
Supporting Service Versioning
MDE to the Rescue

Iván Santiago, Juan M. Vara, Jenifer Verde, Valeria de Castro and Esperanza Marcos
Kybele Research Group, Rey Juan Carlos University, Avd. Tulipán S/N, Móstoles, Madrid, Spain

Keywords: Service Orientation, Model-Driven Engineering, Traceability.

Abstract: In the field of Service-Oriented Architecture (SOA), evolution is a key issue given the non-trivial nature of
updating widely distributed and heterogeneous systems. In particular, the evolution of a service is expressed
through the creation and decommissioning of different service versions during its lifetime. These versions
must be aligned with each other in such a way as to allow a service developer to track the various modifications
introduced over time and whether the resulting service version is compatible with existing consumers. Having
all this in mind, this work aims at define a plan to provide a complete framework to support service evolution
by means of Model-Driven Engineering techniques.

1 INTRODUCTION

Evolution is inherent to software systems because
of the rapid improvement of technologies and busi-
ness logic. In the field of Service-Oriented Architec-
ture (SOA), evolution is a key issue given the non-
trivial nature of updating widely distributed and het-
erogeneous systems (Papazoglou and van den Heuvel,
2007). To alleviate the inherent complexity of evolv-
ing service-based systems, this paper takes a step
further a proposal to deal with service evolution
using Model-Driven Engineering (MDE) techniques
(Schmidt, 2006).

Formally speaking, service evolution is the disci-
plined approach of managing service changes and is
defined as the continuous process of development of a
service through a series of consistent and unambigu-
ous changes (Andrikopoulos et al., 2012). The evolu-
tion of a service is expressed through the creation and
decommissioning of different service versions during
its lifetime. These versions must be aligned with each
other in such a way as to allow a service developer to
track the various modifications introduced over time
and their effects on the original service.

To control service development, a developer needs
to know why a change was made, what its implica-
tions are, and whether the resulting service version is
compatible with existing consumers. A service ver-
sion is compatible if it does not render its consumers
inoperable, i.e., it does not break them in the sense
that consumers are still able to use the same type of

data they used as inputs and get back the same type of
data they got as outputs.

This way, our proposal aims at providing a model-
driven technological framework to support service
evolution at interface level. To that end, in previous
works (Vara et al., 2012) we presented a DSL toolkit
for modelling the structural part of Abstract Service
Descriptions (ASD) and a reasoning mechanism that
assesses whether two versions of a service are com-
patible with respect to its consumers. Such work
served to provide a proof of concept of the possible
synergy between MDE and Service Orientation. As
well, it served to lay the foundation for future work.
This paper is the first stage of such work: it defines
the following steps to progress in the building of the
service evolution framework.

To that end, the rest of this work is structured as
follows: Section 2 presents the building of techno-
logical bridges to move from WSDL descriptions to
ASDs; Section 3 introduces the materialization of the
textual reports about service versions compatibility
into trace models; Section 4 defines a model-driven
process to support contracts generation and finally,
Section 5 concludes by highlighting the main contri-
bution of this paper.

2 FROM WSDL DOCUMENTS TO
ASD MODELS

In (Andrikopoulos et al., 2012) present a rigorous for-

212 Santiago I., M. Vara J., Verde J., de Castro V. and Marcos E..
Supporting Service Versioning - MDE to the Rescue.
DOI: 10.5220/0004523402120217
In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2013), pages 212-217
ISBN: 978-989-8565-62-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



mal framework based on type safety criteria and al-
gorithms which controls and delimits the evolution of
services. The framework extends and applies theo-
ries and methods of controlling evolution from object-
oriented programming languages like subtyping and
co- and contra-variance of input and output (Meyer,
1997).

Based on these principles a reasoning mechanism
is presented that allows deciding when a change to
the service interface leads to a compatible version of
the service for the consumers. More specifically, the
framework is based on a technology-agnostic notation
for the representation of service interfaces in the form
of Abstract Service Descriptions (ASDs).

In order to provide tooling support for such frame-
work, a DSL toolkit to model ASDs was introduced in
previous works (Vara et al., 2012). Nevertheless, de-
spite there are different initiatives for services repre-
sentation, most of existing services use WSDL (W3C,
2001) to provide a standard description of their inter-
face. Therefore, to widen the scope of the approach
the first task to address is the building of technologi-
cal bridges to extract the information gathered in any
existing WSDL document to express it in terms of the
DSL already introduced for ASD modeling. As a re-
sult, the level of abstraction at which reasoning about
the interface of any given set of services is made can
be raised.

The process to extract ASD models from WSDL
files is briefly illustrated in Figure 1.

� The starting point is one or more WSDL les de-
scribing different versions of the same service,
namely S1 and S2. Being XML les, they conform
to the WSDL XML Schema (WSDL.xsd).

� In order to bring them to a model-engineering
context, a TCS (Jouault et al., 2006) text-to-model
transformation (XML2Ecore) is used to inject such
les into two XML models, which conform to the
XML metamodel (XML.ecore). The objects of
these models are basically XML elements and
attributes. This way this transformation allows
moving from grammarware to modelware (Wim-
mer and Kramler, 2006).

� Next, we map the XML models to WSDL
models conforming to the WSDL metamodel
(WSDL.ecore). To do so we use an ATL
(Jouault et al., 2008) model-to-model transforma-
tion (XML2WSDL).

� Another model-to-model transformation (WSDL2-
ASD) extracts the structural and non-functional in-
formation of the WSDL models to produce two
ASD models that conforms to the ASD meta-
model (ASD.ecore). Such models provide high-

level descriptions of the services interfaces, which
abstract completely of any technological detail.

It is worth mentioning that the development of
the inverse transformation chain will be addressed as
well. Thus, a WSDL document could be derived from
an ASD model. To that end, note that when moving
from WSDL to ASD all the non-structural data is lost.
Figure 2 shows the solution that will be adopted in or-
der to solve this issue.

To support the extraction of complete WSDL files,
such data will be collected into partial WSDL mod-
els. Then, the different reasoning will be performed
over the ASD by means of the MDE processing tech-
niques needed. Once the ASD desired is obtained, it
will be merged with the partial WSDL model (con-
taining the non-structural information). As a result
a WSDL model that can be directly serialized into a
WSDL document will be obtained.

3 TRACKING SERVICE
VERSIONS COMPATIBILITY

As mentioned before, a first version of the service ver-
sion comparer was introduced in previous works. In
particular, the Service Representation Modeler (SR-
Mod1) provides a textual report on the compatibility
of two given versions of the same service. Such as-
sessment is based on evaluating if sub-typing relation-
ships hold between the elements of both versions.

Next movement on the development of the MDE
framework to support service evolution is to extend
the use of MDE technologies to improve the han-
dling of the comparison process output. More specif-
ically, version comparison results will be expressed
in the shape of traces model (Santiago et al., 2012)
that relates the ASD models representing each ver-
sion of the service. This way, each element of the
trace model would inform of the level of compatibil-
ity between two given elements of the service versions
compared, together with a short description of the is-
sues related to the compatibility assessment. The use
of trace models to represent the output of compatibil-
ity assessment results in two main advantages:

� On the one hand, being persisted as models, such
results could be later processed by means of any
other MDE technique, such as model merging or
model checking (Bernstein, 2003).

� On the other hand, the nature of the informa-
tion gathered from the assessment process is em-
inently relational. It consist mainly of statements

1http://srmod.wordpress.com/

Supporting�Service�Versioning�-�MDE�to�the�Rescue

213



Figure 1: From WSDL files to ASD models.

such as foo element (from S1) is (non-)compatible
with bar element (from S2). Hence, the use of
proper tooling could ease the understanding and
comprehension of this information whose nature
is mainly relational.

All in all, iTrace2 will be used to collect the output
of SRMod into a trace model. The iTrace framework
was devised to support the management and analy-
sis of traceability information in MDE projects. Note
that from a high-level point of view, a trace object
is nothing but the materialization of the relationship
between two or more artifacts. Therefore, traces can
be used to collect information about the relationship
(whether they are compatible or incompatible) be-
tween two or more objects of two given ASD models.
Broadly speaking, distinguish two types of traces will
be distinguished: Compatible and Incompatible.

Figure 3 illustrates the idea by showing a simplis-
tic scenario. The comparison of two given ASDs,
namely S1 and S2 produces a trace model that in-
forms of the compatibility relationships between the
elements of S1 and S2. For instance, the trace model
shows that there is no equivalent element for A1 in
S2; both B1 and C1 do have an equivalent and com-
patible object in S2, namely B2 and C2; and finally,
though D1 is equivalent to D2, they are not compat-
ible. Moreover, incompatible trace objects will con-
tain low-level information on the reasons that resulted
in the non-compatible relationship between the refer-
enced objects.

2http://www.kybele.etsii.urjc.es/itracetool/

4 SERVICE CONTRACTS

The next step in demonstrating the suitability of MDE
techniques in a SOA setting, a similar approach to the
one described below is proposed to be applied to ex-
isting work on service contracts.

According to (Andrikopoulos et al., 2012), a ser-
vice contract is an intermediary construct interposed
between service providers and consumers, expressed
also in ASD form, which can be used to represent
a technical Service Level Agreement (SLA) between
them. The use of contracts allows for greater flexibil-
ity in evolving both interacting parties (i.e., providers
and consumers) in a compatible manner. Further-
more, even the contract itself can evolve under certain
conditions. The fact that the authors (re-)use the ASD
notation and the subtyping relation discussed so far
provide an ideal setting for an extension of our ongo-
ing work.

4.1 Service Contracts Generation

Figure 4 provides an overview of the approach pro-
posed to produce a service contract from two given
versions of a service.

The first step is supported by an ATL refining
transformation (ASDRefine) that produces enriched
versions of the original ASD models representing
each version of the service. Such refinement con-
sists of adding annotations to the elements of the ASD
model. Each annotation states whether there is a com-
patible element in the other ASD model for the one

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

214



Figure 2: From ASD models to WSDL models.

Figure 3: Using trace models to represent service versions
compatibility.

being annotated. Consequently, each ASD model has
to be annotated with regard to the other ASD. That is,
S1 is annotated with regard to S2 and vice versa. As
a result, the S12 and S21 models are obtained.

To that end, the following annotations are defined
(recall that they are added to the elements of the ASD
models). They are explained from the point of view
of S12. The same applies for S21:

� None: there is no equivalent in S21 (there is no ele-
ment owning the same name with the same type).

� Equiv: there is an equivalent in S21. Note that this
annotation refers just to the element itself. Noth-

ing is said about its nested elements of attributes.

� Super: the element is a super-type of an element
in S21. That is to say that the number of elements
nested in the annotated one is greater or equal than
the number of elements of the corresponding ele-
ment in S21. Besides, such nested elements are
more generic than those of the corresponding ele-
ment and the value of its attributes are greater or
equal than the value of the attributes of the corre-
sponding element.

� Sub: the element is a sub-type of an element in
S21. The conditions that must hold can be derived
from inverting those described for super-type an-
notated elements.

Next, the annotated ASDs are consumed by an-
other ATL transformation (ASD2Contract) that pro-
duces a new ASD representing the service contract.

Such contract will contain one element of every
pair of equivalent elements found in S1 and S2 plus
some of those elements for which no equivalent was
found. This ASD model can be seen as an interme-
diary construct in the form of a service contract in-
terposed between service providers and consumers. It
allows for greater flexibility in evolving both parties
in a compatible manner as they relax some of the as-
sumptions regarding the ability of services to evolve
while preserving their compatibility (Andrikopoulos
et al., 2012).

Supporting�Service�Versioning�-�MDE�to�the�Rescue

215



Figure 4: Service contract generation.

4.2 Tracking Service Contracts
Generation

Finally, following the idea collected in Section 3, the
relationships between the contract and the two service
versions are planned to be collected in a trace model.
This would help decisively to get at a first sight which
the problematic elements in the two versions being
compared are: by selecting a given element in the
contract, the user would be automatically informed of
which elements in S1 and S2 are compatible with the
selected element (if they exist).

To that end, four types of traces are considered.
They correspond to the four types of annotations in-
troduced in the previous section: None, Equiv, Sub
and Super. The idea is illustrated in Figure 5: in this
case, by selecting the B element in the contract (C.B),
the user would know that there are compatible ele-
ments both in S1 and S2 (namely, S1:B1 and S2:B2).
By contrast, the selection of A would show that there
is no equivalent element in S2.

In addition, filters can be defined over the trace
model (TrC) to show just compatible, non-compatible
or whichever selection of elements. In other words,
the traces model relating S1, S2 and C can be filtered
applying MDE-techniques, such as merging or trans-
formation (Bernstein, 2003), to produce ad-hoc trace
models. Those models might contain just those traces
referring to the compatible or incompatible elements
of S1, S2 and C.

Note that the trace model (TrC) relating the con-
tract and the service versions would be automatically
produced by the transformation that generates the
contract. That is, the ASD2Contract transformation
shown in Figure 4 consumes S1!2 and S2!1 and pro-

Figure 5: Tracking service contract generation.

duces the C contract model and the TrC trace model.
To that end, the ATL transformation is enriched

with the necessary machinery to support the produc-
tion of trace models (Jouault, 2005). The maturity
reached by some MDE tools allows the implemen-
tation of this kind of model-based implementations
(Volter, 2011).

Furthermore, the contract and the trace model
could be used to produce new versions of the ser-
vice that ensure compatibility by fulfilling the con-
tract since the contract defines the requirements that a
service version has to meet to be compatible regard-
ing the consumers.

5 CONCLUSIONS

This work sets the following steps to take in order
to provide a complete framework to support service
evolution by means of MDE techniques. In particu-
lar, it defines three main directions for future work:
the development of technological bridges to move be-
tween WSDL files to Abstract Service Descriptions;
the modeling of the output of service versions com-
patibility assessment as trace models; and the genera-
tion and tracking of service contracts (in the sense of
Server Level Agreements).

The underlying basis of the proposal is a theoreti-
cal framework that allows the formal definition of the
conditions under which the evolution of service in-
terfaces respects service compatibility. Such frame-
work depends on formal models for the representa-
tion of service interfaces that draw from a common

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

216



metamodel. In this context, the application of MDE
techniques results ideal to provide with a prototype
supporting the theoretical framework.

All in all, this paper is another stage in a research
line initiated in previous works that demonstrates the
synergy between MDE and SOA by discussing how
a service-based theoretical framework can be imple-
mented by means of MDE techniques and tools. The
premise is that almost any SE problem can be ex-
pressed in terms of MDE since almost every software
artifact could be abstracted as a model. Once there,
one can benefit from the advantages brought by MDE
in the form of less costly, rapid software development
by leveraging the level of automation in the develop-
ment process.

ACKNOWLEDGEMENTS

This research has been carried out in the frame-
work of the MASAI project (TIN-2011-22617) and
the Technical Support Staff Subprogram (MICCINN-
PTA-2009), which are partially financed by the Span-
ish Ministry of Science and Innovation.

REFERENCES

Andrikopoulos, V., Benbernou, S., and Papazoglou, M.
(2012). On the evolution of services. Software En-
gineering, IEEE Transactions on, 38(3):609–628.

Bernstein, P. (2003). Applying model management to clas-
sical meta data problems. In First Biennial Confer-
ence on Innovative Data Systems Research, pages 1–
10, Asilomar, CA, USA.

Jouault, F. (2005). Loosely coupled traceability for atl. In
Proceedings of the Traceability Workshop of the First
European Conference on Model Driven Architecture
- Foundations and Applications (ECMDA-FA 2005),
volume 91, pages 29–37, Nuremberg, Germany.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008).
ATL: A model transformation tool. Science of Com-
puter Programming, 72(1-2):31–39.

Jouault, F., Bézivin, J., and Kurtev, I. (2006). TCS: a DSL
for the specification of textual concrete syntaxes in
model engineering. In Proceedings of the 5th inter-
national conference on Generative programming and
component engineering, GPCE ’06, pages 249–254,
New York, NY, USA. ACM.

Meyer, B. (1997). Object-oriented software construction
(2nd ed.). Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.

Papazoglou, M. and van den Heuvel, W.-J. (2007). Ser-
vice oriented architectures: approaches, technologies
and research issues. The VLDB Journal The Interna-
tional Journal on Very Large Data Bases, 16(3):389–
415. 10.1007/s00778-007-0044-3.

Santiago, I., Jiménez, A., Vara, J. M., De Castro, V., Bollati,
V., and Marcos, E. (2012). Model-Driven Engineering
As a New Landscape For Traceability Management:
A Systematic Review. Information and Software Tech-
nology, 54(12):1340–1356.

Schmidt, D. C. (2006). Model-Driven Engineering. IEEE
Computer, 39(2):25–31.

Vara, J. M., Andrikopoulos, V., Papazoglou, M. P., and Mar-
cos, E. (2012). Towards model-driven engineering
support for service evolution. Journal of Universal
Computer Science, 18(17):2364–2382.

Volter, M. (2011). From Programming to Modeling - and
Back Again. Software, IEEE, 28(6):20–25.

W3C (2001). Web services description language (wsdl)
v1.1. http://www.w3.org/TR/wsdl.

Wimmer, M. and Kramler, G. (2006). Bridging grammar-
ware and modelware. In Proceedings of the 2005 in-
ternational conference on Satellite Events at the MoD-
ELS, MoDELS’05, pages 159–168, Berlin, Heidel-
berg. Springer-Verlag.

Supporting�Service�Versioning�-�MDE�to�the�Rescue

217


