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Abstract: A new watermarking method based on Singular Value Decomposition is proposed in this paper. The method 
uses new embedding rules to store a watermark in orthogonal matrix ܷ that is preprocessed in advance in 
order to fit a proposed model of orthogonal matrix. Some experiments involving common distortions for 
grayscale images were done in order to confirm efficiency of the proposed method. The robustness of 
watermark embedded by our method was higher for all the proposed rules under condition of jpeg 
compression and in some cases outperformed existing method for more than 46%. 

1 INTRODUCTION 

Multimedia is becoming increasingly important for 
human communication. In some cases the protection 
of multimedia from unauthorized usage is a critical 
requirement. Existing and widely used techniques in 
Digital Right Protection (DRP) do not always 
provide reliable defence against cybercriminals. One 
of the main difficulties is connected with 
degradation of quality of media content caused by 
application of DRP related tools. Indeed value of 
perceptual content of media is of the same 
importance as the question of ownership. The 
situation is complicated by increasing number of 
multimedia processing tools that do not contradict 
officially with DRP policy, but can introduce some 
specific distortions like, for example, compression. 
New and more sophisticated methods are needed to 
satisfy the requirements which complexity is 
growing. 

One of the branches of DRP is Digital Image 
Watermarking (DIW). The needs of DIW could be 
different depending on a particular application. For 
example, it might be required that a watermark 
resists as much influence as possible (robust 
watermarking)  (Barni, 1997), resists some kinds of 
influence and indicates presence of other kinds 
(semi-fragile watermarking) (Altun, 2006); (Pei, 
2006), and just indicates (fragile) (Fridrich, 2002). 

In order to increase robustness under some 
constraint that somehow represents invisibility (or 

transparency) many methods have been proposed 
during the last 20 years (Cox, 2007). The most 
successful among them are methods operating in 
transform domain. Widely used transforms are DFT, 
DCT, DWT (Fullea, 2001); (Lin, 2000). Those well-
known transforms are parameterized in advance and 
do not depend on an image fragment being 
transformed. Therefore only a set of coefficients is 
important to represent a fragment according to a 
particular transform. However usually few 
coefficients in the set are used for watermarking. 

The drawback is that number of significant 
coefficients of transformed fragment (and 
significance of some coefficients as well) could vary 
between different fragments (Xiao, 2008). 
Consequently different parts of a watermark could 
be embedded with non-equal robustness that 
worsens the total extraction rate under an 
assumption of some kind of distortion. 

Another concern is that embedding of a 
watermark requires quantization of coefficients. A 
proper robustness-transparency trade-off for a 
particular application requires different quantization 
steps for different fragments. However information 
about quantization steps should be transmitted 
separately. 

Different type of transform is provided by 
Singular Value Decomposition (SVD). It assures 
that the number of coefficients encapsulating image 
fragment’s features is small and constant. These 
coefficients form a diagonal in a matrix of singular 
values. However SVD is a unique transform which 
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is different for every fragment and information about 
the transform is in left and right orthonormal 
matrices. Utilization of singular values for 
watermarking provides good trade-off between 
robustness and invisibility (Yongdong, 2005). 

Though, elements of left and right orthonormal 
matrices could also be used for watermarking. The 
main complication for modification of elements of 
left and right orthonormal matrices is that matrices 
can become non-orthogonal. This considerably 
worsens robustness of a watermark. 

The main contribution of this paper is to provide 
a watermarking method that modifies left 
orthonormal matrix in a way it remains orthonormal. 
Another contribution is utilization of different 
embedding rules that provide different robustness-
transparency trade-off which improves flexibility 
(adjustability) of watermarking. 

The rest of the paper is organized as following: a 
short review of relevant watermarking methods 
exploiting SVD is given in the Section 2; Section 3 
bears our own approach which is described in detail; 
then, some experimental results are represented in 
Section 4 followed by a discussion of their 
importance in Section 5; finally, in Section 6 the 
paper is concluded by general remarks regarding 
relevance of our approach and its influence on future 
research. 

2 SVD-BASED WATERMARKING 

Watermarking methods utilizing SVD have become 
especially popular during the last 10 years. 

This transform decomposes image fragment ܫ on 
two orthogonal matrices ܷ and ܸ and diagonal 
matrix ܵ containing singular values: 

 

ܫ ൌ ܷ ∙ ܵ ∙ ்ܸ. (1)
 

Virtually any component from such decomposition 
can be used for watermark embedding. There are 
SVD-based watermarking methods that are blind 
(Modaghegh, 2009), semi-blind (Manjunath, 2012) 
and non-blind (Dharwadkar, 2011). In spite of that 
the classification is quite clear, some methods, for 
example, state they do not require for extraction any 
additional media except a key, but during 
watermarking the region of embedding is carefully 
chosen to optimize robustness-transparency trade-off 
(Singh, 2012). Evidently it is not absolutely fair to 
compare performance of pure blind methods with 
random key toward performance of such region 
specific methods as the latter require new key 

(different size) for each new image which is a lot of 
additional information. 

Starting from the first methods modifying just 
the biggest singular value of decomposed image 
fragment (Sun, 2002), continued further by more 
sophisticated methods combining DCT-SVD (Lin, 
2000); (Manjunath, 2012); (Quan, 2004), DWT-
SVD (Dharwadkar, 2011); (Fullea, 2001); (Ganic, 
2004) and methods optimizing trade-off between 
robustness and transparency for SVD-based 
watermarking (Modaghegh, 2009) only few among 
those approaches consider for embedding orthogonal 
matrices ܷ and ܸ. The papers discussing blind 
embedding in orthogonal matrix are (Chang, 2005) 
(Tehrani, 2010) where watermarking methods that 
operate on ܷ are proposed. The difference between 
them is that in (Tehrani, 2010) some additional 
block-dependent adjustment of a threshold is done. 
Realizations and computational requirements for 
both methods are quite simple. However, their 
impact is not only in increased robustness compared, 
for example, to (Sun, 2002). The methods also could 
be modified in order to embed larger watermarks. 
The idea to switch from standard approach of 
modification of one singular value (as it is usually 
done in most SVD-based watermarking schemes) to 
modification of the first column in ܷ provides better 
adaptation to robustness-transparency requirement. 
The first column contains several elements that are 
of equal significance. Their significance is the same 
as it is for the biggest singular value which is clear 
when equation (1) is rewritten in a different form: 

 

ܫ ൌ ∑ ௜ܵ,௜ ∙ ௜ܷ ∙ ௜ܸ
்

௜ , (2)
 

where  ௜ܷ and ௜ܸ are corresponding columns of ܷ 
and ܸ respectively. Being constructed from ݅ 
different significance layers image fragment ܫ has 
scaling factor ௜ܵ,௜ on each layer. Adoptive 
quantization of the first scaling factor is not always 
the best alternative for watermarking because it 
requires transmission of additional information 
about quantization steps. Therefore it would be more 
beneficial to modify the first layer in a more 
sophisticated manner that provides adaptation which 
purely corresponds to blind strategy. Such attempt is 
made by Chang (2005) and Tehrani (2010) by 
introducing a rule with a threshold. The rule is 
applied to a pair of elements in the first column of ܷ 
and can be used for embedding with different 
robustness-transparency rate for each block. 

Nevertheless approaches presented by Chang 
(2005) and Tehrani (2010) have some disadvantages 
because the authors did not develop a tool to achieve 
orthogonality and normalization of modified matrix 
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ܷ. On the other hand SVD guarantees that during 
extraction of a bit of a watermark from a square 
block all three resulting matrices are orthogonal. 
Therefore matrices that were used to compose a 
block during embedding phase are not equal to the 
matrices calculated during extraction phase. This 
fact obviously could cause misinterpretation of a bit 
of a watermark. Another disadvantage of Chang’s 
(2005) and Tehrani’s (2010) approaches is that they 
used only one embedding rule that considers only 
two out of four elements in a column. Obviously 
there is a better way to minimize distortions of 
embedding if more elements are taken into account. 

In order to increase the performance of SVD-
based blind watermarking in ܷ domain some 
improvements are proposed in this paper. First we 
provide that modified ܷ-matrix is orthonormal 
which improves robustness. Second we propose 
different embedding rules that maintain different 
robustness-transparency trade-off which improves 
flexibility. Third we minimize embedding 
distortions which reduces visual degradation of 
original image. 

3 PROPOSED METHOD 

Taking into account disadvantages of previously 
proposed SVD-based watermarking methods new 
approach is considered in this section. The 
improvements incorporated in our approach provide 
that altered ܷ matrix is orthogonal and normalized. 
Different embedding rules are also proposed. 

Satisfying orthogonality requirement would 
consequently imply better robustness as all the 
changes introduced to the most robust part of a 
matrix (the first column) would not have projections 
on other dimensions (defined by second, third and 
fourth columns) except the dimension defined by 
that part. In order to provide this a special kind of 
approximation of an initial orthogonal matrix is 
proposed. 

Another improvement considered to enhance 
robustness while preserving most of an original 
image is normalization of altered orthogonal matrix. 
Even in case each of original orthogonal matrices 
defined by SVD is normalized, embedding of a 
watermark according to (Chang, 2005); (Tehrani, 
2010) cancels this quality. In contrast to that our 
embedding method assures each watermarked 
orthogonal matrix is normalized. 

The way watermark bits are interpreted also 
significantly influences robustness. The only kind of 
matrix elements interpretation described in (Chang, 

2005), (Tehrani, 2010) is the comparison of absolute 
values of the second and the third elements in the 
first column. In some cases we could greatly benefit 
from different ways of interpretation that take into 
account more elements. Our method of embedding 
utilizes five different embedding rules where each 
rule has an advantage under an assumption of some 
kind of distortion.  

3.1 Approximation of Orthogonal 
Matrix 

The approximation of an initial orthogonal matrix 
proposed in this paper is based on 4x4 matrix that 
can be described by 4 variables in different 
combinations. Each combination creates an entry in 
a set. One matrix ܣ from the possible set is 
represented as following: 
 

ܣ ൌ ൦

െܽ ܿ ݀			ܾ
݀ െ ܾ ܽ			ܿ
ܾ ݀ െ ܿ			ܽ
ܿ ܽ ܾ െ ݀

൪ . (3)

 

This matrix is always orthogonal and under an 
assumption single row (or column) is normalized the 
whole matrix is normalized too. Similarly to widely 
used basis functions this matrix is described 
compactly (just 4 variables) but in contrast to them 
each separate element in a row (or column) is free 
from being functionally dependent on others. Such a 
quality makes these matrices quite suitable for 
accurate and computationally light approximations 
of original orthogonal matrices obtained after SVD 
of square image fragments. Moreover every matrix 
from the set is a distinctive pattern which could be 
used to assess the distortions introduced after 
watermark is embedded. Optionally this distinction 
could be used to determine during extraction which 
matrix from equally suitable ܷ and ܸ caries 
watermark’s bit. The whole set of proposed 
orthogonal matrices and option to choose between 
embedding in ܷ or ܸ is necessary to achieve 
minimal total distortion that consists of an 
approximation error and a distortion caused by 
embedding according to some rule.  

There could be several approximation strategies 
considering models from the proposed set of 
orthogonal matrices. The main idea of embedding is 
to provide extraction of watermark bits from 
orthogonal matrices obtained after SVD with highest 
possible rate while preserving high enough image 
quality. Extraction is possible if during embedding a 
watermarked image fragment is composed using one 
diagonal matrix ܵ and two orthogonal matrices ܷ௪ 
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and ܸ (here ܷ௪ is defined to store a bit). 
Suppose now we are preparing (or 

approximating) the first orthogonal matrix ܷ for 
embedding, so the result is ܷ௪

௣ , but the second 
orthogonal matrix ܸ remains unchanged. As we do 
not embed in singular values there is no need to care 
about the content of the diagonal matrix except the 
requirement that it should be diagonal. So let 
modified matrix of singular values be ܵ∗ and 
possibly different from original ܵ. Having the 
original image fragment ܫ of size 4x4 it can be 
written: 

 

൫ܷ௪
௣൯

்
∙ ܫ ∙ ܸ ൌ ܵ∗. (4)

 

Note that in case of such approximation strategy it is 
only required to satisfy twelve off-diagonal elements 
of ܵ∗ are as small as possible (in Least Squares 
sense). Then after approximation is done those 
twelve elements should be put to zero, so 
approximation error causes some distortion of image 
fragment before the actual embedding. 

Another approximation strategy is to provide 
both ܵ and ܸ are unchanged. In that case it is 
necessary to approach: 

 

ܷ௪
௣ ∙ ܵ ∙ ்ܸ ൌ (5) .ܫ

 

This is more challenging task as it is required to 
match sixteen pixels as close as possible using the 
same model of orthogonal matrix defined by just 
four variables. However, this kind of approximation 
strategy could have some advantage in perceptual 
sense because singular values are preserved. 

For our particular realization of watermarking 
method it was decided to limit watermark 
embedding by the first kind of approximation only. 
In order to show in more details the approximation 
with proposed orthogonal matrix let us substitute the 
matrix product ܫ ∙ ܸ in (4) with 4x4 matrix ܤ: 

 

൫ܷ௪
௣൯

்
∙ ܤ ൌ ܵ∗. (6)

 

Now let’s substitute ൫ܷ௪
௣൯

்
 with orthogonal matrix 

A in (3): 
 

ܣ ∙ ܤ ൌ ܵ∗. (7)
 

Matrix ܵ∗ for simplicity could be transformed from 
4x4 to 1x16 vector ܵ௩∗ by rearranging elements of ܵ∗ 
row by row which will lead to the following 
equation: 

 

ሾܽ		ܾ		ܿ		݀ሿ ∙ ∗ܤ ൌ ܵ௩∗, (8)
 

where 
 

∗ܤ ൌ

ൌ

ۏ
ێ
ێ
ۍ
െܤଵ,ଵ
ସ,ଵܤ
ଶ,ଵܤ
ଷ,ଵܤ

െܤଵ,ଶ
ସ,ଶܤ
ଶ,ଶܤ
ଷ,ଶܤ

െܤଵ,ଷ
ସ,ଷܤ
ଶ,ଷܤ
ଷ,ଷܤ

െܤଵ,ସ
ସ,ସܤ
ଶ,ସܤ
ଷ,ସܤ

ଷ,ଵܤ
െܤଶ,ଵ
ସ,ଵܤ
ଵ,ଵܤ

ଷ,ଶܤ
െܤଶ,ଶ
ସ,ଶܤ
ଵ,ଶܤ

ଷ,ଷܤ
െܤଶ,ଷ
ସ,ଷܤ
ଵ,ଷܤ

ଷ,ସܤ
െܤଶ,ସ
ସ,ସܤ
ଵ,ସܤ

ସ,ଵܤ
ଵ,ଵܤ
െܤଷ,ଵ
ଶ,ଵܤ

 

ସ,ଶܤ
ଵ,ଶܤ
െܤଷ,ଶ
ଶ,ଶܤ

ସ,ଷܤ
ଵ,ଷܤ
െܤଷ,ଷ
ଶ,ଷܤ

ସ,ସܤ
ଵ,ସܤ
െܤଷ,ସ
ଶ,ସܤ

ଶ,ଵܤ
ଷ,ଵܤ
ଵ,ଵܤ
െܤସ,ଵ

ଶ,ଶܤ
ଷ,ଶܤ
ଵ,ଶܤ
െܤସ,ଶ

ଶ,ଷܤ
ଷ,ଷܤ
ଵ,ଷܤ
െܤସ,ଷ

ଶ,ସܤ
ଷ,ସܤ
ଵ,ସܤ
െܤସ,ସے

ۑ
ۑ
ې
. 

 

Equation (8) can be simplified by ignoring 1, 6, 11 
and 16 columns and elements of ܤ∗ and ܵ௩∗ 
respectively because for the current kind of 
approximation diagonal elements of ܵ∗ are not 
important. By doing so we will get ܤ∗∗ and zero 
vector ૙ଵൈଵଶ: 

 

∗∗ܤ ൌ

ൌ

ۏ
ێ
ێ
ۍ
െܤଵ,ଶ
ସ,ଶܤ
ଶ,ଶܤ
ଷ,ଶܤ

െܤଵ,ଷ
ସ,ଷܤ
ଶ,ଷܤ
ଷ,ଷܤ

െܤଵ,ସ
ସ,ସܤ
ଶ,ସܤ
ଷ,ସܤ

ଷ,ଵܤ
െܤଶ,ଵ
ସ,ଵܤ
ଵ,ଵܤ

ଷ,ଷܤ
െܤଶ,ଷ
ସ,ଷܤ
ଵ,ଷܤ

ଷ,ସܤ
െܤଶ,ସ
ସ,ସܤ
ଵ,ସܤ

ସ,ଵܤ
ଵ,ଵܤ
െܤଷ,ଵ
ଶ,ଵܤ

ସ,ଶܤ
ଵ,ଶܤ
െܤଷ,ଶ
ଶ,ଶܤ

ସ,ସܤ
ଵ,ସܤ
െܤଷ,ସ
ଶ,ସܤ

 

ଶ,ଵܤ
ଷ,ଵܤ
ଵ,ଵܤ
െܤସ,ଵ

ଶ,ଶܤ
ଷ,ଶܤ
ଵ,ଶܤ
െܤସ,ଶ

ଶ,ଷܤ
ଷ,ଷܤ
ଵ,ଷܤ
െܤସ,ଷے

ۑ
ۑ
ې
, 

 

ሾܽ ܾ ܿ ݀ሿ ∙ ∗∗ܤ ൌ ૙ଵൈଵଶ. (9)
 

It is natural to suggest that simplest solution for (9) 
is ܽ ൌ ܾ ൌ ܿ ൌ ݀ ൌ 0, but taking into account 
requirement for ܣ to be normalized the solution is 
not as trivial: 

 

൜
ሾܽ ܾ ܿ ݀ሿ ∙ ∗∗ܤ ൌ ૙ଵൈଵଶ
ܽଶ ൅ ܾଶ ൅ ܿଶ ൅ ݀ଶ ൌ 1

. (10)
 

Obviously such a regularized overdetermined system 
represents non-linear Least Squares task. 

For further embedding it is required to prepare a 
set of approximated orthogonal matrices where 
matrix ܣ is just one possible variant for final 
decision. 

Five embedding rules were introduced to 
improve robustness. Each rule is a condition that 
could be satisfied in different ways, so we tried to 
minimize distortions introduced on that step too. 
Thanks to simplicity of our orthogonal matrix model 
minimization of embedding distortions can also be 
done quite easily. Suppose that as a result of 
watermark embedding matrix ܣ has been changed 
and become ܣ∗. Because it is required to keep ܣ∗ 
normalized we will accept for further simplicity that 
there is some vector ሾ∆ܽ, ∆ܾ, ∆ܿ, ∆݀ሿ with length 1 
which is orthogonal to ሾܽ, ܾ, ܿ, ݀ሿ and ܣ∗ is formed 
from 
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ܽ∗ ൌ √1 െ ݊ଶ ∙ ܽ ൅ ݊ ∙ ∆ܽ, ܾ∗ ൌ √1 െ ݊ଶ ∙ ܾ ൅
݊ ∙ ∆ܾ; 

ܿ∗ ൌ √1 െ ݊ଶ ∙ ܿ ൅ ݊ ∙ ∆ܿ, ݀∗ ൌ √1 െ ݊ଶ ∙ ݀ ൅
݊ ∙ ∆݀; 

 

where 0 ൑ ݊ ൑ 1. The result of extraction of a 
watermarked image fragment from unwatermarked 
will be: 

 

ܣ ∙ ܵ∗ ∙ ்ܸ െ ∗ܣ ∙ ܵ∗ ∙ ்ܸ ൌ ሺܣ െ ሻ∗ܣ ∙ ܵ∗ ∙ ்ܸ. (11)
 

Matrix ܣ െ  has the same ∗ܣ is orthogonal as ∗ܣ
structure as ܣ. Consequently the Sum of Square 
Residuals (SSR) between watermarked and 
unwatermarked fragments can be defined as: 
 

ܴܵܵ ൌ ܣଶሺ݉ݎ݋݊ െ ሻ∗ܣ ∙෍ሺ ௜ܵ,௜
∗

ସ

௜ୀଵ

ሻଶ ൌ 

ൌ ଶ݉ݎ݋݊	 ൬ܣ െ ቀඥ1 െ ݊ଶ ∙ ܣ ൅ ݊ ∙ ቁ൰෍ሺܣ∆ ௜ܵ,௜
∗

ସ

௜ୀଵ

ሻଶ.

(12)

 

Here ∆ܣ is formed from ∆ܽ, ∆ܾ, ∆ܿ, ∆݀ and is 
normalized. Further simplification taking into 
account the previously made assumptions will 
produce an equation: 

 

ܴܵܵ ൌ 2൫1 െ √1 െ ݊ଶ൯ ∙ ∑ ሺ ௜ܵ,௜
∗ସ

௜ୀଵ ሻଶ. (13) 
 

According to (13) distortion of image fragment 
caused by watermark embedding in our method 
depends on the length of the vector added to the first 
column of orthogonal matrix ܣ and does not depend 
on a vector’s orientation in contrast to the method 
proposed in (Chang, 2005), (Tehrani, 2010). This 
quality could greatly simplify procedure for 
minimization of watermarking distortions and enable 
more different embedding rules to be used. Equation 
(13) also provides an understanding that the same 
embedding amplitude could lead to different 
distortions in different image fragments because of 
influence of singular values.  

3.2 Embedding Rules 

Proposed embedding rules could be split in two 
groups. The first group consists of rules 1ܮସ, 2ܮସ 
and ܮ∞ସ that utilize all the four elements of the first 
column of orthogonal matrix for both embedding 
and retrieving. The second group consists of rules 
 2ଶ that utilize just two elements forܮ 1ଶ andܮ
retrieving, however, could change four elements for 
embedding because optimization takes place under 
normalization constraint. Further suppose we are 
embedding bit ܾ in ܷ with a positive non-zero 
threshold ܶ: 

:1ସܮ ሺെ1ሻ௕ ∙

ቀฮ൫ ଵܷ,ଵ
∗ , ܷଶ,ଵ

∗ 	൯ฮ
ଵ
െ ฮ൫ܷଷ,ଵ

∗ , ܷସ,ଵ∗ 	൯ฮ
ଵ
ቁ ൒ ܶ; 

 
:2ସܮ ሺെ1ሻ௕ ∙

ቀฮ൫ ଵܷ,ଵ
∗ , ܷଶ,ଵ

∗ 	൯ฮ
ଶ
െ ฮ൫ܷଷ,ଵ

∗ , ܷସ,ଵ∗ 	൯ฮ
ଶ
ቁ ൒ ܶ; 

 
:ସ∞ܮ ሺെ1ሻ௕ ∙

ቀฮ൫ ଵܷ,ଵ
∗ , ܷଶ,ଵ

∗ 	൯ฮ
ஶ
െ ฮ൫ܷଷ,ଵ

∗ , ܷସ,ଵ∗ 	൯ฮ
ஶ
ቁ ൒ ܶ;  (14) 

 

:1ଶܮ ሺെ1ሻ௕ ∙ ቀฮܷଶ,ଵ
∗ ฮ

ଵ
െ ฮܷଷ,ଵ

∗ ฮ
ଵ
ቁ ൒ ܶ; 

 

:2ଶܮ ሺെ1ሻ௕ ∙ ቀฮܷଶ,ଵ
∗ ฮ

ଶ
െ ฮܷଷ,ଵ

∗ ฮ
ଶ
ቁ ൒ ܶ. 

 

For each embedding rule there is the same additional 
normalization constraint and the same goal function 
to minimize distortions (that is quite simple thanks 
to the proposed orthogonal matrix): 

 

ฮ൫ ଵܷ,ଵ
∗ , ܷଶ,ଵ

∗ , ܷଷ,ଵ
∗ , ܷସ,ଵ∗ ൯ฮ

ଶ
ൌ 1

෍൫ ௜ܷ,ଵ
∗ െ ௜ܷ,ଵ൯

ଶ
ସ

௜ୀଵ

→ ݉݅݊
 (15)

3.3 Watermarking Procedure 

After embedding is done the resulting matrix ܷ∗ 
should be composed with ܵ∗ and ்ܸ which produces 
watermarked image fragment ܫ∗. However, it is 
necessary to notice that ܫ∗ contains real-valued 
pixels instead of integers. There are many possible 
kinds of truncation and each kind distorts orthogonal 
matrix ܷ∗, but, for example, simple round operation 
is quite negligible to retrieve a bit for some 
reasonable ܶ (0.02 works well for all the embedding 
rules). A diagram of watermark embedding is shown 
on Figure 1. 

As it follows from the diagram the least distorted 
watermarked fragments are chosen in order to 
replace the corresponding original fragments of the 
image. This is thanks to availability of different 
orthogonal matrices in the set used for the 
approximation. It is necessary to notice that in the 
current realization we utilized constant threshold for 
all the blocks, but threshold adaptation can be done 
in the future more easily (at once, non-iteratively) 
compared to (Tehrani, 2010) as distortion in our 
method depends only on the amplitude of a vector 
added to the first column of ܷ. 

To extract a watermark from the watermarked 
image it is required to know the key and the rule. 
However in contrast to embedding the extraction 

SVD-based�Digital�Image�Watermarking�on�approximated�Orthogonal�Matrix

325



 

threshold for each rule is zero. The extraction 
diagram is given on Figure 2. 
 

Set of 5 Embedding 
Rules

SVD of chosen Blocks 
(Key)

Block Partition

Set of orthogonal 
matrices

Approximation of U

Embedding acc. to Rule 
(Watermark, Threshold)

Inverse SVD

Pixels’ truncation

Watermark’s bit 
correct?

Calculate Blocks’ distortion

Find minimum distorted 
Blocks

Replace original Blocks

Five 
watermarked 

images

Original 
Image

yes

no

  

Figure 1: Watermark embedding diagram. 

 

Figure 2: Watermark extraction diagram. 

In our realization we also avoided embedding 
area to be limited only by blocks with greater 
complexity as defined in (Chang, 2005), (Tehrani, 
2010), because due to some kind of distortion 
complexity (namely the number of non-zero singular 
values per block) could change and the person 
extracting a watermark could mismatch a key on 
different set. Another reason is that such a set has 
different size for different images which forces to 
use synchronized PRNG (Pseudorandom Number 
Generator, not steady key as we use) between 
embedder and extractor which is impractical. 

4 EXPERIMENTAL RESULTS 

In order to confirm the improvements of the 
proposed watermarking method some experiments 
took place. Each result has been compared with the 
result provided by the method described in (Chang, 
2005) under the same circumstances. Original 
images, watermarking key and watermark were 
absolutely identical. We tried to adjust parameters so 
that Peak Signal to Noise Ratios (PSNRs) between 
each original image and the corresponding 
watermarked one were very close for both methods. 
There were four kinds of distortions used in the 
experiment: white Gaussian noise, speckle noise, 
“salt&pepper” and Jpeg compression. 

Three grayscale host images with dimension 
512x512 and bitdepth 8 bit were used for watermark 
embedding. Those images appear to be tested quite 
widely in papers related to image processing and are 
namely: livingroom.tif, mandril.tif and 
cameraman.tif (Figure 3-5). The choice of images 
for watermarking could be explained in a way that 
we tried to compare a performance of the proposed 
method on images with different amount of fine 
details. Here image livingroom.tif contains some 
areas with fine details, mandril.tif has a lot of fine 
details and cameraman.tif contains few details while 
having quite large areas with almost constant 
background. 

The watermark for all our tests is the same and is 
1024 bit long. For the better visual demonstration of 
each method’s robustness it has been prepared in a 
form of square binary 32x32 image that depicts 
Canadian maple leaf. Each bit of the watermark has 
been embedded according to the same key 
(generated randomly) for all the images. The key 
defines 4x4 image fragments used for watermarking 
and is 16384 bit long. Extraction is done using the 
same key. Without distortions extraction of the 
watermark is absolutely correct for all the methods 
and images. 

Taking into account that different rules were 
used for embedding in our method and the 
approximation had been done previously comparison 
with the method proposed in (Chang, 2005) is more 
complex. The only parameter influencing robustness 
in that method is a threshold, but embedding with 
the same threshold has different impact on an image 
when both methods are used. Therefore, the 
threshold for the method proposed in (Chang, 2005) 
has been adjusted after embedding by our method is 
done in a way that each in a pair of the 
corresponding watermarked images has the same (or 
very similar) PSNR. 
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Figure 3: Original grayscale image livingroom.tif. 

 

Figure 4: Original grayscale image mandril.tif. 

 

Figure 5: Original grayscale image cameraman.tif. 

Four models of distortions applied to the 
watermarked images in our experiment could be 
split in two types according to the noise nature: 
additive and non-additive. Distortions with additive 
noise are namely Gaussian and speckle. Before 
applying distortions to watermarked images their 
pixel values were scaled to match interval [0, 1]. The 

mean for Gaussian is 0 and the variance shown in 
tables is 0.0006. Speckle noise adds, to each pixel 
ݔ ௜,௝, the term݌ ∙  is distributed uniformly ݔ ௜,௝ where݌
with mean 0 and variance 0.001. Distortions 
utilizing non-additive noise types are “salt & 
pepper” and lossy jpeg-compression. In our 
experiments we have applied 3% “salt & pepper” 
and 75 image quality for jpeg (Matlab realization).  

An extraction with the key has been done 
afterwards. To compare the results we used the value 
1-BER (Bit Error Rate) which indicates the fraction 
of correctly extracted bits of a watermark. We have 
placed the values 1-BER calculated according to 
each method, embedding rule and distortion type in 
separate table for each image (Tables 1-3). Each 
result has been averaged among 100 runs for all 
kinds of distortions except jpeg (as it is 
straightforward and does not contain random 
component). For better comparability each row with 
results from our method was neighbored to a row 
containing results with similar PSNR from method 
(Chang, 2005). For every pair of rows better 
indicator of robustness toward particular distortion is 
bolded.  

Table 1: Results of watermark extraction for 
livingroom.tif. 

Method, Rule
Gaussian, 

0.0006 
Speckle, 

0.001 

Salt & 
pepper, 

0.03 
Jpeg, 75 

1ସ, 46.13dB 0.9325 0.9823 0.8451 0.9844ܮ
Chang,46.02dB 0.9737 0.9997 0.8986 0.9170 
2ସ, 49.68dB 0.8581ܮ 0.9288 0.8333 0.9268

Chang,49.60dB 0.8571 0.9464 0.8952 0.7324 
ସ, 49.93dB 0.8797∞ܮ 0.9602 0.8805 0.9092 

Chang,49.83dB 0.8410 0.9326 0.8967 0.7227
 1ଶ, 50.22 dB 0.8833 0.9660 0.8954 0.8076ܮ

Chang,50.22dB 0.8063 0.8961 0.8950 0.6865
2ଶ, 50.22 dB 0.8847ܮ 0.9662 0.8975 0.8066

Chang,50.22dB 0.8063 0.8961 0.8950 0.6865 

Table 2: Results of watermark extraction for mandril.tif. 

Method, Rule
Gaussian, 

0.0006 
Speckle, 

0.001 

Salt & 
pepper, 

0.03 
Jpeg, 75 

 1ସ, 42.37dB 0.9681 0.9902 0.8690 0.9961ܮ
Chang,42.29dB 0.9976 1.0000 0.9070 0.9775 
2ସ, 46.12dB 0.9026 0.9469 0.8539 0.9297ܮ

Chang,46.11dB 0.9648 0.9988 0.8988 0.8174 
 ସ, 46.70dB 0.9138 0.9685 0.8837 0.8652∞ܮ

Chang,46.65dB 0.9492 0.9949 0.8981 0.7822
 1ଶ, 47.55dB 0.9099 0.9715 0.9000 0.8057ܮ

Chang,47.54dB 0.9060 0.9736 0.8979 0.7236
2ଶ, 47.54dB 0.9111ܮ 0.9716 0.8978 0.8076

Chang,47.54dB 0.9060 0.9736 0.8979 0.7236 
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Table 3: Results of watermark extraction for 
cameraman.tif. 

Method, Rule 
Gaussian, 

0.0006 
Speckle, 

0.001 

Salt & 
pepper, 

0.03 
Jpeg, 75 

 1ସ, 45.70dB 0.8908 0.9745 0.8322 0.9336ܮ
Chang,45.70dB 0.9153 0.9932 0.8918 0.8125 
 2ସ, 50.89dB 0.8123 0.8933 0.8104 0.8926ܮ

Chang,50.82dB 0.7927 0.8876 0.8471 0.6094 
 ସ, 51.06dB 0.8419 0.9327 0.8667 0.8467∞ܮ

Chang,51.05dB 0.7808 0.8712 0.8410 0.5840
 1ଶ, 52.32dB 0.8377 0.9338 0.8591 0.7227ܮ

Chang,52.30dB 0.6716 0.7365 0.8317 0.4922
 2ଶ, 52.31dB 0.8419 0.9348 0.8603 0.7217ܮ

Chang,52.30dB 0.6716 0.7365 0.8317 0.4922 
 

Images watermarked by the proposed method are 
depicted in Figures 6-8. The rule 2ܮସ has been used 
for this particular demonstration and PSNRs are 
49.68 dB, 46.12 dB and 50.89 dB for livingroom.tif, 
mandril.tif and cameraman.tif respectively. 

 

 

Figure 6: Watermarked grayscale image livingroom.tif. 

 

Figure 7: Watermarked grayscale image mandril.tif. 

 

Figure 8: Watermarked grayscale image cameraman.tif. 

The threshold for the method proposed in 
(Chang, 2005) has been adjusted so that very similar 
PSNR has been achieved for each watermarked 
image. Compression according to jpeg standard has 
been done then. The watermarks extracted from the 
watermarked image livingroom.tif by both methods 
are shown together with the original watermark 
extracted from non-distorted watermarked image 
(Figure 9). 

 

 
               (a)                                (b)                               (c) 

Figure 9: Original and distorted by jpeg compression 
watermarks. 

The demonstrated binary images represent 
watermarks extracted with rates 1 (Figure 9. (a), 
both methods, no distortion), 0.9268 (Figure 9. (b), 
our method, jpeg 75), 0.7324 (Figure 9. (c), method 
(Chang, 2005), jpeg 75).  

5 DISCUSSION 

Comparing the rate of correct watermark extraction 
for our method and the method proposed in (Chang, 
2005) and further developed in (Tehrani, 2010) we 
can state the following. Robustness demonstrated by 
our method against jpeg attack is much better than 
those demonstrated by (Chang, 2005). This is true 
for all the embedding rules, but to be said separately 
rule 2ܮସ provides the greatest improvement for all 
the trials with jpeg-compression: it is about 27% 
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better on livingroom.tif, about 14% better on 
mandril.tif and more than 46% better on 
cameraman.tif. 

For other types of distortions including Gaussian, 
speckle, “salt&pepper” noises rules 1ܮଶ and 2ܮଶ 
performed better than others: about 10% outperform 
(Chang, 2005) for Gaussian on livingroom.tif, just 
1% better than (Chang, 2005) for Gaussian on 
mandril.tif, but 27% better than (Chang, 2005) for 
speckle on cameraman.tif. There was no 
considerable advantage found for “salt&pepper” 
noise for any rule. However rules 	1ܮସ and 2ܮସ 
usually perform worse under conditions with 
Gaussian, speckle, and “salt&pepper” noises. The 
rule ܮ∞ସ has considerable advantage on jpeg which 
is close to the advantage 2ܮସ has and under 
conditions with Gaussian, speckle, and 
“salt&pepper” noises in some cases performs several 
percent better than (Chang, 2005) (livingroom.tif 
and cameraman.tif). The highest achievement for 
rule 1ܮସ is to be 15% better toward (Chang, 2005) 
under jpeg-attack for cameraman.tif, but the gaps in 
trials with Gaussian, speckle, and “salt&pepper” 
noises are sometimes too high, so, it should probably 
be rejected from future experiments. 

It is possible to issue a short guidance for end-
user that reflects better flexibility of proposed 
method utilizing different rules: embedding rules 
 2ଶ should be used if there are comparableܮ 1ଶ andܮ
chances for each kind of tested distortions to occur; 
rule ܮ∞ସ is better to be used when chances of jpeg 
compression are higher; we recommend to use rule 
 2ସ  in case the only kind of possible distortion isܮ
jpeg. 

The threshold used in all our embedding rules 
was the same. On the other hand, PSNRs of the 
watermarked images are quite high. So, in the future 
we would like to experiment with different values of 
the threshold (probably greater) and also apply 
adaptation for each block as it is proposed in 
(Tehrani, 2010). Another direction we might wish to 
explore is an embedding in ܷ matrix of the blocks of 
greater size, but this requires a different model of 
orthogonal matrix to be used for approximation.  

6 CONCLUSIONS 

The watermarking method operating on ܷ-domain of 
 transform was proposed. Its robustness is better ܦܸܵ
than those for the method proposed in (Chang, 
2005). The improvements are due to optimizations 
done on two stages of embedding. 

The first stage serves for the approximation of ܷ 
matrix of transformed 4x4 image blocks. The 
approximation was done according to the proposed 
model that describes orthogonal matrix analytically. 
This procedure allows to preserve orthogonality of ܷ 
matrix after watermark bit is embedded. 
Orthogonality of ܷ-matrix improves extraction rate. 

The second stage represents an embedding 
according to one of five proposed embedding rules. 
Each of the embedding rules has its own trade-off 
between robustness and transparency which allows 
to choose the best rule for particular application. A 
minimization of embedding distortions was done for 
each rule during embedding which reduces 
degradation of original image.  

Several kinds of attacks were applied to test 
robustness. It was experimentally confirmed that for 
each kind of attack there is a different embedding 
rule which is more preferable than the others. 
However, watermarking according to each of the 
proposed embedding rules outperforms the method 
proposed in (Chang, 2005) under condition of JPEG-
attack.  
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