
An Adaptive and Flexible Replication Mechanism for Space-based
Computing

Stefan Craß, Jürgen Hirsch, eva Kühn and Vesna Sesum-Cavic

Institute of Computer Languages, Vienna University of Technology, Argentinierstr. 8, Vienna, Austria

Keywords: Replication Mechanisms, Tuple Space, Coordination Middleware, Peer-to-Peer.

Abstract: The highly dynamic nature of the Internet implies necessity for advanced communication paradigms. Large
modern networks exchange data without a required central authority that previously assured easy replication
to avoid a loss of data. Without central authority, it is not always obvious on which client which portion of
data is persisted. This is especially the case for distributed, peer-to-peer systems like ones that are based on
tuple space-based coordination middleware. In recent years, many space-based solutions have been
introduced but only few of them provide a built-in replication mechanism. Also, possible replication
mechanisms of these systems do not provide flexibility concerning the offering of different, configurable
replication schemes, replication strategies or communication protocols. Thus, such replication mechanisms
can neither be adapted nor optimized for a given use case scenario. This paper introduces an asynchronous
replication mechanism for space-based computing which provides a high level of flexibility by offering
multiple replication approaches and can be configured and adapted for individual scenarios. This is reached
by a replication manager component which uses two plugins to control replication of space content: a native
space-based and a DHT-based one, both performing asynchronous multi-master replication.

1 INTRODUCTION

The classical client-server paradigm is the usual way
of communication between computers across the
Internet, but it implies severe problems as the server
is a single point of failure. If a huge number of
clients communicate with the server, they may
overload it and decrease the performance of the
entire system. Peer-to-Peer (P2P) networks solve
this problem as each peer works as client and server
at the same time, connects to other peers to request
or transmit data and may dynamically join and leave
the network. Beside the advantages of P2P networks
like flexibility and a certain level of self-
organization, they face problems of increased
complexity like lacking a central register describing
which information resides on which client or which
clients are currently connected to the network. Once
a peer leaves the network, its data is not available
anymore and the only solution is to replicate each
peer’s data to other peers in the network.

In a distributed environment that enables clients
to read and update generic data, replication is
beneficial in two ways (Cecchet et al., 2008): Firstly,
it helps to improve the scalability of a system as read

access can be split among multiple replicas.
Secondly, availability is increased as data is kept
redundantly at multiple sites in order to provide fault
tolerance. However, replication also induces an
overhead to synchronize replicas and keep them in a
consistent state. Increasing the number of replicas
also increases the management effort to ensure
consistency. The situation becomes even more
complex if an update operation fails on certain peers.
In such a case error handling must be performed to
decide if the overall operation was successful or not.
In the worst case the operation has to be undone on
all peers. According to the CAP theorem (Gilbert
and Lynch, 2002), a distributed system can, at any
time, only provide two out of the three properties
consistency, availability, and partition tolerance in
an optimal way. Thus, if all replicas always have to
be in the same, consistent state and lost messages or
replica crashes occur, concurrently evaluated
requests on different replicas either fail or block
until the connection is restored.

Space-based middleware (Mordinyi et al., 2010)
provides an architectural style for distributed
processes to collaborate in a decoupled way via a
shared data space. This paradigm is based on the

599Craß S., Hirsch J., Kühn E. and Sesum-Cavic V..
An Adaptive and Flexible Replication Mechanism for Space-based Computing.
DOI: 10.5220/0004492505990606
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-PT-2013), pages 599-606
ISBN: 978-989-8565-68-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Linda tuple space model (Gelernter, 1985), which
enables participants to write data tuples into a space
and retrieve them using a query mechanism based on
template matching. Tuple spaces can be used to
synchronize independent processes via blocking
queries that return their result as soon as a matching
tuple is provided by another process. The XVSM
(eXtensible Virtual Shared Memory) middleware
model (Craß et al., 2009) adheres to this space-based
computing style via space containers that are
identified via a URI and support configurable
coordination laws for writing and selecting data
entries. Processes that access a container may write,
read, or take (i.e. read and delete) entries, which
generalize the tuple concept, using configurable
coordination mechanisms like key-based access,
FIFO queues, or template matching. Depending on
the used coordination mechanism, queries for read
and take operations include parameters like the key
of a searched entry or the count of entries that shall
be returned in FIFO order. If no matching result
exists, the query blocks until it is fulfilled or a given
timeout is reached, which enables decoupled
communication.

If many distributed processes interact, a single
space may form a performance bottleneck that
hinders scalability. Thus, replicated spaces would
enable scalable P2P-based solutions, but currently
only a few space-based middleware systems provide
built-in replication mechanisms. However, even with
those that support replication, the problem is that
they usually assume a fixed mechanism, but there is
not one optimal replication mechanism that serves
all applications equally well. The trade-off between
consistency, availability and partition tolerance must
be negotiated for each use case. A replication
mechanism should therefore offer different
replication strategies that can be configured by the
user and therefore adapted to a given scenario.

In this paper, we investigate the Java-based open
source implementation of XVSM, termed
MozartSpaces (available at www.mozartspaces.org),
for which we will present a flexible replication
framework. We suggest an asynchronous
mechanism that offers multiple replication
approaches and can be configured and adapted for
each scenario. A flexible plugin approach means that
different replication algorithms exist, and it is easily
possible to add new ones and to exchange them.

A motivating use case can be found in the
domain of traffic management for road or rail
networks, were nodes are placed along the track to
collect data from passing vehicles and inform them
about relevant events (like congestions). As nodes

may fail, data must be replicated to prevent data
loss. For scalability reasons, a P2P-based approach
is more feasible than a centralized architecture.

The paper is structured as follows: Section 2 is
dedicated to related work. Section 3 describes the
suggested space-based replication framework. As a
proof-of-concept two plugins are provided to control
the replication of containers: i) replication via the
Distributed Hash Table (DHT) implementation
Hazelcast (Hazelcast, 2012) and ii) a native
replication mechanism that is bootstrapped using the
space-based middleware itself. Both plugins perform
asynchronous multi-master replication. Section 4
evaluates the solution and analyzes benchmark
results, while Section 5 provides a conclusion.

2 RELATED WORK

Replication for databases and data-oriented
middleware like tuple spaces may be achieved via
synchronous or asynchronous replica updates.
Synchronous replication as defined by the ROWA
(Read-One-Write-All) approach (Bernstein,
Hadzilacos and Goodman, 1987) forces any update
operation to wait until the update has been
propagated to all replicas. This scales well in a
system that performs many read operations but few
updates. In general, however, asynchronous
replication mechanisms that use lazy update
propagation increase the scalability and performance
dramatically (Jiménez-Peris, et al., 2003), but this is
achieved at the cost of reduced consistency
guarantees and more complex error handling.
Depending on the requirements of a distributed
application, strict consistency models based on
ACID (Atomicity, Consistency, Isolation,
Durability) (Haerder and Reuter, 1983) or relaxed
models like BASE (Basically Available, Soft state,
Eventually consistent) (Pritchett, 2008) are more
suitable for data replication. While ACID
transactions always guarantee consistent replica
states, BASE uses a more fault-tolerant model that
allows temporarily inconsistent states. In this paper,
we present a replication mechanism that supports
both types of consistency models.

Replication schemes define how operations are
performed on specific replicas. For a space-based
approach, the master-slave and multi-master
replication schemes are relevant. For master-slave
replication, several slave nodes are assigned to a
single master node. Read operations can be
performed on any node while updates are restricted
to the master node, which then propagates the

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

600

changed data to the slaves. If the master node fails,
another node may be elected to be the new master. If
many updates occur, the master may still become a
bottleneck. In this case, a multi-master approach is
more feasible, where every node may accept both
read and update operations. However, an additional
synchronization mechanism has to be introduced
between the replicated nodes to guarantee that
updates are performed in the same order on each
replica. The proposed replication architecture
supports both types of replication depending on the
used plugin.

Effective and fault-tolerant replication for space-
based middleware can be achieved by letting
distributed space instances collaborate using a P2P
approach. Replication frameworks require a reliable
way of coordinating replicas and exchanging meta
data among nodes. One way to establish such a
coordination channel is via Distributed Hash Tables
(Byers et al., 2003), which distribute data as key-
value pairs across the P2P network according to a
deterministic hash function. The hashed key serves
to retrieve a specific value from the network without
knowing its actual storage location. In Section 3.2,
we evaluate a DHT-based replication mechanism for
MozartSpaces based on the Hazelcast in-memory
data grid, which provides dynamic node discovery,
distributed locking and a map abstraction that
transparently distributes data among several nodes in
a fault-tolerant way. An alternative mechanism is
based on group communication, where replicas
subscribe to a specific topic, e.g. for a specific
container, and are informed when a new message is
published. Such a channel can be established using
meta containers of the space itself, as we show with
our native MozartSpaces replication approach in
Section 3.3.

Several related replication mechanisms have
been invented for space-based middleware: GSpace
(Russello et al., 2005) provides a Linda tuple space
where every tuple type can be assigned to a specific
replication policy, like replication to a fixed number
of nodes or to dynamically evaluated consumers of a
certain tuple type. Using a cost evaluation function
based on the current space usage, the replication
policy may be changed dynamically. DepSpace
(Bessani et al., 2008) examines Byzantine fault-
tolerant replication for Linda spaces using a total
order multicast protocol that works correctly if less
than a third of the replicas are faulty. Corso (Kühn,
1994) uses a replication mechanism based on a
logical P2P tree-based overlay topology of replicas,
where the master copy can be dynamically
reassigned to another node through a primary copy

migration protocol, to allow local updates on a data
field. When using the eager propagation mode,
updates are pushed to all replicated locations
immediately, whereas for lazy propagation, updates
are pulled on-demand when the corresponding data
is accessed locally. LIME (Picco et al., 1999)
provides a flexible replication approach for tuple
spaces in mobile environments. Configurable
replication profiles specify in which tuples a node is
interested. If a matching tuple is found among
neighbouring nodes, it is automatically replicated
into the local space using an asynchronous master-
slave approach.

Compared to the mentioned space-based
solutions, the here proposed MozartSpaces
replication mechanism is able to cope with different
coordination laws (label, key, queue, template
matching etc.) and provides a more generic
replication framework that supports the plugging of
arbitrary replication mechanisms.

3 CONTAINER REPLICATION

3.1 Replication Manager

Due to their flexible coordination laws, XVSM
containers are not just simple lists of data entries.
For any container, each supported coordination
mechanism is managed by a so-called coordinator,
which stores an internal container view (e.g. a map
or an index) that is updated every time when entries
are written to or taken from the container. This view
then determines which entries are selected by a
specific read or take query. Thus, to replicate a
container, the entries as well as the coordinator meta
data have to be distributed to remote spaces.

The proposed replication manager for XVSM
containers is termed XRM. It consists of:
 Replication API: providing methods to create

and destroy containers, as well as to read, write
or take entries

 Replication Plugins: performing the specific
functionality of the API methods

 Quality-of-Service (QoS) Thread: running in
the context of the replication manager and
ensuring a configurable quality level (number of
replicas, consistency, etc.)

The XRM is designed in a way to allow for high
flexibility and configurability through the
parameters replicationStrategy, minReplicaCount,
maxReplicaCount, and replicaSites. The used
replication plugin is set via the replicationStrategy

An�Adaptive�and�Flexible�Replication�Mechanism�for�Space-based�Computing

601

parameter. The minimum and maximum numbers of
replicas are specified by minReplicaCount and
maxReplicaCount. Available locations, i.e. instances
of MozartSpaces runtimes which can be used for
replication, are defined via replicaSites. If the
current XRM instance is the first one of a cluster or
the plugin manages the replica locations itself (as
described in Section 3.2), this parameter can be
empty. Figure 1 depicts the general replication
architecture, showing a client that contacts the XRM
with API calls to access replicated containers.

Figure 1: General replication architecture.

The replication mechanism itself is implemented
in the replication plugin, to which the XRM passes
the API calls. The plugin defines the basic
replication mechanism, the technology for inter-
process communication as well as the type of
replication (synchronous or asynchronous). In this
paper, a plugin using Hazelcast and a native one
using MozartSpaces’ own middleware mechanisms
are implemented. This framework approach does not
impose any limitation (by technology or operation
style) and therefore, ensures flexibility.

The QoS thread keeps the number of replicas
between the defined values for minReplicaCount and
maxReplicaCount. It monitors all replicas and reacts
to changes by triggering the creation of new replicas
if the number of valid replicas drops below
minReplicaCount. The advantage of this approach is
that plugins do not need to check the status of all
replicas during a method invocation, which is a time
consuming operation. As the XRM and its QoS
thread are running on each node of a P2P scenario,
the system is able to recover from node failures as
long as at least one replica of a container remains.

In order to avoid an inconsistent state between
the replicas, we distinguish between strict and loose
consistency models, which are applied according to
the used coordinators. E.g., if on a container with
five entries managed by the non-deterministic
AnyCoordinator the same read operation is

repeatedly performed, the results may differ as an
arbitrary entry is selected each time. If a take
operation is replicated, using this coordinator may
result in replica inconsistencies, because the
coordinator may delete a different entry in each
replicated space container. Therefore, we use a strict
consistency approach for non-deterministic
coordinators, which means that when performing a
take operation, nevertheless the same entries must be
removed from each replica container. Therefore it is
necessary to check during the execution of the take
operation which entries are removed using a unique
ID for each entry. These entry IDs can then be used
to remove the same entries at the residual replica
containers (using a key-based coordinator). The
application of strict consistency ensures that replica
sites are identical even after applying operations
using a non-deterministic coordinator. With loose
consistency, the operation is simply replicated and
performed on each replica, which is sufficient for
deterministic coordination mechanisms like
selection by unique keys. When using loose
consistency with non-deterministic coordinators,
however, inconsistencies may occur.

Two types of replication meta data are
considered: Location meta data is used to find
available locations for creating new replicas or to
find locations where a container was replicated.
Container meta data consists of information
related to a particular container and is used when
creating new replicas. It contains the registered
coordinators, the container size, coordinator meta
data (e.g. keys) and the used consistency strategy.
The replication meta data also has to be replicated,
because without meta data it is neither possible to
find other replicas, nor to create a new replica as an
exact copy of an existing container.

Locking ensures consistency by avoiding
concurrent operations on the same set of replicas and
ensuring that updates are performed on each replica
in the same order. Due to its technology dependence,
locking has to be solved by the replication plugin,
because there is no generic solution for this issue.

For adding new replicas, the QoS thread
invokes the replication plugin to create a new
container using the configuration of the container
that shall be replicated. Then, already existing
entries are written to this container.

For accessing entries on a replicated container,
the active replication plugin retrieves the replica
locations for this container. Depending on the
replication semantics supported by the plugin and
the used operation (read, take or write), the plugin
then accesses one or more replica containers in a

Client

Replication API

Replication
Plugin

QoS
Thread

Replication Manager

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

602

Figure 2: Sequence diagram for writing entries to a replicated container.

synchronous or asynchronous way. Figure 2 shows
how new entries are written to a replicated container
using an asynchronous approach. The required
location and coordination meta data for this task are
managed by the replication plugin.

3.2 Hazelcast Replication

The Hazelcast replication plugin uses Hazelcast
(version 1.9.2.2) for handling meta data. Each
portion of information stored in the Hazelcast cluster
is replicated to a given number of additional cluster
members and therefore the replication plugin does
not need not to worry about replicating the meta data
required for container replication. Also, if a new
member of the Hazelcast cluster starts up, it will
look for already existing members in the network
neighbourhood. If such a member is found, the new
member will connect to and share the meta data with
the cluster. Hazelcast provides a distributed locking
mechanism which acquires locks globally for all
connected members in an atomic way. Therefore,
both replication mechanisms (master-slave and
multi-master) can be implemented. As the multi-
master replication provides more flexibility and does
not limit the number of write operations, this
mechanism is chosen.

Figure 3 presents the architecture of the
Hazelcast plugin. All instances share the same
location meta data, which consists of the URIs of all
available spaces and the list of replicas per
container. This is realized via a Hazelcast distributed
map, which replicates the meta data across a
network of connected Hazelcast plugins. The
location meta data is also accessible by the QoS

thread to allow monitoring. The container meta data
for each replicated container is stored in a similar
way in the Hazelcast cluster. To access a replicated
container (with name cname), the plugin simply
retrieves the replica locations and the corresponding
container meta data from the distributed storage.
Entries within container cname are then written, read
or taken using the regular MozartSpaces functions.

A
P
I

HC
member

cname

space
URIs

replica
lists

Hazelcast Plugin

cname
meta

MozartSpace

Figure 3: Hazelcast Plugin architecture (ellipses represent
Hazelcast cluster members).

The plugin uses the distributed locking
mechanism of Hazelcast where a lock can be
acquired that is identified via the corresponding
container name. Hazelcast uses a simple heartbeat
approach to discover dead members, which avoids
that a container is locked by a dead process and

An�Adaptive�and�Flexible�Replication�Mechanism�for�Space-based�Computing

603

therefore unavailable for the rest of the cluster.

3.3 Native Replication

The native replication plugin (Figure 4) does not use
an additional framework for the communication
between the cluster members, but only the built-in
MozartSpaces functionality. To provide high
flexibility and cover a high number of use cases, a
multi-master replication strategy was chosen.

A
P
I

space
URIs

replica
lists

RLC RLLC

cname

cname
metacontainer

cname
lockcontainer

MozartSpace

Native Plugin

Figure 4: Native Plugin architecture.

The start-up process of the native plugin reads
the initially known locations from the replicaSites
parameter and initializes the local list of available
replication locations (space URIs) in the local
ReplicationLocationLookupContainer (RLLC). For
each location, the process reads all entries from the
remote ReplicationLookupContainers (RLC) and
initializes the local replica lists in its own RLC,
which contains the mapping of containers to their
replica locations. Furthermore, the plugin adds its
own location (URI) to the RLLC of the remote sites.

While the location meta data is managed using
RLC and RLLC, the container meta data has to be
stored separately. Therefore, the native plugin uses a
meta container for each replicated container, which
stores data like the container size, the available
coordinators and the used consistency strategy. To
replicate this meta container itself, a loose
consistency strategy can be used to increase system
performance. Strict consistency is not necessary
because the meta container holds a well-known
number of entries and is only accessed via
deterministic key-based coordination. The meta

container is added by the native plugin when
creating containers on each remote peer where a
replica of the requested container is created.

After each write operation on a replicated data
container, the native replication plugin updates the
entries’ coordination data attributes (like keys and
indices) in the corresponding meta container. When
creating new replicas for a container, it is necessary
to know all these coordinator meta data to create an
exact replica of the original container.

To enable the atomic execution of multiple
operations on a single space, MozartSpaces supports
ACID transactions via a pessimistic locking model.
However, transactional execution of updates on
multiple locations requires distributed transactions.
Thus, the plugin has to implement its own locking
mechanism. A special lock container is created for
each replicated container and registered in the
corresponding meta container via its URI. If an
update is performed on a replica, a lock is acquired
on the lock container using MozartSpaces
transactions. Because every replica of a specific
container uses the same lock container, concurrent
modifications can be avoided. After the update has
been performed, the lock is released. If a node
crashes while holding a lock, transaction timeouts
ensure that the container will eventually be
unlocked. If the node holding the lock container
crashes, it has to be recreated at a different XRM
instance.

4 EVALUATION

The performance of native and Hazelcast plugins
were analyzed on a laptop with Windows 7
Enterprise 32-bit, an Intel Core 2 Duo CPU T7500
with 2.2 GHz and 4 GB RAM. The implementation
was tested using the JUnit 4 testing framework with
the additional JVM parameters “-Xmx1536m
 -Xms1024m”, which increase the heap space to
avoid crashes when using a high number of
containers and entries. For each test, the
AnyCoordinator was used, which returns arbitrary
entries with minimal overhead. The performed test
cases represent two basic container operations:
 writeEntries: several entries are written into the

containers using a single operation.
 takeEntries: entries are taken from the containers

one by one.

Every test was performed using two instances of the
same plugin to provide a basic replication
environment with two cluster members. The

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

604

simulation results of performance tests using both
the strict and loose consistency models are presented
in Figures 5, 6, 7 and 8. Figures 5 and 6 present the
results of the writeEntries and takeEntries tests using
the native plugin, while Figures 7 and 8 show the
results for the Hazelcast plugin. The parameter
entriesCount represents the number of entries which
are written into the container during the writeEntries
test case and which are taken during the takeEntries
test. All performance tests were executed with an
entries count per container of 50, 100, 500, 1000,
5000 and 10000. The values are measured in
milliseconds. For each replication plugin, tests with
100 and 1000 containers were performed. To
eliminate variations, each test run has been
performed 10 times and the mean value was used as
result. Additionally, a warm-up phase was used,
which allows the Java just-in-time (JIT) compiler to
perform optimizations before test execution.

Figure 5: Native Plugin WriteEntries performance.

Figure 6: Native Plugin TakeEntries performance.

Figure 7: Hazelcast Plugin WriteEntries performance.

Figure 8: Hazelcast Plugin TakeEntries performance.

In summary, the native plugin performs better
than the Hazelcast one, mainly due to the additional
Hazelcast overhead. The Hazelcast plugin has to
perform operations to the MozartSpaces cores as
well as calls to the Hazelcast internals to store and
retrieve meta information, and the execution of
Hazelcast consumes system resources. On the other
side, the native replication plugin only performs
MozartSpaces calls to its underlying core and remote
cores. We have also noticed that the loose
consistency model scales much better than the strict
model, which is expected due to the added
constraints. The strict model is, however,
competitive when mostly selection operations occur
while using the native plugin. Additional details on
the XRM implementation and the benchmarks can
be found in (Hirsch, 2012).

In P2P traffic management scenarios, a suitable
architecture must provide traffic information to
vehicles in near-time while replicating data among
nodes in a robust way to ensure fault tolerance.
Asynchronous multi-master replication as provided
by the presented plugins ensures that no node acts as
single point of failure and that replication occurs in
the background, thus preventing delays when
interacting with vehicles that are only in range for a
short time span. Due to the superior scalability the
native replication approach appears suitable for this
scenario, but the flexible framework approach
allows researchers to evaluate and fine-tune further
plugins that are adjusted to the specific use case.

5 CONCLUSIONS

In this paper, a customizable replication mechanism
for the space-based middleware XVSM and its
implementation MozartSpaces is presented. To
provide a high level of flexibility, the replication
manager can be configured to use several replication
plugins. It is not dependent on any additional
middleware for the communication layer and can be

An�Adaptive�and�Flexible�Replication�Mechanism�for�Space-based�Computing

605

easily extended. This way, the best replication
plugin for the given use case can be chosen.

For the proof-of-concept of the flexibility of the
replication manager reference implementation two
plugins were implemented: a native replication
plugin and a Hazelcast-based one. Hazelcast was
chosen because it provides a great set of distributed
data structures which can be easily used, is easy to
integrate into applications, and provides an own
internal replication mechanism. Both plugins
perform asynchronous multi-master replication
whereas the native plugin only uses functionality
provided by MozartSpaces and the Hazelcast plugin
uses the distributed in-memory data grid Hazelcast
to store meta data. Both implementations use locks
to prevent concurrent modifications of replicas. The
implemented replication mechanisms focus on
consistency and availability. A strict consistency
model ensures that each replica contains exactly the
same information. In environments where strict
consistency is not needed, a loose consistency model
gains more performance and scalability.

Future work will take into consideration the
comparison of various intelligent replication
algorithms as well as an implementation of a
location-aware replication plugin based on DHTs for
the mentioned traffic management use cases.

ACKNOWLEDGEMENTS

This work was partially funded by the Austrian
Government via the program FFG Bridge, project
LOPONODE Middleware, and by the Austrian
Government and the City of Vienna within the
competence centre program COMET, project
ROADSAFE.

REFERENCES

Bernstein, P. A., Hadzilacos, V. and Goodman, N., 1987.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley.

Bessani, A. N., Alchieri, E. P., Correia, M. and da Silva
Fraga, J., 2008. DepSpace: a byzantine fault-tolerant
coordination service. ACM SIGOPS Operating
Systems Review, volume 42, 163-176. ACM.

Byers, J., Considine, J. and Mitzenmacher, M., 2003.
Simple Load Balancing for Distributed Hash Tables.
Peer-to-Peer Systems II, LNCS volume 2735, 80-87.
Springer.

Cecchet, E., Candea, G. and Ailamaki, A., 2008.
Middleware-based database replication: the gaps
between theory and practice. In 2008 ACM SIGMOD

Int’l Conf. on Management of Data, 739-752. ACM.
Craß, S., Kühn, e. and Salzer, G., 2009. Algebraic

foundation of a data model for an extensible space-
based collaboration protocol. In Int’l Database
Engineering & Applications Symp., 301–306. ACM.

Gelernter, D., 1985. Generative communication in Linda.
ACM Trans. Program. Lang. Syst., 7(1):80–112.
ACM.

Gilbert, S. and Lynch, N., 2002. Brewer's conjecture and
the feasibility of consistent, available, partition-
tolerant web services. SIGACT News, 33:51-59. ACM

Haerder, T. and Reuter, A., 1983. Principles of
transaction-oriented database recovery. ACM Comput.
Surv., 15:287-317. ACM.

Hazelcast, 2012. Hazelcast – In-Memory Data Grid.
[online] Available at http://www.hazelcast.com.

Hirsch, J., 2012. An Adaptive and Flexible Replication
Mechanism for MozartSpaces, the XVSM Reference
Implementation. Master’s thesis. Vienna UT.

Jiménez-Peris, R., Patiño-Martínez, M., Alonso, G. and
Kemme, B., 2003. Are Quorums an Alternative for
Data Replication? ACM Trans. Database Syst.,
28:257-294. ACM.

Kühn, e., 1994. Fault-tolerance for communicating
multidatabase transactions. In 27th Hawaii Int’l Conf.
on System Sciences, volume 2, 323-332. IEEE.

Mordinyi, R., Kühn, e. and Schatten, A., 2010. Space-
based architectures as abstraction layer for distributed
business applications. In Int’l Conf. Complex,
Intelligent and Software Intensive Systems, 47–53.
IEEE Computer Society.

Picco, G. P., Murphy, A. L. and Roman, G. C., 1999.
LIME: Linda meets mobility. In 21st Int’l Conf. on
Software Engineering, 368-377. ACM.

Pritchett, D., 2008. BASE: An acid alternative. Queue,
6:48-55. ACM.

Russello, G., Chaudron, M. and van Steen, M., 2005.
Dynamically adapting tuple replication for managing
availability in a shared data space. Coordination
Models and Languages, LNCS volume 3454, 109-124.
Springer.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

606

