
Application Engineering for Embedded Systems 
Transforming SysML Specification to Simulink within a Product-Line 

 based Approach 

Vanderson H. Fragal, Rogério F. Silva, Itana M. S. Gimenes and Edson A. Oliveira Júnior 
Department of Informatics-DIN, Universidade Estadual de Maringá-UEM, Maringá-PR, Brazil  

Keywords: Software Product Line, SysML, Simulink, Unmanned Aerial Vehicle, Model Transformation. 

Abstract: The evolution of hardware platforms has transferred a great amount of functionality to embedded software, 
thus increasing its complexity. Model Driven Engineering (MDE) and Software Product Line (SPL) can 
enhance the development of complex embedded systems by using different specification languages 
according to the abstraction levels and controlling variability across development. The SyMPLES approach 
allows the creation of SysML-based SPLs. It includes two SysML extensions, created by means of the UML 
profiling mechanism both to express SPL variability concepts and to associate SysML blocks to the main 
classes of functional blocks. This paper presents the transformation process from SysML to Simulink 
models. SysML models, created in the SPL application engineering activity of SyMPLES, are used to 
generate functional blocks and state machines in Simulink. An application example was developed for one 
subsystem of an autopilot board used in Unmanned Aerial Vehicles, named Yapa 2 of Paparazzi project, 
which was studied into the context of National Institute of Science and Technology for Safety Critical 
Embedded Systems (INCT-SEC). 

1 INTRODUCTION 

Embedded systems are applications for processing 
embedded information in a larger product which is 
not usually directly visible to users (Marwedel 
2010). The increased computational power of 
hardware platforms has led to a fast growth of 
embedded software over the last decades mainly due 
to the transfer of more functionality to software 
(Burch et al. 2001). As a consequence, embedded 
systems became larger and more complex, thus more 
demanding in terms of software engineering 
techniques. The Software Product Line (SPL) 
approach (Linden et al., 2007) has been successfully 
applied to embedded system (Polzer et al., 2009; 
Fragal et al., 2011; Braga et al., 2011). 

The Model Driven Engineering (MDE) approach 
supports the generation of applications by means of 
model transformation, which may be at the same or 
different abstraction levels (Czarnecki and Helsen, 
2003). During development, various modeling 
languages are used to represent the required 
abstraction levels. For example, UML/SysML 
languages are used to represent higher abstraction 

level models (Burch et al., 2001; Brisolara, 2007), 
while Simulink (Simulink, 1994) is used to represent 
lower abstraction level models (Polzer et al. 2009; 
Pastor et al. 2006). 

Simulink is a tool used in the development of 
embedded systems that represents more than 50% of 
the market (Ebert and Jones, 2009). Functional 
blocks based on libraries are used to represent 
behavior and specific functions which are used as 
input to generate C code with Simulink Coder (or 
Real-Time Workshop) plug-in (Simulink Coder 
2012). There are some approaches that describes 
SPL based on Simulink (Pastor et al., 2006; Steiner, 
2012). However, they need to add control blocks in 
the Simulink model to specify variability which 
increases the complexity of product specific models. 

Thus, there is a need to represent variability of 
SPL at a higher abstraction level. The management 
of variability at higher abstraction level models 
enables the configuration of products in a top-down 
development without adding complexity to lower 
abstraction level models. 

Systems Modelling Language (SysML) (SysML 
2008) is a language for specification of embedded 
systems used in the Object-Oriented Systems 

94 H. Fragal V., F. Silva R., M. S. Gimenes I. and A. Oliveira Júnior E..
Application Engineering for Embedded Systems - Transforming SysML Specification to Simulink within a Product-Line based Approach.
DOI: 10.5220/0004402600940101
In Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS-2013), pages 94-101
ISBN: 978-989-8565-60-0
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



 

Engineering Method (OOSEM) (Lykins 2000). This 
method supports the SysML specification of 
embedded systems from initial requirements 
elicitation, analysis and design through the 
integration between hardware and software, 
validation and testing. 

SysML-based Product Line Approach for 
Embedded Systems (SyMPLES) (Silva 2012) is 
based on OOSEM. It supports the creation of 
SysML-based artifacts with variability management 
mechanisms. 

This paper presents the process used in the 
SyMPLES application engineering activity to 
transform SysML models to Simulink ones. The 
process has 3 activities: (i) generate the SPL 
product; (ii) execute an intermediary ATLAS 
Transformation Language (ATL) (Obeo 2006) 
transformation; and (iii) create a Matlab script using 
both Simulink and Stateflow Application 
Programming Interfaces (API). 

An application example of the transformation 
process was carried out in order to design a part of a 
flight controller for an autopilot board named Yapa 
2 of the Paparazzi project (YAPA 2011). 

This paper is organized as follows: Section 2 
presents a background summary; Section 3 presents 
the transformation process approach and its 
activities; Section 4 presents an application example 
of the transformation process for the Yapa 2 board. 
Section 5 presents discussion and related works; and 
Section 6 presents conclusions and future work. 

2 BACKGROUND 

Important concepts related to the application of the 
SyMPLES approach are presented in this section. 

SyMPLES consists of two SysML extensions 
named SyMPLES Profile for Representation of 
Variability (SyMPLES-ProfileVar) and SyMPLES 
Profile for Functional Blocks (SyMPLES-
ProfileFB). SyMPLES also consists of two 
processes that use these extensions, named 
SyMPLES Process for Product Lines (SyMPLES-
ProcessPL) and SyMPLES Process for Identification 
of Variabilities (SyMPLES-ProcessVar).  

SyMPLES-ProfileVar is based on the UML 
profile defined in the SMarty approach (Oliveira et 
al. 2010). SyMPLES-ProfileFB is based on a set of 
stereotypes that represents the main classes of 
functional blocks, which aims at representing the 
behavior associated with standard SysML blocks. 
Using Model Driven Engineering (MDE) 
techniques, SyMPLES-ProfileFB stereotypes can be 

mapped and used to generate functional blocks. A 
SysML model, created by a SyMPLES SPL 
configuration, can be transformed to a Simulink 
model, including functional blocks and state 
machines, at a lower abstraction level, which can 
then generate code. 

In addition to the SysML extensions to represent 
variability, SyMPLES defines two processes that use 
such extensions for supporting the specification of a 
SysML-based SPL. SyMPLES-ProcessPL defines a 
set of activities and guidelines for guiding the user in 
creating the SPL artifacts from the use cases 
definition and requirements structuring phase to the 
analysis and design phases; and SyMPLES-
ProcessVar which is concurrently executed with the 
first process and contains a set of activities and 
guidelines for supporting the user in the 
identification, definition and representation of 
variability, as well as the SPL product configuration. 

In this paper, we use the SyMPLES-ProfileFB 
that is composed of a group of stereotypes for 
mapping functional blocks and providing additional 
semantics to SysML blocks. Thus, it is possible to 
associate a certain type of behavior to a standard 
SysML block to facilitate the specification of 
embedded systems (Silva 2012). 

The models represented in SysML that use 
SyMPLES-ProfileFB and SyMPLES-ProfileVar are 
used as input to the SPL application engineering 
activity. Artifacts generated in this activity can be 
transformed to Simulink models. For example, the 
SyMPLES-ProfileFB stereotype <<constant>> was 
added to the attribute value. An initial value can be 
linked to that stereotype and mapped together to a 
functional block as a parameter. Figure 1 shows an 
example of a SysML part block in an internal block 
diagram. This part represents a battery charge sensor 
mapped to a Simulink functional block. 

 

Figure 1: Example of SysML element with a SyMPLES-
ProfileFB stereotype. 

Application�Engineering�for�Embedded�Systems�-�Transforming�SysML�Specification�to�Simulink�within�a�Product-Line
based�Approach

95



 

3 SYMPLES TRANSFORMATION 
PROCESS 

In this section, we present the transformation 
process of the SyMPLES approach which takes 
SysML models and convert them to Simulink 
models. It consists of three activities: generate the 
configured SysML architecture; execute ATL 
transformation; and, generate functional blocks. 

3.1 Generate Configured SysML 
Architecture  

The configuration of SysML architecture considered 
three SysML diagrams. These diagrams are: (i) 
Block Definition diagram; (ii) Internal Block 
diagram; and (iii) State Machine diagram. Figure 2 
shows the relationship between the SysML diagrams 
used and the application of SyMPLES profiles.  

The root diagram is the Block Definition which 
describes the main blocks of the system. A block can 
be further represented either as an Internal Block 
diagram describing its internals relationship based 
on block instances or as a State Machine diagram 
which represent its specific behavior. 

The transformation process uses the SyMPLES-
ProfileFB to map blocks or blocks instances. It only 
considers Internal Block or State Machine diagrams 
from blocks that use the <<subsystem>> stereotype. 

The Block Definition and Internal Block 
diagrams can also have SyMPLES-ProfileVar 
stereotypes applied to its elements. These 
stereotypes support the configuration of a SPL 
product in the application engineering activity.  

 

Figure 2: SysML diagrams used and the use of SyMPLES 
Profiles. 

3.2 Execute ATL Transformation  

ATL can use models based on the Eclipse Modeling 
Framework (EMF) (EMF 2012) to perform 
transformations. The EMF uses the standard Ecore 
to represent its metamodels. Papyrus (Papyrus, 

2012) and TOPCASED (TOPCASED 2012) are 
examples of tools that have SysML graphical editors 
based on Ecore metamodels. Graphical editors based 
on Ecore uses two synchronized XMI files to store 
the modeled elements: (i) domain file – represents a 
UML file with attributes (eg. name, types and 
relationship) and profile stereotypes; and (ii) 
graphical file – one or more files can be associated 
with the domain file. Papyrus SysML editors use a 
Notation (Hunter 2012) file to persist graphical data 
(eg. diagrams, size and position of elements). These 
files are used by a Diagram Interchange (DI) (OMG 
2006) file. 

The ATL transformation gathers relevant 
information from the SysML model configured and 
generates a file based on a Simulink metamodel. 
This intermediate transformation makes the 
transformation process flexible to deal with other 
SysML editors based on EMF. Figure 3 shows the 
elements used in the ATL transformation in layered 
metamodels. Layered metamodels are introduced in 
(Ruscio 2007). The SysML configured model and its 
Notation file are used as input to the transformation, 
and a XMI Simulink model is generated. The 
Simulink metamodel was adapted from (Biehl et al. 
2010). 

 

Figure 3: Models used in the ATL transformation in 
layered metamodels. 

To execute the transformation a set of ATL rules 
are needed. Figure 4 shows the rules created in this 
work to execute in an ATL machine. The 
transformation rules include elements of a block 
definition diagram, internal block diagrams and state 
machines. 

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

96



 

 
Figure 4: ATL rules used in the ATL transformation. 

3.3 Generate Functional Blocks  

The generation of functional blocks creates a script 
that generates a Simulink model. Figure 5 shows the 
sequence of artifacts (gray scale) produced. The 
Notation and UML   files   are   obtained   from   the  

 

Figure 5: Artifact generation sequence of the 
transformation process. 

SyMPLES SPL artifacts and are used in the ATL 
transformation. The UML file and the XMI file 
created in the ATL transformation activity are used 
to create a Matlab script using Java code. The UML 
file is necessary as input to Java code because the 
SyMPLES-ProfileFB stereotypes are necessary to 
map elements in this activity. The ATL machine 
cannot read profiles like metamodels. 

The Matlab script is generated using Simulink 
and Stateflow APIs to generate functional block 
diagrams and state machine diagram respectively. 
Running the script on the Matlab platform a 
Simulink model can be created. 

4 AN APPLICATION EXAMPLE 
OF THE SYMPLES 
TRANSFORMATION PROCESS 

An application example is presented as a proof of 
concept of the transformation process based on part 
of the autopilot Yapa 2 (YAPA 2011). The autopilot 
software runs in a controller board for Paparazzi 
UAVs. 

Initially the dynamics of aircraft movements 
were analyzed. Based on the flight controller system 
of Yapa 2, a SyMPLES model was created to handle 
hypothetical commands generated by the autopilot. 
This example shows the generated artifacts produced 
by the transformation process and a simulation of 
the Simulink model. 

4.1 Flight Controller System  

A Flight Control System reads information from the 
sensors and guides the UAV to follow its predefined 
plan. Its main components are sensors and the 
autopilot (FAA 2008). In a typical cruise flight, the 
UAV operates at a desired flight condition and 
reaches the navigation points (waypoints) through 
roll commands, however, the airspeed and altitudes 
are fixed. 

One objective of the flight controller is to 
process flight commands generated by the 
navigation system. It is divided into two main 
controls, one to control vertical (altitude) and one 
horizontal (navigation), which generate controls to 
the servos. 

4.2 SysML Flight Control 

An example of a flight controller for UAVs 
Paparazzi-type fixed-wing aircraft is presented. The  

Application�Engineering�for�Embedded�Systems�-�Transforming�SysML�Specification�to�Simulink�within�a�Product-Line
based�Approach

97



 

Figure 6: Initial Yapa 2 SPL architecture represented in SysML. 

 

Figure 7: Internal block diagram for flight control. 

 

Figure 8: State machine diagram for roll controller. 

SysML diagrams were specified based on the 
horizontal control of Yapa 2 autopilot. The Yapa 2 
model was created by the  SyMPLES  processes  and 

represented with the support of Papyrus tool.  
Figure 6 shows an example of an initial SPL 

architecture for the Yapa 2 autopilot. The architecture 

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

98



 

is represented by a SysML block definition diagram. 
Blocks with stereotypes <<subsystem>> are mapped 
to subsystems in Simulink. <<variationPoint>> 
stereotypes represent elements that have variants to 
be resolved in the SyMPLES SPL. Subsystems are 
connected through its ports. 

Figure 7 shows the flight control subsystem 
represented by a SysML internal block diagram. The 
diagram is composed of horizontal (controller roll) 
and vertical motion controllers (pitch and throttle 
controllers). Some navigation commands are 
processed by the element loop: Roll 
Controller that controls roll and yaw 
movements using ailerons and rudder servos. 

Figure 8 shows an example of a state machine 
diagram created to the element loop: Roll 
Controller. In this example, values are set to the 
actuators according to the roll or yaw commands 
received by the navigation subsystem. It is assumed 
a fixed range of values that varies from -45 to +45 

(degrees) to input commands and output (servos). 
This range of values was used to simplify the 
example. The states are named with expressions in 
which the symbol "\ n" represents a line break that is 
used to differentiate the state name and the 
assignment of values in Stateflow model. Transitions 
are represented by conditional expressions in which 
input values and local variables are checked. When a 
state is reached, servo values are increased or 
decreased. 

4.3 Simulink Flight Control 

The flight controller for Simulink was generated 
according to the transformation process. The 
Simulink model was generated by running the 
Matlab script. Figure 9 shows the initial architecture 
transformed to Simulink based on the Block 
Definition diagram for Yapa 2 (Figure 6). Only 
elements      with   stereotypes   of   the   SyMPLES- 

 

Figure 9: Initial Yapa 2 architecture generated to Simulink. 

 

Figure 10: Stateflow diagram generated from roll controller. 

Application�Engineering�for�Embedded�Systems�-�Transforming�SysML�Specification�to�Simulink�within�a�Product-Line
based�Approach

99



ProfileFB are considered in the transformation. The 
connectors are processed only if the subsystems that 
send and receive data have ports that are connected. 

Figure 10 shows the state machine diagram 
transformed to Stateflow in Simulink (Figure 8). In 
this example, the name of the state is defined by the 
first line and subsequent assignments are the setting 
values for the servos commands. 

4.4 Simulink Flight Control Simulation 

Extra elements are added to allow the simulation of 
roll control in the Simulink model of the flight 
control generated. Test cases can be added to the 
model using Simulink functional blocks named 
signal builder. One signal builder was created to 
simulate possible signals generated by the autopilot. 
These signals include roll, yaw, pitch and throttle 
commands. Figure 11 shows an example for the 
commands created by the signal generator. At the 
second 10, the autopilot sends a command signal 
"Roll 45" and "Pitch 45". The command roll is 
updated and is gradually decreased until the value -
45 in the second 35. Then, it generates the command 
"Roll 45". The behavior of this signal is to simulate 
the sliding of a joystick. 

 

Figure 11: Example of commands generated from 
autopilot. 

 

Figure 12: Visual result of ailerons command values. 

Figure 12 visually shows the simulation results 
for the servos “Aileron_right” and “Aileron_left”. 

The command “Roll 10” was sent in the first 5 
seconds simulating manual commands. Then the 
autopilot signals of Figure 10 are sent to the 
controller roll that set the values of servos to 
perform the movement. At the second 10, the 
command "Roll 45" must perform the right roll 
movement and the right aileron must go up while the 
left go down. 

5 DISCUSSION AND RELATED 
WORK 

Some studies apply a transformation process from 
UML to Simulink models. In Sjöstedt et al. (2008) 
the transformation of Simulink models to UML is 
performed. Using a Simulink model, a XMI file is 
generated from the execution of a program 
implemented in the Java language. The XMI file is 
used to generate UML activities diagrams from an 
ATL transformation. However, the applied domain 
is different from that shown in this work. Moreover 
the transformation is not applied to a SPL as 
SyMPLES. 

Biehl et al. (2010) presents a solution for the 
domain of automobiles, which defines a process of 
bidirectional transformation between Simulink 
models and a UML extension called EAST-ADL. 
However, this work considers only the domain of 
automotive systems without a SPL as defined by 
SyMPLES. 

Brisolara (2007) presents a transformation 
process from UML to Simulink models, but this 
work uses UML activity diagrams as input. In our 
work block definition, internal block and state 
machine diagrams are used as input to the 
transformation process. 

6 CONCLUSIONS AND FUTURE 
WORK 

The SyMPLES transformation process focused on 
the application engineering of a SPL, based on MDE 
techniques. This supports the generation of platform-
specific models of SPL through the refinement of 
abstractions which facilitates code generation. 
SysML configured models are used as input for 
transformation process and represent embedded 
systems at the initial levels of development. The 
SyMPLES-ProfileFB was extended to allow the 
mapping and transformation of the models. The 
process was evaluated by the controller board Yapa 2. 

ICEIS�2013�-�15th�International�Conference�on�Enterprise�Information�Systems

100



 

There are some limitations in the transformation 
process: (i) initially only a set of Simulink functional 
blocks are mapped by SyMPLES-ProfileFB 
stereotypes. We have considered mainly functional 
blocks related to the development of UAVs; and (ii) 
initially only block definition, internal block and state 
machine diagrams were used in the transformation 
process. 

Future works includes the use of additional 
SysML diagrams in the transformation, and the 
extension of the SyMPLES-ProfileFB to support 
more functional blocks to others domains. 

ACKNOWLEDGEMENTS 

We are grateful to the Brazilian funding agencies 
CNPq/INCT-SEC and FAPESP for supporting this 
work. 

REFERENCES 

Biehl, M., Sjöstedt, C.-J. & Törngren, M., 2010. A modular 
tool integration approach : experiences from two case 
studies. 3rd Workshop on Model-driven tool and 
Process Integration (MDTPI2010). 

Braga, R. et al., 2011. Evolving Tiriba Design towards a 
Product line of Small Eletric-Powered UAVs. In 1st 
Brazilian Conference on Critical Embedded Systems. 
pp. 63–72. 

Brisolara, L. B., 2007. Strategies for Embedded Software 
Development Based on High-level Models. UFRGS - 
Porto Alegre. 

Burch, J. R., Passerone, R. & Sangiovanni-Vincentelli, A. 
L., 2001. Using Multiple Levels of Abstractions in 
Embedded Software Design. In T. A. Henzinger & C. 
M. Kirsch, eds. International Workshop on Embedded 
Software. Berlin, Heidelberg: Springer Berlin 
Heidelberg, pp. 324–343. 

Czarnecki, K. & Helsen, S., 2003. Classification of Model 
Transformation Approaches. In OOPSLA’03 Workshop 
on the Generative Techniques in the Context of Model-
Driven Architecture. Anaheim, California, USA, p. 17. 

Ebert, C. & Jones, C., 2009. Embedded Software: Facts, 
Figures, and Future. Computer, 42(4), pp.42–52.  

EMF, 2012. Eclipse Modeling Framework Project. 
Available at: http://www.eclipse.org/modeling/emf/. 

FAA, F. A. A., 2008. Flight Controls. In Pilot’s Handbook 
of Aeronautical Knowledge. p. 12. 

Fragal, V., Junior, E. & Gimenes, I., 2011. Mapping 
Software Product Line Features to Unmanned Aerial 
Vehicle Models. In 1st Brazilian Conference on Critical 
Embedded Systems. pp. 49–54. 

Hunter, A., 2012. Graphical Modeling Framework (GMF) 
Notation. Available at: http://www.eclipse.org/ 
projects/project.php?id=modeling.gmp.gmf-notation. 

Linden, F., Schmif, K. & Rommes, E., 2007. Software 
Product Lines in Action, Springer. 

Lykins, F. M., 2000. Adapting UML for an Object-Oriented 
Systems Engineering Method (OOSEM). In INCOSE 
International Symposium. 

Marwedel, P., 2010. Embedded System Design: Embedded 
Systems Foundations of Cyber-Physical Systems, 
Springer; 2nd ed. 2011 edition (December 3, 2010). 

Obeo, 2006. Atlas Transformation Language. Available at: 
http://www.obeo.fr/pages/atl-pro/en. 

Oliveira, E. A. J., Gimenes, I. M. S. & Maldonado, J.C., 
2010. Systematic Management of Variability in UML-
based Software Product Lines. Journal of Universal 
Computer Science, 16, pp.2374–2393. 

OMG, 2006. Diagram Interchange. OMG, p.86. Available 
at: http://www.omg.org/cgi-bin/doc?formal/06-04-04 
[Accessed October 11, 2012]. 

Papyrus, 2012. Open Source Tool for Graphical UML2 
Modelling. Available at: http://www.papyrusuml.org/ 
scripts/home/publigen/content/templates/show.asp?P=1
28&L=EN&ITEMID=12. 

Pastor, E., Lopez, J. & Royo, P., 2006. An Embedded 
Architecture for Mission Control of Unmanned Aerial 
Vehicles. In 9th EUROMICRO Conference on Digital 
System Design (DSD’06). IEEE, pp. 554–560. Available 
at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper. 
htm?arnumber=1690087 [Accessed December 12, 
2012]. 

Polzer, A., Kowalewski, S. & Botterweck, G., 2009. 
Applying software product line techniques in model-
based embedded systems engineering. In 2009 ICSE 
Workshop on Model-Based Methodologies for 
Pervasive and Embedded Software. IEEE, pp. 2–10. 

Ruscio, D., 2007. Specification of model transformation and 
weaving in model driven engineering. Università di 
L’Aquila. Available at: http://www.di.univaq.it/ 
diruscio/PhDThesis_DiRuscio.pdf. 

Silva, R. F., 2012. SyMPLES : Uma Abordagem de 
Desenvolvimento de Linha de Produto para Sistemas 
Embarcados baseada em SysML. Universidade Estadual 
de Maringá. 

Simulink, 1994. Simulation and Model-Based Design. 
Available at: http://www.mathworks.com/products/ 
simulink/. 

Simulink Coder, 2012. Real-Time Workshop. Available at: 
http://www.mathworks.com/products/simulink-
coder/index.html. 

Sjöstedt, C.-J. et al., 2008. Mapping Simulink to UML in 
the design of embedded systems:Investigating scenarios 
and transformations. In OMER4 Post-proceedings, 
2008. pp. 137–160. 

Steiner, E. M., 2012. Gerenciamento de configuração de 
uma linha de produtos de software de veículos aéreos 
não tripulados. USP. 

SysML, 2008. OMG Systems Modeling Language. OMG, 
p.234. 

TOPCASED, 2012. The Open-Source Toolkit for Critical 
Systems. Available at: http://www.topcased.org/. 

YAPA, 2011. YetAnotherPaparazziAutopilot v2. Available 
at: http://paparazzi.enac.fr/wiki/YAPA/v2.0. 

Application�Engineering�for�Embedded�Systems�-�Transforming�SysML�Specification�to�Simulink�within�a�Product-Line
based�Approach

101


