open world approach for NED in tweets.
The proposed approach is generic as it is not entity
oriented. It is also open world because it is not lim-
ited by the coverage of a KB. We make use of a KB as
well as Google search engine to find candidate set of
entities’ pages for each mention. Two sets of features
(context and URL) are presented for better finding of
Wiki and Non-Wiki entity pages. An SVM is used
to rank entities’ pages instead of assigning only one
entity page for each mention. We are inspired by the
fact that NED involves degree of uncertainty. We also
introduce a method to enrich a mention’s context by
adding top frequent terms from targeted tweets to the
context of the mention.

Results show that context features are more help-
ful in finding entities with Wikipedia pages, while
URL features are more helpful in finding entities with
non Wikipedia pages. Adding top frequent terms im-
proves the NED results of Non-Wiki entities by about
4-5%.

For future work, we want to enhance our system
to be able also to discover entities with null reference.
Furthermore, we want to increase the upper bound
of candidate pages coverage by re-querying Google
search engine for mentions with no suitable candidate
pages.
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