Web-based Metaprogrammable Frontend for Molecular Dynamics Simulations

Gergely Varga¹, Sara Toth¹, Christopher R. Iacovella², Janos Sallai¹, Peter Volgyesi¹, Akos Ledeczi¹, Gabor Karsai¹ and Peter T. Cummings²

¹Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, U.S.A.
²Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, U.S.A.

Keywords: Design, Experimentation, Metaprogramming, Web-based Development, Software Synthesis, Scientific Computing, Molecular Dynamics Simulation.

Abstract: Molecular dynamics simulators are indispensable tools in the arsenal of chemical engineers and material scientists. However, they are often difficult to use and require programming skills as well as deep knowledge of both the given scientific domain and the simulation software itself. In this paper, we describe a metaprogramming approach where simulator experts can create a library of simulation components and templates of frequently used simulations. Domain experts, in turn, can build and customize their own simulations and the required input for the various supported simulators is automatically synthesized. The web-based environment also supports setting up a suite of simulation jobs, for example, to carry out automated parameter optimization, via a visual programming environment. The entire simulation setup – including the various parameters, the version of tools utilized and the results – is stored in a database to support searching and browsing of existing simulation outputs and facilitating the reproducibility of scientific results.

1 INTRODUCTION

Molecular dynamics (MD) simulations play a very important role in chemical engineering and material science. For example, they are used extensively to predict and explain the properties and formation of a wide variety of complex phases composed of grafted- or tethered-nanoparticles (TNP). Unfortunately, MD simulators are often hard to set up and there is a steep learning curve to acquire the knowledge needed to design non-trivial simulations. Scientists use a variety of simulators because each has its own strengths and weaknesses (functionality provided, efficiency, targeting CPUs and/or GPUs, etc). However, the decision which environment to use while creating/setting up a simulation is one of the first steps of the design process and it is often difficult and error-prone to switch between them.

Typical simulations, for example, those of TNPs, can be broken down into a few key stages. First, simulations configurations must be initialized, including defining the basic building block geometry and topology as well as defining the starting conditions (e.g., from an energy minimized state arranged on a lattice). While these initial configurations tend to contain the same basic information regardless of the simulation software being used, each simulator tends to have a unique and incompatible file format. Thus the initialization typically takes place outside of the simulator, often in a "one-off" code developed by the researcher.

With a configuration data file generated, a simulation equilibration stage is typically undertaken. Here, the configuration data file is used as a starting condition, and the system is run at a given thermodynamic statepoint in order to reach steady state. Just as each simulator typically requires its own unique file format even though the data is essentially the same, each simulator will have its own syntax and structure for defining a simulation progression. For example, LAMMPS (Plimpton, 1995) and HOOMD-Blue (Anderson et al., 2008), two common molecular dynamics simulation packages, do not use the same scripting language to
handle the definition of key simulation routines, e.g., defining particle interactions, thermostats, etc. Furthermore, as most simulation codes are still actively being developed, internal components of the codes may change, also requiring syntax changes as new versions are released. However, in most cases, the basic data, simulation progression and parameters are the same regardless of the simulator being used.

Finally, the simulation output is used as input to analysis routines, which, like initialization software, are independent of the simulator used to generate them. Essential to this stage is that there is a clear understanding of what the data represents. For example, if a system configuration file is generated, it is important to understand what each particle "type" represents and how it is connected related to other particles in the system.

These stages are repeated over and over again, often at different thermodynamic state points or for slight modifications to the building block design and topology. Each loop, and indeed often times each stage, is completed as a totally separate, independent process, typically coordinated by an individual or team of researchers. This certainly creates issues with human error and makes it challenging to encapsulate the entire workflow and toolchain used to generate the given results (such information is not generally well-preserved in this process). This ultimately makes it difficult to archive results and workflows as well as to apply optimization algorithms or other guided assembly routines which might ultimately enable a priori design of materials.

The problems associated with the current state of the art can be summarized as follows:

- The input data and script format of the various MD simulators are different. They can also change over time. Scientists need to learn multiple languages to be able to create useful simulations. Running essentially the same simulation on a different simulator requires significant effort.
- Research groups tend to create their own tools to prepare simulations and/or to process the result or to automate multiple simulation runs. These tools typically remain undocumented and hence, are hard to use and are not useful for the scientific community as a whole.
- Raw simulation data are only meaningful in the context of the tools that were used to obtain them. Furthermore, simulation results can be hard to reproduce and verify by third parties without knowing the full procedure and tools used to generate those results. Over time this contextual information can get lost even within the group as people leave, new software versions are introduced and computers are replaced.

1.1 Approach

Our goal is to provide a tool that allows for capturing, generalizing and structuring the knowledge that has been gained by users who mastered the design process of MD simulations and make it widely available to others to create and run their own simulations in an easy to learn environment.

To this end, we have created a web-based metaprogramming environment for MD simulations. Simulator functionalities, from elementary steps to more complex operations, are captured in a hierarchical manner by "super users" or "metaprogrammers." These are the people who are experts in one or more MD simulators (LAMMPS, HOOMD-Blue, etc.) and scientific domains (e.g., grafting, tribology, rigid body experiments, etc.). Essentially, they create building blocks and even entire simulation workflows by abstracting out the general concepts and capturing the tool specific details in code fragments. Simulator-specific software synthesizers are then used to assemble the required input data files and scripts for a desired simulation run.

Ordinary users who are experts in their own field, but may have no deep knowledge of the various simulators and do not wish to write their own software to initialize MD simulations, can build one from the predefined blocks or adopt one of the ready-made simulations, modify the default parameter values as they see fit, and run the simulations using one of the supported tools.

This solution has the advantage to opening up MD simulation to a much wider audience by using higher abstraction levels and not requiring programming skills while still being future proof. To support a new simulator or a new version of an existing simulator, only the software synthesizer needs to be extended. While this may not be a trivial effort, it is still negligible compared to the alternative of manually porting the countless existing simulations to the new tool.

The rest of the paper is organized as follows. First, we summarize related work. Then we describe our metaprogramming approach followed by the section on software synthesis. Finally, we present the prototype system architecture.
2 RELATED WORK

Within the MD simulation domain, the approach most closely related to our work is the Nanohub (Nanohub, 2013). The Nanohub has been developed as a place for computational nanotechnology research, education, and collaboration, however most of primarily resources have an educational focus. Nevertheless, it provides a web-based interface for a variety of simulation softwares. However, the interface is somewhat unusual. Each simulator has its own front-end and Nanohub serves them up via a java-based VNC (screen sharing) client. The complexity of the variety of simulators is addressed through simplified user interfaces: the user is only presented with a limited subset of options to help guide the simulations. Most of the modules have a consistent look and feel, so the learning curve is reasonable. Visualization and plotting tools are often built into the GUIs. Jobs are submitted to clusters and the results copied back to the nanohub space. Unfortunately, Nanohub has its set of limitations. The VNC-based user interface is not very responsive. User-level customization is not supported. The user can only change the parameters that Nanohub includes in its simplified interface. There is no interaction supported between various tools: the output of one simulator cannot be trivially fed to the input of another. Similarly, the primary mode of operation is interactive, since most tools have been developed with education in mind, and thus submitting a large set of jobs is not easily accomplished.

The Atomic Simulation Environment (ASE) (Atomic Simulation Environment, 2013) is a Python-based tool that can connect to many different simulation codes as "calculators" you plug into the environment. It has thus far been primarily being developed for quantum mechanical calculations and is not well suited for most MD simulations. The power of ASE lies in its ability to bring in many different codes and tools that can be linked together in a common interface. The fact it is Python makes it potentially easy to expand and interface with other math toolkits, plotting and visualization libraries, etc. However, using ASE involves developing Python code and has a steep learning curve for those with limited or no programming experience. For example, since each "calculator" may in fact be very different, the functions required to use a given calculator are often unique, so tool integration with ASE is not seamless at all.

MDAPI (MDAPI, 2013) is similar to ASE, however developed for biophysical simulation, where the interface and computational engines are separated. However, similar to ASE, a steep learning curve is required and it no longer appears to be actively developed.

Etomica (Etomica, 2013) is a molecular simulation code written in Java, enabling it to be easily used and distributed via the web. While it does not allow end users to directly create custom simulations via the web, nevertheless, the user can run a variety of prewritten modules with custom parameter settings, similar to Nanohub. Etomica has defined a molecular simulation API, enabling simulations to be constructed from "generic" pieces, however, the API contains many specifications that are related to Java and interactive frontend development, rather than generic simulation elements.

In contrast to these existing efforts, our approach has the goal to provide an extensible, fully customizable, web-based environment where simulator experts can build a library of simulation components, define how these components are mapped to (potentially multiple) simulation platforms, create full simulation templates that can be customized and run by domain experts without the need to write computer programs. There are a number of reports on systems with similar objectives in the literature outside the MD simulation domain -- e.g. the SAFE framework for automating network simulations (Perrone et al., 2012), or WorMS (Rybacki et al., 2011), a workflow framework for modelling and simulation in general -- the most important distinguishing characteristic of our approach is that it does not define a language in which simulations are defined. Instead, it provides a means for the domain expert to create such languages. These languages will then be available for the end users for building MD simulations in a simplified manner.

3 METAPROGRAMMING APPROACH

Typically, simulations consist of the same elementary building blocks regardless of the MD simulator used. These building blocks represent Basic Operations, such as reading or writing a data file, resizing the box, setting up integrators or evolving the system for a number of time steps. Their syntax is tool-specific, but semantically they are equivalent.

An important design approach of our metaprogrammable tool is that basic operations are
not hard-coded into the system, but are specified by the domain experts. A basic operation has an identifier, a textual description, zero or more parameters with predefined default values, and a set of code templates for each supported simulator target. The textual description provides information for the simulator designer on what functionality the basic operation implements. Its semantics are captured in the code templates, which describe what code snippets will be generated from the basic operation and its parameters for a particular MD simulator target environment. (By target environment we mean a particular version of a particular simulator, e.g. LAMMPS Q3, HOOMD-Blue 0.10.1.) A particular basic operation can have code generation templates defined for multiple MD simulators. It is the responsibility of the metaprogrammer to assure that the basic operation is mapped to the same conceptual functionality in all supported target environments.

For each target environment, the metaprogrammer must define, through code templates, how the basic operation is mapped to simulator code. We observed a common pattern across several simulators, namely that a conceptual operation often does not correspond to one contiguous section of code. This is because commonly simulators require an initialization before the operation is carried out, and a finalization that releases resources and does the cleanup after that. Therefore, we chose to represent a basic operation with three logically related code snippets (init, code and finalize). This three-part code representation will come very handy on a higher logical level of our modeling hierarchy, and is easy to understand by metaprogrammers, who are experts in MD simulations, but not in programming language design.

Multiple parameters can be defined for a basic operation with name, type, default value, environment and visibility properties. Parameter values can be set or overridden at higher levels of the design hierarchy when we are using basic operations as building blocks. The visibility attribute may be used to mark a particular parameter value as private, which means that it cannot be altered later.

A basic operation, therefore, is a prototype object with well-defined structure (parameters) and semantics (code templates). To allow for describing MD simulations at higher levels of abstraction, basic operations can be cloned and grouped together to form Simulation Steps. A simulation step may override parameter values of the basic operations it contains, and may restrict their visibility to prevent them from being modified by the simulator designers at an even higher level.

The third, (top) level of the hierarchy groups simulations steps together in a well-defined order to form a Simulation Specification, representing an entire simulation. Parameter values that are public in the simulation steps can still be altered by the users prior to running the simulation. This hierarchical structure is illustrated in Figure 1.

We generate simulator scripts from the simulation specification as follows. As the simulation contains simulation steps and steps contain basic operations, the simulation specifications have a tree structure. Parameter types and default values are defined in the leaves, i.e. the basic operations, and may be overridden at the higher levels of the hierarchy. When traversing the tree in the first pass, the code generator propagates the overridden parameter values down to the leaves. Once the parameter values have been computed, the code generator starts to generate the simulator script.

For every simulation step, the code generator first generates the initialization code of the step by substituting the parameter values into the initialization code templates of the basic operations in the order they are contained. This is followed by generating the body of the simulation step in the same way, from the respective body code templates of the basic operations. Finally, the finalization part of the simulation step is generated, traversing the contained basic operations in the reverse order. Each simulation step is turned into a contiguous block of
code, which are concatenated to form the complete simulator script, maintaining the ordering of the steps within the simulation specification. This code generation scheme guarantees that a) allocated resources can be used by other operations within the same simulation step, that b) resources are properly freed when not needed any more.

3.2 Server Profiles

To run a simulation we need to set up specific simulators on local servers or use remote systems. To achieve this, we maintain a list of server profiles where we can store configuration settings (e.g. credentials to access the job manager (e.g. PBS), number of cores used, etc.) that can be used for running simulations.

3.3 Workflows

A workflow is the top level entity that connects simulation logic with particle data and server profiles. The user can load simulations into a workflow, define custom parameters, and set up a program flow that controls simulation execution. This is supported through a visual programming approach built on top of Blockly (Blockly, 2013). An example workflow is shown in Figure 2. The green blocks represent the program logic. In the example in the figure, it iterates 11 times and sets various variables. The maroon block represents one simulation run using a specific simulation called "VLE simulation" and a data file, server and simulator specified as parameters. VLE simulation consists of three simulation steps: Initialize simulation, Equilibrate system and Collect data. The Equilibrate system step shows how simulation steps are further broken down into basic operations, like running the simulation for a given number of steps, or dumping the current state into a data file. Individual parameters of basic operations may be viewed or edited directly from the workflow, as specified by the visibility rules of their containers (basic operations or simulation steps).

3.4 Particle Description

One of the main ingredients of simulation inputs is the data that includes the structure of particles, connections and constraints between them, a description of the simulation box and physical properties of the particles that are present in the system (e.g. position, velocity, electrical charge, etc). To model the particles, we provide a web-based visual editor that shows a list of atoms that are contained by a nanoparticle with all necessary properties, and also the connections and constraints that are present between the atoms. With such a visualizer, particle designers are less likely to make mistakes with either particles or bonds. For setting up data input files, we need to define a box that will contain all our particles and set up a rule how our small particle building block will be replicated throughout the whole box. The information captured via the web-based interface is used to generate the actual data files for the various supported simulators.

4 SOFTWARE SYNTHESIS

Once the simulation has been designed, it is the workflow specification that aggregates all the required information: 1) the prototype of the particles used in the simulation and the description of how it will be replicated throughout the simulation box, 2) the specification of the simulation with the hierarchy of simulation steps and their basic
operations included, 3) the visual program describing how the simulation needs to be repeatedly run with all parameter values specified by the user including the selected simulation engine and finally, 4) the necessary information about the target server.

The orchestration engine is an extensible interpreter that executes the Blockly code. It can process a) control flow blocks (conditional branching, loops, function definitions and calls), b) arithmetic and c) logic operator blocks, d) list and e) string handling blocks, as well as f) variable assignment and evaluation blocks. All other block types are handled by external interpreter plugins. An example of such an extrinsic block is the simulation instance block, drawn in maroon in Figure 2.

When the orchestration engine encounters an extrinsic block, it locates the interpreter plugin registered for that particular block type, and invokes it with the following parameters:

- the relevant part of the abstract syntax tree, including the extrinsic block itself and all of its descendants,
- the actual variable assignments as a key-value map, and
- the current stack frame.

The interpreter plugin may freely read, write and define variables, and optionally, it may place a return value on the stack, all of which are then available for the orchestration engine after the plugin completes.

Let us look at a particular example. When the orchestration engine encounters the simulation instance block (drawn in maroon in Figure 2), the simulation instance interpreter plugin is invoked. It translates the series of simulation steps to simulator scripts for the HOOMD 0.10.1 simulator target. The parameter values \(\Delta t \), \(T \), \(L_{\text{start}} \) and \(L_{\text{end}} \) are taken from the actual values of \(\Delta t \), \(T \), \(L_{\text{start}} \) and \(L_{\text{end}} \) in the variable assignment map, respectively. The plugin then generates the PBS scripts specific to the \(\text{vanderwaals} \) server profile, and submits the job to the server. The plugin periodically polls the job status from the server. After the job is completed, it collects the result data set and returns control back to the orchestration engine.

While the simulation instance block has no return value, many other extrinsic block types do have one. In particular, blocks that describe data analysis (e.g. the ratio of molecules in liquid and vapor states) place their return value on the stack before they exit. The orchestration engine may assign this return value to variables, according to the Blockly code describing the control flow. Such variables can then be used in conditional branching, allowing the workflow programmers to implement algorithms that take into consideration the simulator outcomes.

![Figure 3: Synthesis and orchestration.](image)

Once workflow execution is initiated, the system provides real-time feedback on the status of the entire process: system synthesis, file upload, job status provided by the PBS scheduler (queued, running, finished, etc). Once the results are available, they are shown on the web interface. Figure 3 illustrates the process.

As the entire process is automated, it frees the users from going through this complicated and error-prone process manually where they would need to interact with multiple tools, set up server connections, upload/download multiple files, place them in the right path, set up simulator configurations, and maintain simulator-generated result files. In addition, the system provides a well-structured and searchable backend for simulation setups and results. This enables searching for existing results potentially saving significant time and CPU cycles. Also, the repeatability of simulations is ensured because all setup information down to the versions of tools used are saved along with the end results.

5 SYSTEM ARCHITECTURE

From technical point of view we had to make several decisions to create a useful and easy-to-use application. In the very beginning, we decided to use web-based technologies for the following reasons: as we mentioned before, toolsets that are used by chemical engineers are custom-made, hard to setup.
and organizing results of simulations are not solved yet. A desktop-based solution would have multiple downsides such as the fact that all users have to setup all the tools they need to use for a simulation, which is not easy because these common-used tools are not always platform-independent, need custom dependencies (as they need to be compiled on the target machine). On the other hand, users have to have access to their workstations always to be able to work. Having a web-based solution, necessary tools have to be installed and maintained (version refresh, etc) only on the hosting servers.

A web-based solution also provides a higher level of usability: most of the tools are command-line tools and have a long learning curve to get familiar with them, while on the web we can provide an intuitive interface that is easy-to-use for users who do not have any knowledge about certain tools.

The second design decision involves the technology choices for easy data retrieval and manipulation, while having a structured backend system for archiving. A natural choice is to use a database. An object database fits naturally with the hierarchical representation of the simulations utilized in our approach. Also, storing and retrieving JSON-like documents/objects are supported by NoSQL databases quite well.

Another key decision is the type of web-server to utilize. As most of the server-side tools the system needs to integrate are UNIX-based, a Microsoft-based solution (i.e., Internet Information Server - IIS) seemed suboptimal. Node.js, a relatively new technology provides good performance and is very flexible with interacting external tools. Its programming language is Javascript which is also used on the client-side as a de-facto standard for web-based interactive user interface design. This choice also saves development time as it enables sharing code between server- and client-side. Node.js relies on reusable packages called node modules that provide certain functionalities or custom APIs for external tools and also help structure the application.

Figure 4 shows the prototype system architecture. On the client side the application runs in the browser and downloads/ synchronizes data from the server. The widely used library, Backbone.js that follows the Model-View-Controller pattern, and require.js that provides a convenient way to modularize and structure the source code are utilized. The web-client has separate modules for simulation design, workflow creation and particle definition. A copy of the server-side code generator is also included here for debugging and educational purposes. Super users who develop simulation components can immediately get feedback on what the simulation script corresponding to their current design will look like. This helps them debug their design and also assists in finding bugs in the code generator itself. Regular users can also utilize this service to see the how their simulation designs decisions will manifest themselves in the generated code.

A handy tool helping both of these activities is the ability of the code generator to output pseudo code in the web client. This pseudo code is easy for human readers to comprehend. It shows the structure of the code that corresponds to the modeled system without the complexity of the specific syntax of the various target tools. Figure 5 shows the pseudo code generated for a portion of the workflow depicted in Figure 2.

On the server side multiple node.js instances are included: a proxy that routes requests to the proper instance to serve different data or files. The Orchestration module includes the execution engine that is responsible for interacting with local and remote workers (e.g., PBS servers, Simulation result repositories, etc.). The server-side architecture is inherently scalable. To separate certain parts or
functionalities (e.g. switching to a stand-alone database server, creating a second file server for raw simulation output files, etc.) only the configuration settings need to be modified.

A custom node module interacts with PBS: it uses ssh and scp to run commands and to upload/download files, monitors queued/running jobs and interacts automatically when certain job status changes happen. As we use node.js on the server-side, a natural transition from the conventional one-way communication method (RESTful interface) to a two-way communication method (through WebSockets) proved very useful: users can be notified about any job status (or data) changes without refreshing a page or polling the server. This makes the user interface interactive, and easy-to-use and provides up-to-date information while eliminating most common errors when users interact with the domain-specific toolchain.

6 CONCLUSIONS

The technology described in this paper has the potential to revolutionize how molecular dynamics simulations are carried out by the scientific community. The framework makes it possible to capture the deep knowledge of the few individuals who are intimately familiar with the various simulation tools frequently used in the domain and make it available at a much higher level of abstraction for the wider community through a user-friendly, intuitive web interface. We envision that a rich library of simulation modules and templates will be developed. In addition, the results of MD simulations will also be archived and made available in a fully searchable form. The results will be tightly coupled with the exact simulation setup that was used to create it. This will make it easy for people to find existing results, recreate them if necessary or build upon them in their own research. Today such a collaborative infrastructure simply does not exist.

ACKNOWLEDGEMENTS

The research presented in this paper was supported by the National Science Foundation grants NSF CBET-1028374 and NSF OCI-1047828.

REFERENCES