
A Security-enhanced Design Methodology for Embedded Systems

Alberto Ferrante, Jelena Milosevic and Marija Janjušević
ALaRI, Faculty of Informatics, University of Lugano, via G. Buffi 13, Lugano, Switzerland

Keywords: Security, Design Methodology, Embedded Systems, Security Metric, Metric, AHP.

Abstract: Designing an embedded system is a complex process that involves working both on hardware and on software.
Designers often optimize the systems that they design for specific applications; an optimal system is the one
that can execute the desired set of applications with the required performances at the lowest possible cost. Cost
may be expressed in different ways such as, for example, energy consumption and/or silicon area. Security is
being, in the common practice, disregarded during this phase and inserted in later stages of the design process,
thus obtaining non optimal and/or non safe systems.
In this paper we propose a design methodology for embedded systems that integrate the choice of suitable
design solutions into the early stages of the design process. The main purpose of this methodology is to
provide a way to evaluate security as an additional optimization parameter. Along with a description of the
methodology, in this paper we also show a case study that explains how the methodology can be applied and
that proves its effectiveness.

1 INTRODUCTION

The use of embedded systems has been continuously
increasing in the last years both with respect to the
number of application areas and to the complexity of
platforms designed: embedded systems have become
fundamental in ICT. Unfortunately, this increase in
their use, even in new, critical, and non-protected en-
vironments, has not been accompanied by a proper
development of methodologies for making them se-
cure (Viega and Thompson, 2012). Yet, security for
these systems proved to be a more difficult and more
critical problem than security for general purpose sys-
tems: added difficulties are given by the often lim-
ited amount of resources available to implement se-
curity solutions. Criticality is given both by the kinds
of data stored in mobile devices (e.g., phone book-
marks and personal user data) and by the kind of dam-
ages that an attack to a mobile system may produce.
Though, security is not yet perceived as a significant
problem by embedded systems users. Embedded sys-
tems (e.g., vehicle infotainment systems, smart house
control system, a health monitoring system) may be
directly or indirectly (i.e., through other devices) net-
work connected for different purposes and they can
be used as a mean for attacking these devices (Seo
and Cho, 2012). Attackers may exploit possible se-
curity holes to gain access to the control system con-
sidered and cause significant damages. In fact, while

a proper backup mechanism can, for example, allow
the recovery of lost data, a hacked insulin pump may
create damages to the wearer that cannot be reverted
(Viega and Thompson, 2012). Attacks can be con-
ducted through hardware or software. Security needs
to be approached in a new way to cope with the new
threats posed by the new capabilities of mobile sys-
tems and with the multiple environments in which
they are used.

To solve the aforementioned problems not only
innovative security techniques for embedded systems
need to be developed, but also a comprehensive, yet
flexible, approach is required. In this approach secu-
rity should be targeted at all levels of the embedded
system, ranging from hardware to application soft-
ware. At the software level the goal is not only to
rely on code to protect the system but to closely in-
teract with hardware resources to provide more effi-
cient protection techniques matching with embedded
systems constraints (memory footprint, power limi-
tation). Considering such an approach will become
mandatory to increase the level of security and to bet-
ter take advantage of the power computation available
in the device. At the hardware level designing effi-
cient solutions to protect and monitor the execution
of the application is essential to meet application con-
straints in terms of speed. Bridging the gap between
application and hardware resources in the domain of
security will provide the guarantee to develop a de-

39Ferrante A., Milosevic J. and Janjušević M..
A Security-enhanced Design Methodology for Embedded Systems.
DOI: 10.5220/0004501000390050
In Proceedings of the 10th International Conference on Security and Cryptography (SECRYPT-2013), pages 39-50
ISBN: 978-989-8565-73-0
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

fense in depth approach. The goal of this approach
is not only to provide protection against known at-
tacks, but also to be more resistant to not-known ones.
Such a holistic approach will also offer designers a
clearer vision about security and it will allow them
to evaluate and customize security solutions in their
design during the design space exploration (i.e., the
evaluation and comparison of different design points
to find the optimal one with respect to different met-
rics) phase, based on threat models foreseen for the
device.

Although important, the development of compre-
hensive security solutions does not solve the problem
of designing secure embedded systems. In fact, em-
bedded system designers have often seen security as
a desired but not directly feasible and not critical fea-
ture. This is due to different reasons, the main one be-
ing that the organizations developing embedded soft-
ware often lack support of security specialists (Koop-
man, 2004); the introduction of security mechanisms
in embedded systems is further complicated by the
non existence of a design methodology aimed at in-
cluding security in system codesign from the early
phases of development. Designers miss both security
solutions specifically optimized for embedded sys-
tems and the information that would allow them to
easily integrate those solutions into their designs by
evaluating security-cost trade-offs. Presently, most
embedded systems are developed by using perfor-
mance and/or power driven approaches. By these
approaches, different design solutions (i.e., different
system hardware/software configurations) are evalu-
ated in a procedure called design space exploration
(Palermo et al., 2008; Alippi et al., 2004).

In this paper we discuss a design methodology
that allows designers to easily include security from
the early stages of the design process as opposes to
adding it at later stages as it is most often done cur-
rently. In this methodology, sets of security solu-
tions need to be identified and labeled with their cost
(power consumption, consumption of computing re-
sources, silicon area, memory, ...) and with a mea-
sure of their security. While it is known that an abso-
lute security metric is difficult, or even impossible,
to obtain, it is possible to measure system security
relatively to known attacks for the system considered
(Atzeni and Lioy, 2005). In most cases (e.g., different
cryptographic algorithms) it is also possible to com-
pare security provided by different solutions.

The remaining part of this paper is organized as
follows: Section 2 discusses the related work; Section
3 introduces the design methodology that we have de-
veloped; Section 4 discusses the results obtained by
applying our methodology to a case study; Section

5 presents a discussion on some key elements of the
methodology.

2 RELATED WORK

Security is a new dimension that designers should
consider throughout the design process, along with
other metrics such as cost, performance, and power
(Ravi et al., 2004). For this purpose, a security met-
ric is required. Unfortunately, though, at the moment
there is none available (Atzeni and Lioy, 2005): while
there is the possibility to compare similar security so-
lutions (e.g., different cryptographic algorithms) from
the stand point of security and cost, at present there is
no methodology to measure the security of systems.
In this paper, among the other things, we propose a
security metric that aggregates an evaluation of the
security of all different security elements. The evalu-
ation is done by considering the resistance of the se-
curity solutions to known attacks as well as their cor-
respondence to security requirements.

In the last years some effort has been put in devel-
oping security standards for systems and applications.
The NIST FIPS 140-2 (NIST, 2002) standard catego-
rizes cryptographic systems in four levels depending
on the services they offer and on the algorithms they
support. The International Organization for Standard-
ization (ISO) has also defined a set of standards for se-
curity in ISO/IEC 27000-series. In particular, a stan-
dard related to application security (ISO/IEC 27034)
is in early stages of its development (ISO/IEC, 2011).
In this work we rely on these standards to specify se-
curity requirements.

In (Ravi et al., 2004; Atzeni and Lioy, 2005) it
is stated importance of including security as objec-
tive in multi-objective design space exploration for
embedded systems design with the purpose of reduc-
ing power and processing overhead. In these pa-
pers, though, no methodology for including security
in design space exploration is proposed. In (Kocher
et al., 2004) it is stated that, as opposed to the other
design metrics (e.g., area, performance, power), se-
curity is currently specified by system architects in
a vague and imprecise manner. The main problem
is that security experts are the only people in a de-
sign team who have a complete understanding of the
security requirements, although different aspects of
the embedded system design process can affect se-
curity. Furthermore, (Kocher et al., 2004) suggests
that design methodologies for secure embedded sys-
tems should include techniques for specifying secu-
rity requirements in a way that can be easily com-
municated to the design team, and evaluated through-

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

40

out the design cycle, and that any attempt to spec-
ify security requirements needs to address thelevel of
securitydesired. During embedded system architec-
ture design, techniques to map security requirements
to different alternative solutions, and to explore the
associated trade-offs in terms of cost, performance,
and power consumption, would be invaluable in help-
ing embedded system architects understand and make
better design choices (Kocher et al., 2004). In (Juer-
jens, 2003) the significance of including security in
design phase is emphasized as well. The authors un-
derline that the main reason for not doing that is the
lack of properly defined security requirements and
they propose a language, named UMLsec, aimed at
this purpose. UMLsec is a specification language that
extends UML. In our work we use UML to specify
security requirements, even though in a different way
than the one of UMLsec. In (Bayrak et al., 2011)
a methodology for automatic application of security
measures at design time is presented; the scope of
the paper, though, is limited to countermeasures for
power analysis attacks.

In different works related to security the Analytic
Hierarchy Process (AHP) is used to evaluate security
solutions and to build some sort of security metrics.
For example, in (Taddeo and Ferrante, 2009) AHP is
used to evaluate the relevance of different security al-
gorithms in the process of selecting the one that best
suits with the run-time conditions of the system. In
our work we use AHP as a way to sort security re-
quirements based on their priority.

3 DESIGN METHODOLOGY

Most real modern embedded system designs are in-
herently complex, given that their functional speci-
fications are rich and they must obey multiple other
requirements such as, for example, the ones on cost,
performance, time, and area. As a result, method-
ologies and frameworks are needed in order to help
designers in the different design phases. Figure 1
shows how we propose to integrate security in the
design of embedded systems. Security requirements
of the application need to be defined by following
a suitable model. Available security solutions are
grouped in a library (i.e., an organized collection);
this is done to favor reuse of security components in
different projects. Application security requirements
are matched with security solutions available in the
library and, from this operation, multiple sets of pos-
sible security solutions - each one of them satisfying
the security requirements in different ways - are ob-
tained; these sets are then ordered and rated with re-

Security−enhanced
design space
exploration

Matching

Library of
integrated

security solutions

Secure
embedded system

Application and
architectural
specifications

Application
security

requirements

Figure 1: The security-enhanced design methodology.

spect to their relative security level and their confor-
mity to security requirements. Each set of solutions is
evaluated during design space exploration by consid-
ering its cost and its security evaluation. This security
evaluation is done by means of asecurity metric; in
this way, security becomes an additional dimension
of the design space.

To summarize, we propose a modified design
methodology that includes the following steps:

1. Define the application functional requirements.

2. Define the application security requirements.

3. Match the solutions contained in the library with
the security requirements.

4. Define the design space considering both func-
tional requirements and sets of security solutions.

5. Evaluate security solutions by using the security
metric.

6. Perform a design space exploration of the whole
system, including the security solutions.

7. Evaluate the results of the design space explo-
ration process by using a proper metric that in-
cludes security.

Steps 1, 4, 6, and 7 are part of the normal design pro-
cess of embedded systems (Alberto Ferrante et al.,
2005), but some of them need to be modified to in-
clude security. Steps 2, 3, and 5 are specific to our
security design methodology. In this paper, therefore,
we concentrate our effort on defining how security re-
quirements should be specified (step 2), how the secu-

A�Security-enhanced�Design�Methodology�for�Embedded�Systems

41

rity solutions can be matched with requirements (step
3), and how security solutions are evaluated (step 5).
We also discuss the modifications that are necessary
to the other steps, namely steps 4 and 7.

3.1 Security Requirements

Specifying security requirements is the first and fun-
damental step of our design methodology. Secu-
rity requirements are non-functional requirements de-
scribing the security features that should be provided
by the system. Requirements should be written by
considering the possible security attacks that the sys-
tem should be able to withstand. Ideally, a designer
should be able to specify only that he wants a sys-
tem to be secure with a givensecurity level. Unfortu-
nately, though, this is a too generic requirement that,
at the moment, cannot be translated into more spe-
cific ones. Though, we can foresee the possibility
to specify more generic requirements by specifying
which are the attacks that the systems should be able
to withstand and by developing a method to map se-
curity solutions with attacks. A further evolution of
this mechanism would be to specify which are the
standard security test that the system is supposed to
pass: this will lead to a list of attacks and, by using the
aforementioned mapping among attacks and security
solutions, to a set of security requirements. How to
translate generic requirements in more specific ones
is outside the scope of this paper.

In this paper we consider security requirements
in which security features are specified. For exam-
ple, we may specify that communication encryption
is required. A mechanism used to assign priorities
to different mechanisms has also is also proposed.
This method is based on Analytical Hierarchy Process
(AHP).

3.1.1 Security Requirements Model

Security requirements have been modeled by means
of UML; the UML model can be used as a template to
define system-specific requirements by specifying the
desired security solutions and their characteristics. As
shown in Figure 2, different kinds of security require-
ments are represented by different classes in the dia-
gram; all of them are derived from the superclassSe-
curityMechanisms. Whenever multiple different op-
tions, with different characteristics, are available for
certain security mechanisms, a superclass is used to
represent the generic requirement and subclasses are
used to specify the details. In each class different at-
tributes are specified. These attributes can be used
to specify the details related to each requested secu-
rity mechanism. For example, the attributes of the

Table 1: Table: Rating scale.

Intensity
of Im-
portance

Definition Explanation

1 Equally impor-
tant

The two factors contribute equally to the ob-
jective

3 Somewhat more
important

Experience and judgment slightly favor one
over the other

5 More important Experience and judgment strongly favor one
over the other

7 Much more im-
portant

Experience and judgment very strongly favor
one over the other

9 Absolutely more
important

The evidence is favoring one over the other

2, 4, 6, 8 Intermediate val-
ues

Importance in-between other levels

classCryptographicAlgorithmscan be used to define
the desired characteristics of the corresponding cryp-
tographic algorithm (e.g., the key length).

To specify the security requirements of a system,
the classes corresponding to the desired requirements
should be selected and their attributes should be spec-
ified. A mandatory attribute of every class is the one
that specified the desired level of security; this param-
eter should conform to the format specified in Section
3.3. Designer has two ways to define requirements
inside the class: they can only specify the required
security level or they can specify the exact features
and options that are required.

3.1.2 Priorities

It can often happen that not all of the requirements
are equally important and, therefore, a mechanism
for assigning them priorities may be required. In our
methodology, these priorities are expressed through
weights. The method used to derive weights is called
AHP. AHP is a way to perform decision making that
involves structuring multiple choice criteria into a hi-
erarchy, assessing relative importance to these cri-
teria, comparing alternatives for each criterion and
determining an overall ranking of the alternatives
(Coyle, 2004).

First step in performing AHP is decomposing
the considered problem into sub-problems in order
to form a multi-level, multi-target, and multi-factors
structure called hierarchical structure. The next step
is assigning priorities. Let us assume that we need
to assign weights to a set ofn attributes that, in our
case, are the number of requirements (R). An es-
sential part of this step is forming anR×R matrix,
calledA, which is expressing the relations among the
attributes. Attributes are pair-wise compared with the
purpose of deciding their relative importance. Rel-
ative importance is defined by using a set of prede-
fined values as shown in Table 1. Each elementai j of
the matrixA denotes the relative weight of the i-th at-
tribute with respect to the j-th one. Equation 1 shows
the constraints that must be respected in this matrix.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

42

Figure 2: General security requirements in embedded systems.

ai j =

{ 1
a ji
, i 6= j

1, i = j
(1)

Furthermore, matrixA is subject to a consistency
analysis. When obtained from measured data,
weights are said to be consistent if they are transi-

tive, i.e., aik = ai j · a jk for all i, j,k. To verify this
condition we need to find a vectorz of orderR such
that Az= λz; wherez is an eigenvector of orderR
andλ is eigenvalue of the matrixA. For a consistent
matrix the conditionλ = R need to apply. Neverthe-

A�Security-enhanced�Design�Methodology�for�Embedded�Systems

43

less, in our case the elements of matrixA are based on
human judgment and some amount of inconsistency
may exist. Therefore, the previous condition is re-
laxed in such a way that the vectorzsatisfies the con-
ditionsAz= λmaxzandλmax> R, whereλmax is maxi-
mal eigenvector. Any difference betweenλmax andR,
measured by the Consistency Index shown in Equa-
tion 2, is an indication of inconsistency of judgments
in matrixA.

CI =
λmax−R

R−1
(2)

The Consistency Index is then used to compute the
Consistency Ratio as shown in Equation 3.

CR=
CI
RI

(3)

whereRI stands for Random Index for consistency
that is given in (Coyle, 2004) for matrices of different
orders. To guarantee consistency of the matrixA, the
Consistency Ratio should not be higher than 0.1.

Once the matrixA is well defined, theRelative
Value Vector(RVV) that contains the weights as-
signed to theR requirements can be defined as shown
in Equation 4.

RVV= (w1,w2, ...,wn). (4)

As shown in Equation 5, the weightswi are the eigen-
vectors of the matrixA.

wi =
∑R

j=1ai j

R∑R
k=1 ∑R

j=1ak j
, i = {1,R} (5)

3.2 Matching Requirements with
Solutions

Requirements should be matched with the solutions
contained in the library. Elements of the library are
security solutions that have been characterized with
respect to performances and security features. An
example of a library element is shown in Figure 3.
Based on given requirements, the desired security
level of all classes and sub classes has to be calcu-
lated. Depending on the kind of requirement con-
sidered, different methods can be used for this pur-
pose: some security solutions allow for a quantitative
evaluation of the security level; some others just for
a qualitative one. The quantitative approach can be
used for all the solutions in which security can be de-
fined quantitatively such as, for example, in the case
of cryptographic algorithms where the resistance to
brute force attacks of the considered algorithm can be
used as a quantitative measure of security. In Table
2 the measure of security of different algorithms pro-
vided as bits of security in (Barker et al., 2012) was
used to compute the security level of each algorithm.

Figure 3: Representation of the library element.

Table 2: Quantitative approach for assignment of security
levels.

Li
Bits Of
Security

Symmetric
Key

Algorithms
Hash Authentication

0.2 80 2TDEA

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

0.4 112 3TDEA

SHA-224
SHA-256
SHA-384
SHA-512

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

0.6 128 AES-128
SHA-256
SHA-384
SHA-512

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

0.8 192 AES-192
SHA-384
SHA-512

SHA-224
SHA-256
SHA-384
SHA-512

1 256 AES-256
SHA-256
SHA-384
SHA-512

SHA-256
SHA-384
SHA-512

The mapping has been done by mapping the bits of
security to a value ranging from 0 to 1, 1 being the
highest possible security level.

For other classes, where the quantitative method
cannot be applied, the qualitative one is used. As
shown Equation 6, for these solutions the security
level is calculated by considering the number of se-
curity features supported for the corresponding secu-
rity solution. Features are the ones specified in Figure
2 and they are weighted, based on their importance,
according to the weights provided by the designer.

Li =
R

∑
j=1

g j ·v ji , i = 1,2, ...,S (6)

In this equationR is the number of requirements,S
is the number of solutions,g j refers to the weight of
the requirementr j andv ji shows if requirementr j is
fulfilled in Solutionsi (v ji = 1 if requirement is ful-
filled, or v ji = 0 in the opposite case). The overall

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

44

security level required, is calculated by using AHP to
combine the security levels of the considered security
solutions.

Solutions that are in the library are already de-
scribed with their own security level. Two addi-
tional parameters are calculated in order to perform
the matching. These two parameters are the level of
missing features (F−

i) and the level of additional fea-
tures (F+

i). These two values show how close the con-
sidered solution is to the requirements;F−

i shows the
number of features that are specified in the require-
ments but that are not supported by the considered so-
lution; F+

i represents the number of features that are
not specified in the requirements but that are present
in the considered solution.

The required security level and the security level
provided with the considered security mechanism is
compared. If the quantitative approach is used, when
the security level is higher than the one of the solu-
tion, F−

i is calculated as a difference between these
two numbers, andF+

i is 0. Otherwise,F+
i is com-

puted as difference andF−
i is 0. For the qualitative

approach a comparison between the required security
level and the one provided by the considered solution
is done andF−

i is calculated as a weighted sum of
missing features;F+

i is computed as a weighted sum
of added features. Thresholds can be defined for these
values so that only suitable solutions are selected. By
assigning this tree numbers (Li , F−

i , F+
i) to all solu-

tions in the library, we are able to order security solu-
tions from the security stand point and to label them
with their costs by using AHP.

3.3 Security Metric

A widely accepted management principle is that an
activity cannot be managed if it cannot be measured.
Security falls under this rubric. Metrics can be effec-
tive tools for security managers to discern the effec-
tiveness of various components of their security pro-
grams, the security of a specific system, product or
process, and the ability of staff or departments within
an organization to address security issues for which
they are responsible. Unfortunately, though, no suit-
able security metric was available in the literature
(Ravi et al., 2004; Atzeni and Lioy, 2005). There-
fore, we developed our own metric based on what we
defined asSecurity levelof the different security solu-
tions as well as a rating on how well each solution fit
with the corresponding security requirements.

For example, the security level of theSecure Com-
municationclass can be calculated by using Equation
7, whereLska,Lpka,Lma are the security levels of its
subclasses. Weightswska,wpka,wma are the weights

of the symmetric key algorithm, the public key al-
gorithm and the message authentication algorithm,
respectively; these weights are determined by using
AHP.

Lsc= wska∗Lska+wpka∗Lpka+wma∗Lma (7)

AHP is applied again for all classes to compute the
overall security level. This is done by using Equa-
tion 8, wherewav,wf w,wsc are weights, determined
by using AHP, of the anti-virus, firewall and secure
communication classes, respectively.Lav,L f w,Lsc are
the security levels associated to the aforementioned
classes.

SLoverall = wav∗Lav+wfw ∗L fw+wdrm∗Ldrm+wsc∗Lsc

(8)

By applying AHP we can obtain the list of all possi-
ble sets of solutions with their security levels, levels
of missing features and levels of additional features.
With this list we are able to decide what are the most
appropriate ones from the security stand point. Three
thresholds based on the security level, the number of
missing features, and the number of added features
are used to provide the ability to filter the sets of so-
lutions that should be considered in the design explo-
ration phase. This provides designers the flexibility
to define suitable constraints for the solutions to be
considered. For example, designers may use the filter
on the number of missing feature to restrict the de-
sign space only to the solutions that support all the
required features.

Although having three numbers to characterize
all solutions is much more descriptive and helpful in
choosing the appropriate ones, in order to evaluate the
solutions during the design exploration phase, these
three numbers should be summarized in a single one
that represents our security metric. IfS−i = 0, the se-
curity metric is simply represented byLi . If S−i < 0
(i.e., some desired requirements are not fulfilled)Li is
scaled by the number of non-satisfied requirements.
Scaling is done in such a way that the higher the num-
ber of missing features, the lower number that repre-
sents whole solution are. Security metric is the num-
ber that represents the security level of one solution
comparing to previously defined requirements of the
system. The security metric number is obtained by
aggregation of the three numbers that represent every
solution. In case that the security metric is equal or
greater then requested one, it means that all require-
ments are fulfilled with the same or even higher se-
curity level. In case that security metric number is
lower than requested, it means that some of require-
ments are not fulfilled.

The security metric discussed above can be used

A�Security-enhanced�Design�Methodology�for�Embedded�Systems

45

alone to sort the security solutions. Though, this met-
ric do not include any other system parameter and
do not allow to perform any trade-off among security
solutions and their costs. Metrics currently used in
design of embedded systems include performance as
well as energy consumption and/or area occupation.
Energy consumption and area are considered as costs
and the system is optimized to obtain the best possible
trade-off among performances and cost. For example,
the metric of Equation 9 is widely used to obtain the
optimize the energy-performance trade-off.

OverallMetric= Time·Power (9)

Other metrics that attribute different weights to the
different parameters (e.g., by considering the power
n of one or more parameters) may also be used. The
choice of a suitable metric depends on the kind sys-
tem considered and on the goals of designers. Addi-
tionally to computing the values of the metric by us-
ing Equation 9, the values of the different parameters
can be plotted in a diagram and the optimal point can
be chosen among the ones that reside on the Pareto
curve.

Security can be integrated in these kinds of met-
ric as a parameter that should be maximized as op-
posed to time and energy that need to be minimized.
Different sets of security solutions can, therefore, be
evaluated by using a metric such as the one shown in
Equation 10.

OverallMetrics =
Time·Power

SecurityMetric
(10)

This equation can be modified with different param-
eters as explained for Equation 9. The same metric
can be used for optimizing the entire system by also
including security solutions. In this case the overall
energy consumption and performances will be con-
sidered instead of the ones associated only to security
solutions.

4 EXPERIMENTAL RESULTS

In this section we discuss a case study that is used
both to show how our design methodology can be ap-
plied in practice and its effectiveness in designing an
optimal system. The case study has been chosen to be
simple and with a limited number of solutions to an-
alyze. Furthermore, without leading to the generality
of our approach and with the purpose of showing how
the optimization process is effective on security solu-
tions, we kept the base architecture of the system fixed
(i.e., we have not changed the architectural parame-
ters such as, for example, the number of functional

units in the processor and the memory architecture).
If the architectural parameters were changed, the per-
formance figures of each security solution would have
required to be evaluated for each new architecture.

The case study of choice is a Voice over IP (VoIP)
phone. The phone is an embedded device based on
a microprocessor that runs the VoIP application. The
system may also include some hardware accelerators
for executing specific functions. The phone is based
on the Session Initiation Protocol (SIP) (Rosenberg
et al., 2002); SIP is a network communications proto-
col commonly employed for VoIP.

In this case study we used an optimization met-
ric that considers performances, power consumption,
area and security. The metric is shown in Equation
11.

OverallMetrics =
Time·Power·Area

SecurityMetric
(11)

This equation is an extension of Equation 10 as dis-
cussed in Section 3.3. We addedArea as a param-
eter to also account for the additional area that is
used by possible hardware implementations of the
security solutions. Considering only performances
and power consumption is suitable for systems based
on software-only implementations of the applications
and of the security solutions; though, it may be conve-
nient when also hardware solutions are considered. In
fact, a metric based only on these two parameters does
not consider the cost of the additional silicon area re-
quired by hardware solutions. Therefore, by using
such a metric, these solutions would always been fa-
vored by their often better performances and power
consumption.

For evaluating performances, we considered a 10-
minute conversation in which we assumed that for
50% of the total time the user of the phone is speak-
ing and for the other 50% he is listening. Consider-
ing an 8-bit mono 44.1kHz PCM encoding of voice,
we used a data size of 105.84Mbit and 7.2Mbit both
for transmission and reception, respectively. We as-
sumed to have a phone book of 200kbit and user ID
and authentication performed by using one 64-bit data
block.

Parts of the system were simulated by using the
Wattch (Brooks et al., 2000) simulator to obtain the
data to be used in the optimization process. Wattch
is an architectural simulator that provides the ability
to estimate performances (execution time) and power
consumption. In particular, we simulated the encod-
ing and decoding parts of the SIP client. Encoding
and decoding are, in fact, the most demanding parts
of any SIP client; given the limitations of the Wattch
simulator, we could not run a full implementation of
a SIP client, but we used stand-alone encoders and

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

46

Table 3: Populated library of secure elements.

Name of the Mecha-
nism

Energy
(nJ)

The
Security
Level

Time
(ns)

Hardware

AES128 Encryption
SW

3283.69 0.6 2961.19 MIPS

AES128 Decryption
SW

4053.84 0.6 3786.37 MIPS

AES128 Encryption
HW 1

0.04609 0.6 8.17 HW Accelerator

AES128 Decryption
HW 1

0.04609 0.6 8.17 HW Accelerator

AES128 Encryption
HW 2

0.03750 0.6 8.17 HW Accelerator

AES128 Decryption
HW 2

0.03750 0.6 8.17 HW Accelerator

AES128 Encryption
HW 3

0.07734 0.6 8.17 HW Accelerator

AES128 Decryption
HW 3

0.07734 0.6 8.17 HW Accelerator

AES256 Encryption 4654.18 1 4263.22 MIPS
AES256 Decryption 5830.10 1 5387.84 MIPS
DES Encryption 304.11 0.2 263.81 MIPS
DES Decryption 304.07 0.2 263.83 MIPS
3DES Encryption 829.64 0.4 712.76 MIPS
3DES Decryption 827.13 0.4 712.76 MIPS
HMAC-SHA1 4373.84 0.6 6232.15 MIPS
HMAC-SHA2 8135.28 1 12480.13 MIPS

decoders for G723 (Sun Microsystems, 1992), one of
the encodings specified in the SIP protocol. For eval-
uating area we considered a reference area for the mi-
croprocessor (Wattch simulates a MIPS architecture)
of 360,000 gates (Margarita Esponda, 1991). When
hardware accelerators were adopted, their area was
added to the one of the microprocessor for comput-
ing the total silicon area.

The library elements considered during this case
study are the ones listed in Table 3. Three hardware
solutions (Hamalainen et al., 2006) have been used;
all of them are implementations of the AES crypto-
graphic algorithm with a 128-bit key size, optimized
for area, power, and speed, respectively.

The first step of the methodology is devoted to
defining security requirements. We defined these re-
quirements by considering the possible attacks that
the system should withstand. The main ones are the
following:

• Eavesdropping of the conversations.

• Modification of the conversations.

• Unauthorized use of the phone.

• Unauthorized access to the phone contacts.

Eavesdropping of conversations can be counter-
acted by encrypting conversations; modifications of
the conversations can be detected by using authen-
tication; unauthorized access to the phone can be
prevented by using user authentication (e.g., a PIN);
unauthorized access to the phone contacts can be pre-
vented by encrypting the phone contacts (i.e., the
contacts are stored in encrypted form and decrypted
by using the user PIN as a key). These generic re-
quirements have been transformed into theR= 3 re-
quirements that are shown in Figure 4.w1, w2, and

Table 4: AHP matrix comparison.

Secure
Storage

User
ID and
Authen-
tication

Secure
Commu-
nication

Secure Storage 1 2 4
User ID and Authentication 1/2 1 3
Secure Communication 1/4 1/3 1

w3 are the weights associated withSecure Storage,
User ID and Authentication, andSecure Communica-
tion, respectively. According to our pairwise prefer-
ences among requirements specified in Table 4 and to
Equation 5, weights are computed to bew1 = 0.121,
w2 = 0.344 andw3 = 0.535. In this case study we
assigned priorities to different security requirements
in such a way that the requirements are sorted, from
the most important to the least one, as follows:Secure
Communication, User ID and Authentication, Secure
Storage.

The next step is to match the security solutions
available in the library with security requirements. By
considering the aforementioned requirements and the
library of Table 3, 196 different sets of possible solu-
tions are determined. Some of these sets of solutions
are shown in Table 5.

For each set of solution the security level (Li) the
level of missing requirements (S−i) and the level of
added requirements (S+i) need to be computed as ex-
plained in Section 3.2. Based on Equation 7 and
Equation 8, the security levels of theSecure Com-
municationclass solutions and of the overall systems
solutions are determined, together with the required
overall security level. Once these parameters are com-
puted, the security metric of each set of solutions can
also be computed as described in Section 3.3. By us-
ing the security metric, the general metric can be com-
puted and the optimal solution chosen.

In Table 5 we show the solutions that scored a
lower overall metric. These solutions are to be con-
sidered, by following the evaluation criteria given by
the chosen metric, as the best ones. The solution with
the lowest value of the metric is the optimal one. This
solution proposes the usage of the software imple-
mentation of AES 256 for Secure Storage; a software
implementation of SHA-2 has been selected for for
User ID and Authentication; a hardware implementa-
tion optimized for area of AES 128 has been selected
as Symmetric Key Algorithm; a software implemen-
tation of the HMAC-SHA2 algorithm has been se-
lected for Message Authentication. The required se-
curity level is 0.64; the security level obtained with
the selected solution is is 0.755 and all requirements
are fulfilled. The metric used allowed to choose the
solution that gives the best balance among security,
performances, energy, and area. An hardware imple-
mentation of AES 128 optimized for area has been

A�Security-enhanced�Design�Methodology�for�Embedded�Systems

47

Figure 4: UML representation of security requirements usedin the Case Study.

chosen for encryption/decryption of communication.
This allows the system to provide the required level of
performances, yet saving energy, and by using a small
additional silicon area. For secure storage (used for
the phone book) the more secure AES 256 encryption
algorithm is used. Given the limited amount of data
that needs to be processed, a software implementa-
tion is evaluated to provide the best overall results.
A software implementation of HMAC-SHA-2 have
been chosen for message authentication as no hard-
ware implementations was available in the library.

5 DISCUSSION

As shown in Section 4, the methodology presented in
this paper can be used effectively to design optimized
embedded systems in which security is included since
the early stages of the design process. In this section
we discuss some parts of the methodology that needs
to be further studied and refined. These parts, in fact,

showed some practical limitations during the devel-
opment of the case study. These limitations, although
important for the usability of the methodology, imply
nothing on the effectiveness of the methodology it-
self. Furthermore, elements of the methodology (e.g.,
the metric) can be changed with a limited impact on
the design flow presented in this paper.

As far as specifying security requirements is con-
cerned, the method that we propose can help design-
ers in defining security requirements. Though, this
method is not ideal as it requires knowledge of se-
curity mechanisms. As previously mentioned, the
ideal way of expressing security requirements for the
designer would be specifying which are the security
standards that the system should follow and/or the se-
curity tests that the system should be able to with-
stand. In this way the designer would be able to spec-
ify the requirements without a specific knowledge of
the security mechanisms that are going to be used.
This would require, though, a way to automatically
map security solutions with requirements specified in

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

48

Table 5: Sets of security solutions with the lowest metric values.
Secure
Storage

User
Auth.

Connection
Encryption

Connection
Auth.

Security
Level

Security
Metric

Energy
(J)

Time
(s)

Area
(kgates)

Overall
Metric

AES-256 sha2 AES-256 HMAC-sha2 0.862 0.862 1873.185 2,272.048 0 4,935,026.588
AES-128 sha2 AES-256 HMAC-sha2 0.814 0.814 1872.556 2,271.468 0 5,225,368.086

AES-128 HS1 sha2 AES-256 HMAC-sha2 0.814 0.814 1871.088 2,270.121 6200 5,308,047.17
AES-128 HS2 sha2 AES-256 HMAC-sha2 0.814 0.814 1871.088 2,270.121 6400 5,310,946.15
AES-128 HS3 sha2 AES-256 HMAC-sha2 0.814 0.814 1871.088 2,270.121 7800 5,331,239.11

AES-256 sha2 AES-128 HMAC-sha2 0.755 0.755 1715.343 2,122.711 0 4,820,198.771
AES-256 sha2 AES-128 HS1 HMAC-sha2 0.755 0.755 1338.615 1,782.960 6200 3,213,929.63
AES-256 sha2 AES-128 HS2 HMAC-sha2 0.755 0.755 1338.614 1,782.960 6400 3,215,682.58
AES-256 sha2 AES-128 HS3 HMAC-sha2 0.755 0.755 1338.619 1,782.960 7800 3,227,980.44
AES-128 sha2 AES-128 HMAC-sha2 0.707 0.707 1714.714 2,122.130 0 5,146,883.294

this way; this mapping may be complex and security
solutions to be adopted may depend on the kind of
system considered.

Assigning priorities to different security require-
ments is now done by using AHP. This provides flexi-
bility, but it also introduces a further level of complex-
ity for the developers: computing the weights values
that can satisfy the consistency check may be difficult
and should be simplified to make the methodology us-
able.

The library of security elements has been made for
favoring reuse of solutions previously developed. The
profiling of these solutions should be done for the ar-
chitectures considered and, if possible, being updated
when changes to this architecture (e.g., a change in
the number of functional units) are done. Further-
more, hardware elements may be implemented by us-
ing different technologies and this may impact perfor-
mances and energy consumption. The library descrip-
tion should be modified to account all of these pos-
sible variations. In particular, the description of the
library elements should allow for the addition of mul-
tiple performance and energy figures for different ar-
chitectures and technologies. A part from this, we be-
lieve that, in most of the design environments, where
design solutions are often kept within certain bounds
(e.g., the same reference architecture and/or technol-
ogy is always reused), the characterization of library
elements should not impose any dramatic overhead.

The fact that UML, that is the language that we
used to model both the security requirements and the
library of security solutions, is a general purpose no-
tation limits its suitability for modeling some partic-
ular domains. However, UML provides a set of ex-
tension mechanisms allowing the customization and
extension of its own syntax and semantics in order
to adapt to certain application domains; our plan is to
improve modeling of security requirements and the li-
brary of solutions by using these mechanisms. UML
profiles and ontologies will be considered for improv-
ing the models.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we presented a security-enhanced design
methodology for embedded systems. This methodol-
ogy, built over the classic one, provides the ability to
specify security requirements of the applications and
to evaluate different security solutions with the pur-
pose of obtaining a secure and optimized the system.
The case study that we have discussed in the paper
shows how the methodology can be applied in prac-
tice and how effective it is both in including security
in the design process and in optimizing it.

Our plans for the future include improving the
methodology and its steps by solving the problems
discussed in Section 5. Furthermore, we are currently
working on integrating our methodology into a multi-
objective architectural optimization tool named Mul-
ticube Explorer (Zaccaria et al., 2010). In fact, we
believe that integrating our design methodology into
existing design tools is a fundamental step for foster-
ing its adoption.

ACKNOWLEDGEMENTS

This work was partially supported and funded by the
Hasler Foundation under the Project SDES (Grant No.
12001). The paper reflects only the view of the au-
thors; the Hasler Foundation is not liable for any use
that may be made of the information contained herein.

REFERENCES

Alberto Ferrante, Giuseppe Piscopo, and Stefano Scalda-
ferri (2005). Application-driven Optimization of
VLIW Architectures: a Hardware-Software Ap-
proach. InReal-Time and Embedded Technology Ap-
plications, pages 128–137, San Francisco, CA, USA.
IEEE Computer Society.

Alippi, C., Piuri, V., and Scotti, F. (2004).High-level De-
sign of Composite Systems. Springer, Berlin.

A�Security-enhanced�Design�Methodology�for�Embedded�Systems

49

Atzeni, A. and Lioy, A. (2005). Security metrics. First
Workshop on Quality Protection, Mina.

Barker, E., Barker, W., Burr, W., Polk, W., Smid, M., Gal-
lagher, P. D., and For, U. S. (2012).NIST Special
Publication 800-57 Recommendation for Key Man-
agement Part 1: General, chapter 5, pages 62–66.
National Institute of Standards and Technologies.

Bayrak, A., Regazzoni, F., Brisk, P., Standaert, O.-X.,
and Ienne, P. (2011). A first step towards auto-
matic application of power analysis countermeasures.
In Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE, pages 230–235.

Brooks, D., Tiwari, V., and Martonosi, M. (2000). Wattch: a
framework for architectural-level power analysis and
optimizations. InProceedings of the 27th annual
international symposium on Computer architecture
(ISCA’00), pages 83–94.

Coyle, G. (2004). Analytic Hierarchy Process. www.
booksites.net/download/coyle/studentfiles/AHP Tech
nique.pdf.

Hamalainen, P., Alho, T., Hannikainen, M., and
Hamalainen, T. (2006). Design and implementation
of low-area and low-power aes encryption hardware
core. InDigital System Design: Architectures, Meth-
ods and Tools, 2006. DSD 2006. 9th EUROMICRO
Conference on, pages 577–583.

ISO/IEC (2011).ISO/IEC 27034 Guidelines for application
security.

Juerjens, J. (2003).Secure Systems Development with UML.
SpringerVerlag.

Kocher, P., Lee, R., McGraw, G., and Raghunathan, A.
(2004). Security as a new dimension in embedded
system design. InProceedings of the 41st annual De-
sign Automation Conference, DAC ’04, pages 753–
760, New York, NY, USA. ACM. Moderator-Ravi,
Srivaths.

Koopman, P. (2004). Embedded system security.Computer,
37:95–97.

Margarita Esponda, R. R. (1991).The RISC Concept - A
Survey of Implementations.

NIST (2002). Security Requirements for Cryptographic
Modules, FIPS 140-2. National Institute of Standards
and Technology, Information Technology Laboratory.

Palermo, G., Silvano, C., and Zaccaria, V. (2008). An ef-
ficient design space exploration methodology for on-
chip multiprocessors subject to application-specific
constraints. InApplication Specific Processors, 2008.
SASP 2008. Symposium on, pages 75 –82.

Ravi, S., Raghunathan, A., Kocher, P., and Hattangady, S.
(2004). Security in embedded systems: Design chal-
lenges. ACM Trans. Embed. Comput. Syst., 3:461–
491.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and Schooler, E.
(2002). Request for Comments: 3261 - SIP: Session
Initiation Protocol. http://tools.ietf.org/html/rfc3261.

Seo, S.-H. and Cho, T. (2012). An access control mecha-
nism for remote control of home security system. In
Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), 2012 Sixth International Confer-
ence on, pages 93 –98.

Sun Microsystems, I. (1992). G723 source code. http://
www.codeforge.com/article/874.

Taddeo, A. V. and Ferrante, A. (2009). Run-time selec-
tion of security algorithms for networked devices. In
Proceedings of the 5th ACM symposium on QoS and
security for wireless and mobile networks, Q2SWinet
’09, pages 92–96, New York, NY, USA. ACM.

Viega, J. and Thompson, H. (2012). The state of embedded-
device security (spoiler alert: It’s bad).Security Pri-
vacy, IEEE, 10(5):68 –70.

Zaccaria, V., Palermo, G., Castro, F., Silvano, C., and
Mariani, G. (2010). Multicube explorer: An open
source framework for design space exploration of chip
multi-processors. InArchitecture of Computing Sys-
tems (ARCS), 2010 23rd International Conference on,
pages 1–7.

SECRYPT�2013�-�International�Conference�on�Security�and�Cryptography

50

