QEF-LD

A Query Engine for Distributed Query Processing on Linked Data

Regis Pires Magalhães¹,², José Maria Monteiro¹, Vânia M. P. Vidal³, José A. F. de Macêdo¹, Macedo Maia¹, Fábio Porto³ and Marco A. Casanova⁴

¹Computer Science Department, Universidade Federal do Ceará (UFC), Fortaleza, Brazil
²Quixadá Campus, Universidade Federal do Ceará (UFC), Quixadá, Brazil
³Extreme Data Lab, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Brazil
⁴Informatics Department, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil

Keywords: Linked Data, Federated Queries, Query Processing, Data Integration, Mashup.

Abstract: Linked data applications express integrated views using the SPARQL query language. A SPARQL federated query is submitted to a query engine that processes it over the distributed SPARQL endpoints. However, achieving an efficient execution of such a SPARQL federated query is hard. This is mainly due to the fact that query processors have little or no statistical information about the data stored at the endpoints. Moreover, the endpoints, usually, are autonomous and unstable. This paper presents QEF-LD, a query engine that enables the efficient execution of federated queries over multiple Linked Data sources. Experiments demonstrate the feasibility of QEF-LD when compared to available federated query engines.

1 INTRODUCTION

The Linked Data initiative promotes the publication of data as Web accessible resources. By using standard protocols and representing data using the RDF model, autonomous datasources are published and can be queried using the SPARQL query language. The diversity of published data in a standard format makes the basis for new kinds of applications that combine data from different sources into a federated view.

Linked data integration applications express federated views using the SPARQL query language. In a SPARQL federated query (Prud’hommeaux and Buil-Aranda, 2011), the service keyword points to the distributed data sources, while joins and unions integrate the data in the federation. The integrated query is submitted to a federated query engine that processes it over the distributed SPARQL endpoints.

It turns out that achieving an efficient execution of such a SPARQL federated query is hard. This is mainly due to the fact that query processors have little or no statistical information about the data stored at the endpoints. As a result, traditional query optimization strategies are jeopardized, making it hard to define optimal join orderings and to react to large bind sets, which are common operations used in federated query execution. Furthermore, the data sources are usually autonomous and unstable.

There is, however, a particular kind of federated application for which fine-tuned query strategies may be conceived. Data mashups are pre-defined data views that are computed by integrating distributed data sources. In these applications, the designer knows which data sources will provide the required data and may define from experience the best strategy to access them. Thus, inter-site join orderings, for instance, can be defined at design time. Note however that, depending on the query parameters, the size of intermediate results may vary considerably, so a query engine must also be able to react to this variation by dynamically setting the size of bind sets in joins.

In this paper, QEF-LD, a query engine for distributed query processing on Linked Data, is presented. The system enables designers to specify mashup queries over federated Linked Data sources. During mashup design, join ordering between distributed endpoints are defined, while local joins remain specified in SPARQL subqueries to be run by the endpoints themselves. Moreover, inter-site joins are implemented by the SetBindJoin operator.

We conducted experiments that run five SPARQL
federated queries on three different SPARQL query engines and on QEF-LD. The results show that QEF-LD produces a query elapsed-time that is up to 4500 times faster than one of the query engines (Table 1). Moreover, QEF-LD was able to run all five queries, whereas some of the other systems suffered from memory overflow or simply would not respond. This performance gain is due mainly to two aspects: a) the manual design of QEPs and b) the effect of SetBind Join algorithm.

This paper is structured as follows. Section 2 covers related work. Section 3 presents the QEF-LD component used to execute federated query plans on Linked Data. Section 4 explains the proposed algorithms used in QEF-LD. Section 5 analyses the experiments performed to evaluate the feasibility of QEF-LD, and to compare QEF-LD to other strategies for the execution of federated queries. Finally, section 6 contains the conclusions and suggestions for future work.

2 RELATED WORK

Jena ARQ\(^1\) and Sesame\(^2\) are query processors that implement the federated query specification for SPARQL 1.1 (Prud’hommeaux and Buil-Aranda, 2011). The specification defines the SERVICE operator that in turn defines the SPARQL Endpoint URI and SPARQL query to be executed. However, the specification is quite simple and does not provide optimizations or other strategies to improve query performance, such as caching or grouping of intermediate results.

DARQ (Quilitz and Leser, 2008) – Distributed ARQ – extends Jena ARQ to allow SPARQL federated queries with transparent access to multiple SPARQL endpoints. One limitation of DARQ is that it can only execute queries with bound predicates. This is because data source selection in DARQ is based on matching query pattern predicates to predicates in capability patterns. Therefore, DARQ does not allow the use of SPARQL variables in predicates of BGPs (Basic Graph Patterns). The DARQ project emerged in 2006, though its development ceased as of 2008.

SemWIQ (Langegger, 2010) is another data integration system in which queries are expressed in SPARQL. Like DARQ, it also extends the Jena ARQ query processor. SemWIQ is based on a mediator-wrapper architecture and uses its own optimization strategy to generate execution plans. SemWIQ development is no longer maintained and its last update was in 2010. DARQ and SemWIQ were not used in our experiments (Section 5) since they were discontinued.

FedX (Schwarte et al., 2011) – Linked Data in a Federation – is a framework which extends Sesame with an integration layer for transparent access to distributed data sources. It enables efficient query processing on distributed Linked Data sources. FedX is compatible with the SPARQL 1.0 query language, which allows clients to integrate with available SPARQL endpoints. It uses join reordering, bound joins and grouping of subquery results to reduce the number of intermediate results and thus to improve federated query performance. FedX allows concurrent processing of join and union operations through the use of threads.

We note that Jena, Sesame and FedX are designed to evaluate ad-hoc SPARQL queries, dynamically generating a federated query execution plan. QEF-LD takes a different approach for dealing with mashup integration queries. At design time, an efficient federated execution plan (described in XML) is computed for a given mashup query, which is associated with the corresponding SPARQL query during execution. In this scenario, a more adequate execution profile can be achieved.

3 QEF-LD

This paper describes QEF-LD, an extension of QEF – Query Evaluation Framework (Porto et al., 2007) – to support the execution of SPARQL endpoints integration queries.

QEF is a framework for the deployment of data processing applications. Developers may extend QEF with new operators, which implement the processing semantics of the application, and with new data sources, which enables access to data under heterogeneous formats. The application specification is exposed to QEF as an XML document, known as an application execution plan.

There are two types of QEF operators: algebraic and control. Algebraic operators correspond to the application semantics, whereas control operators implement the execution model and include operators for data transformation and transfer.

QEF-LD extends QEF to allow data to be retrieved from SPARQL endpoints, whose underlying data sources may be RDF stores or any other data source with a translation to RDF, offered through a wrapper. QEF-LD communicates with endpoints, ob-
tains results from SPARQL queries, and transforms the results into QEF tuples [3]. Currently, QEF-LD returns results in XML, JSON or HTML.

QEF-LD offers a set of Linked Data algebraic operators, which capture the application semantics. Complementarily, QEF-LD includes a set of control operators, which access the data sources or cache intermediate results. The QEF-LD operators were implemented using a consumer-producer strategy, defining a pipeline of results from one operator to another.

In more detail, QEF-LD implements the following operators: SPARQL Endpoint Data Source, Service operator, Project operator, BindJoin operator, SetBindJoin operator, Union operator. The SetBindJoin operator offers scalability to large result sets by the dynamic partitioning of result sets and parallel evaluation. It outputs results from the parallel processing of tuple sets generated by its left producer. The grouping of tuples obtained from the left producer of the join in sets allows a reduction in the number of remote requests to SPARQL Endpoints related to the right producer of the join. It also limits the number of returned tuples, since the binding of common variables used in producers leads to the formulation of a query with lower selectivity, i.e. a more restrictive query.

QEF-LD stores a federated query plan, as an XML file, represented by a URI. A plan may have named parameters, extracted from a URI, and used to filter the query execution results. QEF-LD also permits that stored plans be pre-loaded into a cache during startup, or on demand, when the plan is requested for the first time.

4 ALGORITHMS

SetBindJoin Algorithm

The SetBindJoin algorithm outputs results from the parallel processing of tuple sets generated by its left producer. The grouping of tuples obtained from the left producer of the join in sets allows a reduction in the number of remote requests to SPARQL Endpoints related to the right producer of the join. It also limits the number of returned tuples, since the binding of common variables used in producers leads to the formulation of a query with lower selectivity, i.e. a more restrictive query.

The processing of each set can be briefly divided into the following steps:

(i) Create a tuple set S with elements retrieved from the left producer of the join.

(ii) Retrieve tuples from the right producer of the join that are related with tuples from the tuple set S.

(iii) Return the join results between tuples from the set S and tuples retrieved from the right producer.

The steps are detailed below:

(i) Create a Tuple Set S with Elements Retrieved from the Left Producer of the Join. The SetBindJoin algorithm (algorithms 1 and 2) groups the tuples retrieved from the left producer of the join in sets (Lines 6–16 of Algorithm 2). The sets have a maximum number of tuples that is pre-configured in the SetBindJoin operator in the query plan. That configuration is represented in our algorithm by the variable leftTuplesSetSize.

(ii) Retrieve Tuples from the Right Producer of the Join that are Related with Tuples from the Tuple Set S. The right producer of the join is cloned and existing queries in the right producer are reformulated to bind the values of common variables between the left and right producers of the join. The reformulation ensures that the right producer will only retrieve results related to tuples from the tuple set S. Clone and reformulation are performed by the cloneAndReformulate method on line 17 of Algorithm 2. The reformulation changes the original query using UNION and FILTER features from the SPARQL query language in order to bind variables.

Other reformulation strategies were tested, but they were not feasible either due to some incompatibility with most available SPARQL Endpoints or because their performance was worse than the adopted strategy.

All the tuples retrieved by the left producer of the join are stored in a hash table called leftTupleHashTable (Lines 4, 8, 11 and 17 of Algorithm 2). The hash table key is a representation of the values of the common variables between the join producers and its value is a list of tuples that share the key.

(iii) Return the Join Results between Tuples from the Set S and Tuples Retrieved from the Right Producer. For each tuple from the right producer of the join, we retrieve a list with all left side tuples from the leftTupleHashTable that share the same key. Next, we go over the list to join each of its elements with the element retrieved from the right in order to return the final result of the operation (Lines 20–30 of Algorithm 2).

The resulting tuples from all sets processed in parallel are stored in a single linked blocking queue called resultBuffer. The take method from the resultBuffer queue (Line 7 of Algorithm 1) retrieves and removes its first element if the queue is not empty. If the queue is empty, the take method waits until a new element is added. The put method is used to insert an element at the end of the queue (Lines 27 and
33 of Algorithm 2). The put method waits if no space is available to insert a new element in the queue. If space is available, the queue exits the wait state and allows the insertion of new elements.

The END_TOKEN element is used to flag the end of processing all tuples. It is added after the last resulting tuple. The leftProducerSetCounter variable is used to count sets that are processed in parallel. It is incremented when a set starts to be processed and decremented at the end of processing each set. When its value is zero and no more tuples are retrieved from the left producer of the join (Line 32 of Algorithm 2), there is nothing to process and so the END_TOKEN can be inserted (Line 33 of Algorithm 2).

Algorithm 1: SetBindJoin - processTuples.

<table>
<thead>
<tr>
<th>Input:</th>
<th>leftProducer, rightProducer, leftTuplesSetSize, resultBuffer, maxNumberOfLeftProducerSets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>tuple</td>
</tr>
<tr>
<td>if not processStarted then</td>
<td></td>
</tr>
<tr>
<td>processStarted ← true</td>
<td></td>
</tr>
<tr>
<td>foreach processTuples (leftProducer, rightProducer, leftTuplesSetSize, resultBuffer, maxNumberOfLeftProducerSets)</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>

Algorithm 2: SetBindJoin - processTuples.

<table>
<thead>
<tr>
<th>Input:</th>
<th>leftProducer, rightProducer, leftTuplesSetSize, resultBuffer, maxNumberOfLeftProducerSets</th>
</tr>
</thead>
<tbody>
<tr>
<td>leftTuple ← leftProducer.getNext ()</td>
<td></td>
</tr>
<tr>
<td>leftProducerSetCounter ← 0</td>
<td></td>
</tr>
<tr>
<td>while leftTuple ≠ null do</td>
<td></td>
</tr>
<tr>
<td>leftTuplesHashTable ← createHashTable ()</td>
<td></td>
</tr>
<tr>
<td>numberOfLeftTuples ← 0</td>
<td></td>
</tr>
<tr>
<td>while (numberOfLeftTuples < leftTuplesSetSize) and leftTuple ≠ null do</td>
<td></td>
</tr>
<tr>
<td>key ← getKeyBasedOnSharedVars (leftTuple)</td>
<td></td>
</tr>
<tr>
<td>leftList ← leftTuplesHashTable.get (key)</td>
<td></td>
</tr>
<tr>
<td>if leftList == null then</td>
<td></td>
</tr>
<tr>
<td>leftList ← createList ()</td>
<td></td>
</tr>
<tr>
<td>leftTuplesHashTable.put (key, leftList)</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>leftList.add (leftTuple)</td>
<td></td>
</tr>
<tr>
<td>leftTuple ← leftProducer.getNext ()</td>
<td></td>
</tr>
<tr>
<td>numberOfLeftTuples+1</td>
<td></td>
</tr>
<tr>
<td>changedRightProducer ← rightProducer.cloneAndReformulate (leftTuplesHashTable)</td>
<td></td>
</tr>
<tr>
<td>Wait until leftProducerSetCounter < maxNumberOfLeftProducerSets</td>
<td></td>
</tr>
<tr>
<td>if rightTuple ≠ null do</td>
<td></td>
</tr>
<tr>
<td>key ← getKeyBasedOnSharedVars (rightTuple)</td>
<td></td>
</tr>
<tr>
<td>rightList ← rightTuplesList</td>
<td></td>
</tr>
<tr>
<td>leftTuplesHashTable.get (key)</td>
<td></td>
</tr>
<tr>
<td>foreach leftTuplesList do</td>
<td></td>
</tr>
<tr>
<td>tuple ← join (leftTuple, rightTuple)</td>
<td></td>
</tr>
<tr>
<td>resultBuffer.put (tuple)</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>rightTuple ← changedRightProducer.getNext ()</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>leftProducerSetCounter ← 0</td>
<td></td>
</tr>
<tr>
<td>if leftTuple == null and leftProducerSetCounter == 0 then</td>
<td></td>
</tr>
<tr>
<td>resultBuffer.put (END_TOKEN)</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>

The SetBindJoin implemented in QEF-LD is configurable from parameters defined in the query execution plan. The parameters allow the definition of (i) the maximum set size and (ii) the maximum number of concurrent threads. The parameter (ii) is also the maximum number of sets (maxNumberOfLeftProducerSets) that can be processed concurrently. Line 18 of Algorithm 2 implements this restriction in order to avoid having too many threads awaiting processing. Higher values to parameter (ii) can open an excessive number of sockets, which can interrupt the query processing.

Union Algorithm

The Union algorithm (Algorithm 3) performs the concurrent union of tuples from multiple producers. Each thread retrieves tuples from one producer and stores them in a linked blocking queue called resultBuffer. If the resultBuffer queue is not empty, the take method (Line 19 of Algorithm 3) retrieves and removes its first element. Otherwise, the take method waits until a new element is inserted. The put method is used to insert a new element at the end of the queue (Lines 9 and 14 of Algorithm 3). If there is no space available to insert a new element in the queue the put method goes into wait state. It leaves the wait state and allows the insertion of new elements as soon as the required space is available.

The END_TOKEN element is used to flag the end
of processing all tuples. It is added after the insertion of the last resulting tuple. A counter of concurrent processed producers called **producersCounter** is used to help identify the end of processing all tuples. It is incremented in the beginning of processing of each producer and decremented after the end of processing. Thus, when its value is zero (Line 13 of Algorithm 3) there is nothing to process and the **END_TOKEN** can be added (Line 14 of Algorithm 3).

Algorithm 3: Union - `getNext`.

Input: producers, processStarted, resultBuffer

Output: tuple

1. **if** not processStarted **then**
 2. processStarted ← true
 3. producersCounter ← 0
 4. **for** i = 0 to producers.size() − 1 **do**
 5. parallel
 6. producersCounter ++
 7. prodTuple ← producers[i].`getNext`()
 8. while prodTuple ≠ null **do**
 9. resultBuffer.put(prodTuple)
 10. tuple ← producers[i].`getNext`()
 11. end
 12. end
 13. producersCounter −−
 14. **if** producersCounter = 0 **then**
 15. resultBuffer.put (END_TOKEN)
 16. end
 17. end
 18. end
19. tuple ← resultBuffer.take()
20. **if** tuple = END_TOKEN **then**
21. tuple ← null
22. end
23. return tuple

5 EXPERIMENTS AND RESULTS

In order to quantitatively evaluate the proposed query engine under the mashup data integration scenario with parameterized queries, we have performed several experiments using QEF-LD, and the most widely used tools, to run federated SPARQL queries: Jena, Sesame and FedEx. This section discuss the results of the experiments we carried out. For that, we used efficiency as metric that is related to query processing time and memory footprint in each evaluated SPARQL query processor.

To carry out the tests we used the following datasets: diseasesome, dailymed, sider, drugbank, dblp, DBpedia and linkededgeodata. For each dataset we imported its data for an RDF Store using the dumps available on the Web. The OpenLink Virtuoso™ was used to store the RDF data and to provide a SPARQL Endpoint service.

The workload comprised five synthetic SPARQL mashup queries. The Q1, Q2, and Q3 queries were designed to evaluate the join strategies, whilst queries Q4 and Q5 were prepared with the intention of analyzing the performance of the union operations.

Queries to Evaluate the Join Strategies

Both queries Q1 and Q2 have a single join operation, but differ principally by the amount of data returned (see Table 2). Query Q3 involves two join operations and retrieves a large number of results (86,516 tuples).

Query Q1 (Figure 1) gets resources’ URIs from the linkededgeodata dataset, together with their respective latitudes and longitudes obtained from the DBpedia dataset. Query Q2 (Figure 2) gets URIs of diseases and possible drugs used to treat each disease from the diseasesome data source. In addition to these data, the full names of the drugs used in treating each disease are obtained from the dailymed data source.

3http://virtuoso.openlinksw.com/
med:genericDrug with drugbank to retrieves chemical formulas of drugs.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX dm: <http://www4.wiwiss.fu-berlin.de/dailymed/resource/dailymed/>
PREFIX db: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/>
PREFIX sider: <http://www4.wiwiss.fu-berlin.de/sider/resource/sider/>

SELECT ?dgain ?dgcf ?sen
WHERE {
SERVICE <http://dailymed.arida.ufc.br/sparql> {
?dg owl:sameAs ?sa .
}
SERVICE <http://sider.arida.ufc.br/sparql> {
}
SERVICE <http://drugbank.arida.ufc.br/sparql> {
}
}

Figure 3: Federated SPARQL Query Q3.

Queries to Evaluate the Union Strategies
Queries Q4 and Q5 differ in the number of union operations performed. While query Q4 has a single union operation, query Q5 has ten union operations. Query Q4 (Figure 4) performs the union of generic names of drugs and medical treatment indications between the datasets drugbank and dailymed. The query Q5 (Figure 5) performs the union of researchers names and their publications in the DBLP dataset.

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX db: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/>
PREFIX dm: <http://www4.wiwiss.fu-berlin.de/dailymed/resource/dailymed/>

SELECT ?gn ?indication
WHERE {
SERVICE <http://drugbank.arida.ufc.br/sparql> {
?dn db:genericName ?gn ;
db:indication ?indication.
}
UNION {
SERVICE <http://dailymed.arida.ufc.br/sparql> {
?dn dm:name ?gn ;
dm:indication ?indication .
}
}
}

Figure 4: Federated SPARQL Query Q4.

Execution
To measure efficiency, we have submitted 10 execution cycles for each one of the five queries in the workload. Each execution cycle involved two executions of the same query.

In each execution cycle, the first query usually underperformed due to the startup of the Java virtual machine that prepares and allocates the necessary resources. However, the second query run on the same virtual machine instance, where all the resources were already available. For this reason, for each execution cycle, we ignored the response time of the first query run. That is, we took into account only the response time of the second query run.

Testing Environment
Two nodes comprised the test environment, a server and a client, connected by a local network. The server machine hosted the OpenLink Virtuoso, which stored the RDF data and provided a SPARQL endpoint service to each dataset used in the workload: diseases, dailymed, sider, drugbank, dbp, DBpedia and linkedgeodata. The client machine hosted the evaluated SPARQL query engines: Jena, Sesame, FedEx and QED-LD. The server machine used in the experiments was an Intel Core i7 2.93GHz with 16 GB RAM DDR3 1333 MHz. The client machine used during the tests was an Intel Core 2 Duo 2.93GHz with 2GB RAM 667 MHz.

Experimental Results
In order to evaluate the efficiency of the SPARQL query engines, we used two metrics: 1) the query response time and 2) the maximum amount of memory used by the Java virtual machine during each query run.

Performance Evaluation of Join Operations
The join operator used by QEF-LD was the SetBind-
Join. This operator uses threads to run queries in parallel. A maximum of one hundred concurrent threads was chosen to be used for all queries involving the SetBindJoin operator. This value was chosen due to the following experimental observation: fixing the other SetBindJoin parameters and varying only the number of concurrent threads, the best performance results were obtained when this value was near one hundred. Moreover, fewer concurrent threads may result in a lower throughput. Then, we observed that there are values for the maximum number of concurrent threads that lead to a balance between data production (SPARQL Endpoint) and data consumption (QEF-LD), which maximizes the throughput. For the environment used in our experiments, this value was close to one hundred.

Sesame (version 2.6.5.) did not return data for Q1 (“N.R. – no results returned” in Table 1), even after running for hours. No error message was returned. We also noted no excessive memory consumption (approximately 180MB).

FedX did not return data for Q1 and Q3. During the execution of Q1 and Q3, FedX used all available memory for the Java virtual machine and, after some time, threw an exception indicating lack of available memory (“O.O.M. – OutOfMemory” in Table 1).

Figures 6 and 7 show the query response times of queries Q1 to Q5. For queries Q1, Q2 and Q3, QEF-LD obtained considerably smaller query response times than the other evaluated SPARQL query engines. QEF-LD ran query Q5 in slightly more time than FedX.

Table 1: Query execution times (in seconds) of queries Q1–Q5.

<table>
<thead>
<tr>
<th>Query</th>
<th>Jena</th>
<th>Sesame</th>
<th>FedX</th>
<th>QEF-LD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>382.649</td>
<td>N.R.</td>
<td>O.O.M.</td>
<td>50.808</td>
</tr>
<tr>
<td>Q2</td>
<td>39.530</td>
<td>47.239</td>
<td>12.576</td>
<td>1.017</td>
</tr>
<tr>
<td>Q3</td>
<td>88.531</td>
<td>339.741</td>
<td>O.O.M.</td>
<td>7.416</td>
</tr>
<tr>
<td>Q4</td>
<td>0.813</td>
<td>0.642</td>
<td>0.636</td>
<td>0.556</td>
</tr>
<tr>
<td>Q5</td>
<td>375.226</td>
<td>375.900</td>
<td>208.155</td>
<td>214.457</td>
</tr>
</tbody>
</table>

Table 2: Number of results of queries Q1–Q5.

<table>
<thead>
<tr>
<th>Query</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
</tr>
</thead>
<tbody>
<tr>
<td># results</td>
<td>43,016</td>
<td>6,124</td>
<td>86,516</td>
<td>5,146</td>
<td>18,327</td>
</tr>
</tbody>
</table>

Moreover, the SetBindJoin operator implemented in QEF-LD generally consumed more memory than the equivalent operators in others evaluated SPARQL query engines. This memory consumption was mainly due to the need to temporarily store data required to build the joins results. The use of multiple threads also increases memory consumption.

Q3 query is quite different from Q1 and Q2, the other queries that use join operations, since Q3 performs two join operations instead of just one and returns more results. It is important to note that, in Jena, the amount of memory used by Q3 was much greater than that used by Q1. However, in QEF-LD, queries Q1 and Q3 did not suffer a significant difference in memory consumption. In addition, Sesame provided the lowest memory consumption among the evaluated tools.

Analyzing Figure 9, one can see that, in query Q1, starting at sets of 20 bind values, increasing the size of the sets makes the query evaluation slower. Therefore, it is important to find a balance between data production and consumption to maximize query performance. The maximum size of the sets used in queries Q1, Q2 and Q3 was 57 QEF tuples (Porto et al., 2007), which contains intermediate results. We could not use larger sets because the Virtuoso server does not allow queries with more than 57 union operations. Indeed, the BINDING strategy used by SetBindJoin involves query reformulation using several union operations (See Section 4).

Performance Evaluation of Union Operations

Regarding the union operation, Sesame and FedX stood out for their smaller memory consumption compared to other evaluated tools. For the first time in the experiments, FedX achieved satisfactory results with respect to memory usage. The QEF-LD memory footprint was larger than the other query engines, which indicate that there is room for improving the QEF-LD Union algorithm.

In query Q5, FedX and QEF-LD had similar...
response times. Furthermore, FedX and QEF-LD proved to be almost twice as fast as the other evaluated query engines. This performance gain is due to the use of threads. However, the memory consumption was greater in QEF-LD than in the other query engines.

We conclude with a remark on the testing environment. We decided to store all triplesets used on the OpenLink Virtuoso to expedite the experiments and to shield the experiments from extraneous factors. In fact, we tried several times to run the designed workload (queries Q1 to Q5) over the original data available on the Web. However, these queries burdened the endpoints, sometimes causing service interruption. In other cases, the endpoint servers limited the results, threw exceptions, and added error messages (like "Premature end of file"). In the future, we intend to design and run over the Web environment a workload containing queries with greater selectivity in order to reduce the amount of data retrieved and, thereby, facilitating the experiments.

6 CONCLUSIONS AND FUTURE WORK

This paper addresses the processing of federated query plans on the Web of Data using QEF-LD, which is a query execution engine that extends QEF – Query Evaluation Framework. QEF-LD exploits intra-operator parallelism, reduction in the number of remote calls and reduction in the selectivity of queries to remote endpoints in order to improve the performance of query execution. Furthermore, QEF-LD is fully compatible with the SPARQL 1.0 query language that allows clients to integrate with available SPARQL endpoints. Experiments demonstrated the feasibility of using QEF-LD operators. The SetBindJoin operator implemented in QEF-LD obtained considerably smaller execution times than other strategies.

The main challenges to be addressed in the future include: (i) adding new efficient operators to QEF-LD; (ii) creating adaptive operators to address the aspect of unpredictability in the Web of Data; (iii) using data cache, indexes and statistics to improve query performance; (iv) creating a framework to automate all steps of federated query processing, where QEF-LD will be used as the query execution engine; (v) adding support for adaptive processing of ad-hoc queries.

REFERENCES

