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Abstract: The highly dynamic nature of the Internet implies necessity for advanced communication paradigms. Large 
modern networks exchange data without a required central authority that previously assured easy replication 
to avoid a loss of data. Without central authority, it is not always obvious on which client which portion of 
data is persisted. This is especially the case for distributed, peer-to-peer systems like ones that are based on 
tuple space-based coordination middleware. In recent years, many space-based solutions have been 
introduced but only few of them provide a built-in replication mechanism. Also, possible replication 
mechanisms of these systems do not provide flexibility concerning the offering of different, configurable 
replication schemes, replication strategies or communication protocols. Thus, such replication mechanisms 
can neither be adapted nor optimized for a given use case scenario. This paper introduces an asynchronous 
replication mechanism for space-based computing which provides a high level of flexibility by offering 
multiple replication approaches and can be configured and adapted for individual scenarios. This is reached 
by a replication manager component which uses two plugins to control replication of space content: a native 
space-based and a DHT-based one, both performing asynchronous multi-master replication. 

1 INTRODUCTION 

The classical client-server paradigm is the usual way 
of communication between computers across the 
Internet, but it implies severe problems as the server 
is a single point of failure. If a huge number of 
clients communicate with the server, they may 
overload it and decrease the performance of the 
entire system. Peer-to-Peer (P2P) networks solve 
this problem as each peer works as client and server 
at the same time, connects to other peers to request 
or transmit data and may dynamically join and leave 
the network. Beside the advantages of P2P networks 
like flexibility and a certain level of self-
organization, they face problems of increased 
complexity like lacking a central register describing 
which information resides on which client or which 
clients are currently connected to the network. Once 
a peer leaves the network, its data is not available 
anymore and the only solution is to replicate each 
peer’s data to other peers in the network.  

In a distributed environment that enables clients 
to read and update generic data, replication is 
beneficial in two ways (Cecchet et al., 2008): Firstly, 
it helps to improve the scalability of a system as read 

access can be split among multiple replicas. 
Secondly, availability is increased as data is kept 
redundantly at multiple sites in order to provide fault 
tolerance. However, replication also induces an 
overhead to synchronize replicas and keep them in a 
consistent state. Increasing the number of replicas 
also increases the management effort to ensure 
consistency. The situation becomes even more 
complex if an update operation fails on certain peers. 
In such a case error handling must be performed to 
decide if the overall operation was successful or not. 
In the worst case the operation has to be undone on 
all peers. According to the CAP theorem (Gilbert 
and Lynch, 2002), a distributed system can, at any 
time, only provide two out of the three properties 
consistency, availability, and partition tolerance in 
an optimal way. Thus, if all replicas always have to 
be in the same, consistent state and lost messages or 
replica crashes occur, concurrently evaluated 
requests on different replicas either fail or block 
until the connection is restored. 

Space-based middleware (Mordinyi et al., 2010) 
provides an architectural style for distributed 
processes to collaborate in a decoupled way via a 
shared data space. This paradigm is based on the 
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Linda tuple space model (Gelernter, 1985), which 
enables participants to write data tuples into a space 
and retrieve them using a query mechanism based on 
template matching. Tuple spaces can be used to 
synchronize independent processes via blocking 
queries that return their result as soon as a matching 
tuple is provided by another process. The XVSM 
(eXtensible Virtual Shared Memory) middleware 
model (Craß et al., 2009) adheres to this space-based 
computing style via space containers that are 
identified via a URI and support configurable 
coordination laws for writing and selecting data 
entries. Processes that access a container may write, 
read, or take (i.e. read and delete) entries, which 
generalize the tuple concept, using configurable 
coordination mechanisms like key-based access, 
FIFO queues, or template matching. Depending on 
the used coordination mechanism, queries for read 
and take operations include parameters like the key 
of a searched entry or the count of entries that shall 
be returned in FIFO order. If no matching result 
exists, the query blocks until it is fulfilled or a given 
timeout is reached, which enables decoupled 
communication. 

If many distributed processes interact, a single 
space may form a performance bottleneck that 
hinders scalability. Thus, replicated spaces would 
enable scalable P2P-based solutions, but currently 
only a few space-based middleware systems provide 
built-in replication mechanisms. However, even with 
those that support replication, the problem is that 
they usually assume a fixed mechanism, but there is 
not one optimal replication mechanism that serves 
all applications equally well. The trade-off between 
consistency, availability and partition tolerance must 
be negotiated for each use case. A replication 
mechanism should therefore offer different 
replication strategies that can be configured by the 
user and therefore adapted to a given scenario.  

In this paper, we investigate the Java-based open 
source implementation of XVSM, termed 
MozartSpaces (available at www.mozartspaces.org), 
for which we will present a flexible replication 
framework. We suggest an asynchronous 
mechanism that offers multiple replication 
approaches and can be configured and adapted for 
each scenario. A flexible plugin approach means that 
different replication algorithms exist, and it is easily 
possible to add new ones and to exchange them.  

A motivating use case can be found in the 
domain of traffic management for road or rail 
networks, were nodes are placed along the track to 
collect data from passing vehicles and inform them 
about relevant events (like congestions). As nodes 

may fail, data must be replicated to prevent data 
loss. For scalability reasons, a P2P-based approach 
is more feasible than a centralized architecture. 

The paper is structured as follows: Section 2 is 
dedicated to related work. Section 3 describes the 
suggested space-based replication framework. As a 
proof-of-concept two plugins are provided to control 
the replication of containers: i) replication via the 
Distributed Hash Table (DHT) implementation 
Hazelcast (Hazelcast, 2012) and ii) a native 
replication mechanism that is bootstrapped using the 
space-based middleware itself. Both plugins perform 
asynchronous multi-master replication. Section 4 
evaluates the solution and analyzes benchmark 
results, while Section 5 provides a conclusion.  

2 RELATED WORK 

Replication for databases and data-oriented 
middleware like tuple spaces may be achieved via 
synchronous or asynchronous replica updates. 
Synchronous replication as defined by the ROWA 
(Read-One-Write-All) approach (Bernstein, 
Hadzilacos and Goodman, 1987) forces any update 
operation to wait until the update has been 
propagated to all replicas. This scales well in a 
system that performs many read operations but few 
updates. In general, however, asynchronous 
replication mechanisms that use lazy update 
propagation increase the scalability and performance 
dramatically (Jiménez-Peris, et al., 2003), but this is 
achieved at the cost of reduced consistency 
guarantees and more complex error handling. 
Depending on the requirements of a distributed 
application, strict consistency models based on 
ACID (Atomicity, Consistency, Isolation, 
Durability) (Haerder and Reuter, 1983) or relaxed 
models like BASE (Basically Available, Soft state, 
Eventually consistent) (Pritchett, 2008) are more 
suitable for data replication. While ACID 
transactions always guarantee consistent replica 
states, BASE uses a more fault-tolerant model that 
allows temporarily inconsistent states. In this paper, 
we present a replication mechanism that supports 
both types of consistency models.  

Replication schemes define how operations are 
performed on specific replicas. For a space-based 
approach, the master-slave and multi-master 
replication schemes are relevant. For master-slave 
replication, several slave nodes are assigned to a 
single master node. Read operations can be 
performed on any node while updates are restricted 
to the master node, which then propagates the 
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changed data to the slaves. If the master node fails, 
another node may be elected to be the new master. If 
many updates occur, the master may still become a 
bottleneck. In this case, a multi-master approach is 
more feasible, where every node may accept both 
read and update operations. However, an additional 
synchronization mechanism has to be introduced 
between the replicated nodes to guarantee that 
updates are performed in the same order on each 
replica. The proposed replication architecture 
supports both types of replication depending on the 
used plugin. 

Effective and fault-tolerant replication for space-
based middleware can be achieved by letting 
distributed space instances collaborate using a P2P 
approach. Replication frameworks require a reliable 
way of coordinating replicas and exchanging meta 
data among nodes. One way to establish such a 
coordination channel is via Distributed Hash Tables 
(Byers et al., 2003), which distribute data as key-
value pairs across the P2P network according to a 
deterministic hash function. The hashed key serves 
to retrieve a specific value from the network without 
knowing its actual storage location. In Section 3.2, 
we evaluate a DHT-based replication mechanism for 
MozartSpaces based on the Hazelcast in-memory 
data grid, which provides dynamic node discovery, 
distributed locking and a map abstraction that 
transparently distributes data among several nodes in 
a fault-tolerant way. An alternative mechanism is 
based on group communication, where replicas 
subscribe to a specific topic, e.g. for a specific 
container, and are informed when a new message is 
published. Such a channel can be established using 
meta containers of the space itself, as we show with 
our native MozartSpaces replication approach in 
Section 3.3. 

Several related replication mechanisms have 
been invented for space-based middleware: GSpace 
(Russello et al., 2005) provides a Linda tuple space 
where every tuple type can be assigned to a specific 
replication policy, like replication to a fixed number 
of nodes or to dynamically evaluated consumers of a 
certain tuple type. Using a cost evaluation function 
based on the current space usage, the replication 
policy may be changed dynamically. DepSpace 
(Bessani et al., 2008) examines Byzantine fault-
tolerant replication for Linda spaces using a total 
order multicast protocol that works correctly if less 
than a third of the replicas are faulty. Corso (Kühn, 
1994) uses a replication mechanism based on a 
logical P2P tree-based overlay topology of replicas, 
where the master copy can be dynamically 
reassigned to another node through a primary copy 

migration protocol, to allow local updates on a data 
field. When using the eager propagation mode, 
updates are pushed to all replicated locations 
immediately, whereas for lazy propagation, updates 
are pulled on-demand when the corresponding data 
is accessed locally. LIME (Picco et al., 1999) 
provides a flexible replication approach for tuple 
spaces in mobile environments. Configurable 
replication profiles specify in which tuples a node is 
interested. If a matching tuple is found among 
neighbouring nodes, it is automatically replicated 
into the local space using an asynchronous master-
slave approach.  

Compared to the mentioned space-based 
solutions, the here proposed MozartSpaces 
replication mechanism is able to cope with different 
coordination laws (label, key, queue, template 
matching etc.) and provides a more generic 
replication framework that supports the plugging of 
arbitrary replication mechanisms. 

3 CONTAINER REPLICATION 

3.1 Replication Manager 

Due to their flexible coordination laws, XVSM 
containers are not just simple lists of data entries. 
For any container, each supported coordination 
mechanism is managed by a so-called coordinator, 
which stores an internal container view (e.g. a map 
or an index) that is updated every time when entries 
are written to or taken from the container. This view 
then determines which entries are selected by a 
specific read or take query. Thus, to replicate a 
container, the entries as well as the coordinator meta 
data have to be distributed to remote spaces. 

The proposed replication manager for XVSM 
containers is termed XRM. It consists of:  
 Replication API: providing methods to create 

and destroy containers, as well as to read, write 
or take entries 

 Replication Plugins: performing the specific 
functionality of the API methods 

 Quality-of-Service (QoS) Thread: running in 
the context of the replication manager and 
ensuring a configurable quality level (number of 
replicas, consistency, etc.) 

 

The XRM is designed in a way to allow for high 
flexibility and configurability through the 
parameters replicationStrategy, minReplicaCount, 
maxReplicaCount, and replicaSites. The used 
replication plugin is set via the replicationStrategy 

An�Adaptive�and�Flexible�Replication�Mechanism�for�Space-based�Computing

601



parameter. The minimum and maximum numbers of 
replicas are specified by minReplicaCount and 
maxReplicaCount. Available locations, i.e. instances 
of MozartSpaces runtimes which can be used for 
replication, are defined via replicaSites. If the 
current XRM instance is the first one of a cluster or 
the plugin manages the replica locations itself (as 
described in Section 3.2), this parameter can be 
empty. Figure 1 depicts the general replication 
architecture, showing a client that contacts the XRM 
with API calls to access replicated containers. 

 

Figure 1: General replication architecture. 

The replication mechanism itself is implemented 
in the replication plugin, to which the XRM passes 
the API calls. The plugin defines the basic 
replication mechanism, the technology for inter-
process communication as well as the type of 
replication (synchronous or asynchronous). In this 
paper, a plugin using Hazelcast and a native one 
using MozartSpaces’ own middleware mechanisms 
are implemented. This framework approach does not 
impose any limitation (by technology or operation 
style) and therefore, ensures flexibility.  

The QoS thread keeps the number of replicas 
between the defined values for minReplicaCount and 
maxReplicaCount. It monitors all replicas and reacts 
to changes by triggering the creation of new replicas 
if the number of valid replicas drops below 
minReplicaCount. The advantage of this approach is 
that plugins do not need to check the status of all 
replicas during a method invocation, which is a time 
consuming operation. As the XRM and its QoS 
thread are running on each node of a P2P scenario, 
the system is able to recover from node failures as 
long as at least one replica of a container remains. 

In order to avoid an inconsistent state between 
the replicas, we distinguish between strict and loose 
consistency models, which are applied according to 
the used coordinators. E.g., if on a container with 
five entries managed by the non-deterministic 
AnyCoordinator the same read operation is 

repeatedly performed, the results may differ as an 
arbitrary entry is selected each time. If a take 
operation is replicated, using this coordinator may 
result in replica inconsistencies, because the 
coordinator may delete a different entry in each 
replicated space container. Therefore, we use a strict 
consistency approach for non-deterministic 
coordinators, which means that when performing a 
take operation, nevertheless the same entries must be 
removed from each replica container. Therefore it is 
necessary to check during the execution of the take 
operation which entries are removed using a unique 
ID for each entry. These entry IDs can then be used 
to remove the same entries at the residual replica 
containers (using a key-based coordinator). The 
application of strict consistency ensures that replica 
sites are identical even after applying operations 
using a non-deterministic coordinator. With loose 
consistency, the operation is simply replicated and 
performed on each replica, which is sufficient for 
deterministic coordination mechanisms like 
selection by unique keys. When using loose 
consistency with non-deterministic coordinators, 
however, inconsistencies may occur. 

Two types of replication meta data are 
considered: Location meta data is used to find 
available locations for creating new replicas or to 
find locations where a container was replicated. 
Container meta data consists of information 
related to a particular container and is used when 
creating new replicas. It contains the registered 
coordinators, the container size, coordinator meta 
data (e.g. keys) and the used consistency strategy. 
The replication meta data also has to be replicated, 
because without meta data it is neither possible to 
find other replicas, nor to create a new replica as an 
exact copy of an existing container. 

Locking ensures consistency by avoiding 
concurrent operations on the same set of replicas and 
ensuring that updates are performed on each replica 
in the same order. Due to its technology dependence, 
locking has to be solved by the replication plugin, 
because there is no generic solution for this issue.  

For adding new replicas, the QoS thread 
invokes the replication plugin to create a new 
container using the configuration of the container 
that shall be replicated. Then, already existing 
entries are written to this container. 

For accessing entries on a replicated container, 
the active replication plugin retrieves the replica 
locations for this container. Depending on the 
replication semantics supported by the plugin and 
the used operation (read, take or write), the plugin 
then accesses one or more replica containers in a

Client 

Replication API 

Replication 
Plugin 

QoS 
Thread 

Replication Manager 
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Figure 2: Sequence diagram for writing entries to a replicated container. 

synchronous or asynchronous way. Figure 2 shows 
how new entries are written to a replicated container 
using an asynchronous approach. The required 
location and coordination meta data for this task are 
managed by the replication plugin.   

3.2 Hazelcast Replication 

The Hazelcast replication plugin uses Hazelcast 
(version 1.9.2.2) for handling meta data. Each 
portion of information stored in the Hazelcast cluster 
is replicated to a given number of additional cluster 
members and therefore the replication plugin does 
not need not to worry about replicating the meta data 
required for container replication. Also, if a new 
member of the Hazelcast cluster starts up, it will 
look for already existing members in the network 
neighbourhood. If such a member is found, the new 
member will connect to and share the meta data with 
the cluster. Hazelcast provides a distributed locking 
mechanism which acquires locks globally for all 
connected members in an atomic way. Therefore, 
both replication mechanisms (master-slave and 
multi-master) can be implemented. As the multi-
master replication provides more flexibility and does 
not limit the number of write operations, this 
mechanism is chosen. 

Figure 3 presents the architecture of the 
Hazelcast plugin. All instances share the same 
location meta data, which consists of the URIs of all 
available spaces and the list of replicas per 
container. This is realized via a Hazelcast distributed 
map, which replicates the meta data across a 
network of connected Hazelcast plugins. The 
location meta data is also accessible by the QoS 

thread to allow monitoring. The container meta data 
for each replicated container is stored in a similar 
way in the Hazelcast cluster. To access a replicated 
container (with name cname), the plugin simply 
retrieves the replica locations and the corresponding 
container meta data from the distributed storage. 
Entries within container cname are then written, read 
or taken using the regular MozartSpaces functions.  

A
P 
I 

HC 
member 

cname

space 
URIs 

replica 
lists 

Hazelcast Plugin 

cname 
meta 

MozartSpace 
 

Figure 3: Hazelcast Plugin architecture (ellipses represent 
Hazelcast cluster members). 

The plugin uses the distributed locking 
mechanism of Hazelcast where a lock can be 
acquired that is identified via the corresponding 
container name. Hazelcast uses a simple heartbeat 
approach to discover dead members, which avoids 
that a container is locked by a dead process and 
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therefore unavailable for the rest of the cluster.  

3.3 Native Replication 

The native replication plugin (Figure 4) does not use 
an additional framework for the communication 
between the cluster members, but only the built-in 
MozartSpaces functionality. To provide high 
flexibility and cover a high number of use cases, a 
multi-master replication strategy was chosen. 

A 
P 
I 

space 
URIs 

replica 
lists 

RLC RLLC 

cname 

cname 
metacontainer 

cname 
lockcontainer  

MozartSpace 

Native Plugin 

 

Figure 4: Native Plugin architecture. 

The start-up process of the native plugin reads 
the initially known locations from the replicaSites 
parameter and initializes the local list of available 
replication locations (space URIs) in the local 
ReplicationLocationLookupContainer (RLLC). For 
each location, the process reads all entries from the 
remote ReplicationLookupContainers (RLC) and 
initializes the local replica lists in its own RLC, 
which contains the mapping of containers to their 
replica locations. Furthermore, the plugin adds its 
own location (URI) to the RLLC of the remote sites.  

While the location meta data is managed using 
RLC and RLLC, the container meta data has to be 
stored separately. Therefore, the native plugin uses a 
meta container for each replicated container, which 
stores data like the container size, the available 
coordinators and the used consistency strategy. To 
replicate this meta container itself, a loose 
consistency strategy can be used to increase system 
performance. Strict consistency is not necessary 
because the meta container holds a well-known 
number of entries and is only accessed via 
deterministic key-based coordination. The meta 

container is added by the native plugin when 
creating containers on each remote peer where a 
replica of the requested container is created. 

After each write operation on a replicated data 
container, the native replication plugin updates the 
entries’ coordination data attributes (like keys and 
indices) in the corresponding meta container. When 
creating new replicas for a container, it is necessary 
to know all these coordinator meta data to create an 
exact replica of the original container.  

To enable the atomic execution of multiple 
operations on a single space, MozartSpaces supports 
ACID transactions via a pessimistic locking model. 
However, transactional execution of updates on 
multiple locations requires distributed transactions. 
Thus, the plugin has to implement its own locking 
mechanism. A special lock container is created for 
each replicated container and registered in the 
corresponding meta container via its URI. If an 
update is performed on a replica, a lock is acquired 
on the lock container using MozartSpaces 
transactions. Because every replica of a specific 
container uses the same lock container, concurrent 
modifications can be avoided. After the update has 
been performed, the lock is released. If a node 
crashes while holding a lock, transaction timeouts 
ensure that the container will eventually be 
unlocked. If the node holding the lock container 
crashes, it has to be recreated at a different XRM 
instance. 

4 EVALUATION 

The performance of native and Hazelcast plugins 
were analyzed on a laptop with Windows 7 
Enterprise 32-bit, an Intel Core 2 Duo CPU T7500 
with 2.2 GHz and 4 GB RAM. The implementation 
was tested using the JUnit 4 testing framework with 
the additional JVM parameters “-Xmx1536m 
 -Xms1024m”, which increase the heap space to 
avoid crashes when using a high number of 
containers and entries. For each test, the 
AnyCoordinator was used, which returns arbitrary 
entries with minimal overhead. The performed test 
cases represent two basic container operations:  
 writeEntries: several entries are written into the 

containers using a single operation. 
 takeEntries: entries are taken from the containers 

one by one. 
 

Every test was performed using two instances of the 
same plugin to provide a basic replication 
environment with two cluster members. The 
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simulation results of performance tests using both 
the strict and loose consistency models are presented 
in Figures 5, 6, 7 and 8. Figures 5 and 6 present the 
results of the writeEntries and takeEntries tests using 
the native plugin, while Figures 7 and 8 show the 
results for the Hazelcast plugin. The parameter 
entriesCount represents the number of entries which 
are written into the container during the writeEntries 
test case and which are taken during the takeEntries 
test. All performance tests were executed with an 
entries count per container of 50, 100, 500, 1000, 
5000 and 10000. The values are measured in 
milliseconds. For each replication plugin, tests with 
100 and 1000 containers were performed. To 
eliminate variations, each test run has been 
performed 10 times and the mean value was used as 
result. Additionally, a warm-up phase was used, 
which allows the Java just-in-time (JIT) compiler to 
perform optimizations before test execution. 

 
Figure 5: Native Plugin WriteEntries performance. 

 
Figure 6: Native Plugin TakeEntries performance. 

 

Figure 7: Hazelcast Plugin WriteEntries performance. 

 

Figure 8: Hazelcast Plugin TakeEntries performance. 

In summary, the native plugin performs better 
than the Hazelcast one, mainly due to the additional 
Hazelcast overhead. The Hazelcast plugin has to 
perform operations to the MozartSpaces cores as 
well as calls to the Hazelcast internals to store and 
retrieve meta information, and the execution of 
Hazelcast consumes system resources. On the other 
side, the native replication plugin only performs 
MozartSpaces calls to its underlying core and remote 
cores. We have also noticed that the loose 
consistency model scales much better than the strict 
model, which is expected due to the added 
constraints. The strict model is, however, 
competitive when mostly selection operations occur 
while using the native plugin. Additional details on 
the XRM implementation and the benchmarks can 
be found in (Hirsch, 2012). 

In P2P traffic management scenarios, a suitable 
architecture must provide traffic information to 
vehicles in near-time while replicating data among 
nodes in a robust way to ensure fault tolerance. 
Asynchronous multi-master replication as provided 
by the presented plugins ensures that no node acts as 
single point of failure and that replication occurs in 
the background, thus preventing delays when 
interacting with vehicles that are only in range for a 
short time span. Due to the superior scalability the 
native replication approach appears suitable for this 
scenario, but the flexible framework approach 
allows researchers to evaluate and fine-tune further 
plugins that are adjusted to the specific use case. 

5 CONCLUSIONS 

In this paper, a customizable replication mechanism 
for the space-based middleware XVSM and its 
implementation MozartSpaces is presented. To 
provide a high level of flexibility, the replication 
manager can be configured to use several replication 
plugins. It is not dependent on any additional 
middleware for the communication layer and can be 
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easily extended. This way, the best replication 
plugin for the given use case can be chosen.  

For the proof-of-concept of the flexibility of the 
replication manager reference implementation two 
plugins were implemented: a native replication 
plugin and a Hazelcast-based one. Hazelcast was 
chosen because it  provides a great set of distributed 
data structures which can be easily used, is easy to 
integrate into applications, and provides an own 
internal replication mechanism. Both plugins 
perform asynchronous multi-master replication 
whereas the native plugin only uses functionality 
provided by MozartSpaces and the Hazelcast plugin 
uses the distributed in-memory data grid Hazelcast 
to store meta data. Both implementations use locks 
to prevent concurrent modifications of replicas. The 
implemented replication mechanisms focus on 
consistency and availability. A strict consistency 
model ensures that each replica contains exactly the 
same information. In environments where strict 
consistency is not needed, a loose consistency model 
gains more performance and scalability.  

Future work will take into consideration the 
comparison of various intelligent replication 
algorithms as well as an implementation of a 
location-aware replication plugin based on DHTs for 
the mentioned traffic management use cases. 
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