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Abstract. A new approach to the development of efficient decision rules based 
on the use of two types of logical regularities is presented. In the approach po-
sitional representation of real values of features is used, and as a result, all con-
versions of types of logical regularities are performed using fast bit operations. 

1 Introduction: Search of Logical Regularities in Data 

The concept of logical regularity was proposed as convenient means for operating by 
compact clusters of data in training sample [4], [5]. This concept possesses a number 
of important advantages, we here will point to some of them, and also to one inevita-
ble shortcoming. We consider standard formulation of the problem of recognition in 
feature space RN in case of K classes. Let XkRN is one of the classes. 

a. Elementary Logical Regularity of Type 1 is a conjunction 
i

i
RLR & , contain-

ing not more than N predicates of the form 
iiii BxAR  . Each conjunc-

tion 
i

i
RLR &  corresponds to a hyper-parallelepiped in RN, and each predi-

cate iR  describes the condition of entering the coordinate i of a new object x 

between i-edges of the hyper-parallelepiped. This reveals the main advantage 
of the approach: it’s very easily to compute that the object x belongs to the 
class Xk described in terms of logical regularities of Type 1. It requires at 
most 2N comparisons of real numbers per conjunction, and any other opera-
tion is unnecessary. 

b. Logical conjunction (and corresponding hyper-parallelepipeds) can be com-
bined. Disjunction of type 

t
tLR  provides more or less dense covering of 

objects of a class Xk. Since the values of 
iA , 

iB  are fixed thresholds, only 

propositional logic is used in each case, and the form of the condition LR  
has a clear meaning to humans. Thus an appropriate disjunction 

t
tLR not 
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only provides an efficient implementation of the decision rule, but may con-
tain important new information that was not previously known, and that in-
formation is immediately presented in an easy to use form. 

c. The greater the distance between the boundaries 
iA , 

iB , the greater volume 

is covered by hyper-parallelepiped, and the more important 
i

i
R&  gets in the 

disjunction 
t

tLR . At the same time, the complexity of the decision rule in 

general decreases, and revealing elementary logical regularities of the maxi-
mum volume leads to exclusion some other ones from the decision rule. Sig-
nificant help in this search lies in the very bit recording of real values of fea-
tures, where higher digits correspond to the most distant from each other po-
sitions of boundaries 

iA , 
iB  on the axis i. One of the motivations of this 

study was the fact that one can use this ready hierarchy of thresholds in 
search of precise boundaries for relevant hyper-parallelepipeds in RN. 

For all the merits of logical regularities of Type 1, it is easy to point out the main 
drawback of this approach: the form of disjunction 

t
tLR  and its constituent ele-

mentary logical regularities strongly depends on the direction of the main axes. If the 
geometry of the training data shows own characteristic directions that differ from the 
orientation of the feature axes, a description in terms of logical regularities of Type 1 
may be very inefficient. Fig 1a. shows example of such data [7]. 

 
(a) (b) 

Fig. 1. a) Numerous elementary logical regularities of Type 1 are necessary for representation 
of a sample. Each of them covers just few of relevant data, but should be used in calculations; 
b) Only 4 elementary logical regularities of Type 2 provide exhaustive representation of the 
same sample. 

To overcome this disadvantage Elementary Logical Regularity of Type 2 are con-
sidered. For them, the boundaries of clusters in the training sample are described by 
set of hyper-planes of general form in RN. Predicates in conjunction 

i
i

R&  turn out as 

restrictions ),( jjj CnxR  , where 
jn  is a normal to the hyper-plane j, 

jC is bound-
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ary value of the distance to the hyper-plane j. Fig.1b shows much simpler solutions 
for the data from Fig. 1a, where logical regularities of Type 2 are used. 

2 Coherent Sets of Logical Regularities 

Of course, the fewer predicates in 
t

tLR  use incremental directions 
jn , the greater 

the advantages of logical regularities of Type 1 would be represented in calculations. 
In particular, the products  jnx,  need to be performed only for additional directions 

jn . The best case is implemented when for many predicates ),( jjj CnxR   nor-

mals 
jn  are the same, and check the conditions of membership of an object x to the 

appropriate clusters is reduced only to a single calculation  jnx, , and then to test 

only inequalities as in the case of logical regularities of Type 1. Thus, an important 
task is to find a limited number of additional directions 

jn  that are most effectively 

used in the decision rule. Sets of logical regularities of Type 2, for which some direc-
tions 

jn  involved in their description are the same, we call coherent on 
jn .  

Under the new terms, our problem is formulated as finding the maximum coherent 
sets of logical regularities of Type 2 for the actual training sample {Xk.}, k=1,…,K. To 
compare possible directions 

jn  in RN and to assess the suitability of sets of regulari-

ties for the role of coherent we will use fast bit preprocessing on the base of position-
al data representation. It should be said that the issues of optimal organization of such 
a search and choice of good initial approximation are very promising. They form a 
separate topic of research and discussion, and we leave it aside.  

Reasons for choosing the term coherent are the following. Hierarchy of digits is a 
one-dimensional self-similar structure [1], [2], densely packed on the scale of real 
numbers. Positional representation transforms the simple binary package of this type 
in a similar dense packing of hyper-cubes in multidimensional space. However, on 
each axis n, n=1,...,N, representation is still binary, and weights of bits correspond to 
the basic row of higher harmonics up to the minimum length of the spatial wave on 
the grid S. From this point of view, all the boundary hyper-planes orthogonal to axis n 
are coherent (correspond to the same phase) with respect to highest harmonics on n, 
and the same is valid for any level of resolution on the grid S. 

3 Competing Positional Representations of Coherent Sets 

Let a linear transform )( NRGLg  is made in RN. Some of own to the training sample 

directions can be aligned by with the new directions of the coordinate axes. Then 
without loss of generality the same notation can be used further in the transformed 
space )(' NN RgR  .  
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Positional representation [3] of data in RN is defined by bit grid NN RD  , where 
|D| = 2d. For a grid point x=(x1, x2, ..., xN) the positional representation corresponds to 
effectively performed transformation on a slices in DN, when the m-bit in binary rep-
resentation of xn  D becomes p(n)-bit of binary representation of m-digit in 2N-ary 
number representing vector x as whole. Here m ≤ d, and the function p(n) defines a 
permutation on {1,2, .., N}. The result is a linearly ordered scale S of length 2dN, rep-
resenting one-to-one all the points of the grid in the form of the curve, densely filling 
the space DN. For chosen grid DN an exact solution of the problem of recognition with 
K classes results in K-valued function f, defined on the scale S. As known, m-digit in 
2N-ary positional representation corresponds to n-dimensional cube of volume 2N(m-1). 
We call this cube m-point. It was shown in [6] that structure of the function f can be 

represented as a list 
_

f , consisting of m-points, where different values m can be pre-

sent. 

Lemma 1. [6] When iterating points S the transition from one m-point to the other is 
for zeroing all younger bits of 2N-ary positional representation of the current m-point.  

Thus, the list 
_

f  is formed by a single pass through S, and it is naturally stratified 

by the values of indices m and k. Already in this initial form the list 
_

f  is a description 

of the sample {Xk.}, k=1,…,K in terms of logical regularities of Type 1 with respect to 

the new coordinates. This description is not the best, but the structure of 
_

f  contains 

the information necessary to improve it. In [6] presented a criterion to form of hyper-

cubes hyper-parallelepipeds of increasing volume, that is, directly form the list
_

f -

based data description of type 
t

tLR . It will go just about extensions, not about 

inclusions, since the very process of building the list 
_

f  precludes trivial situations 

where one hyper-cube completely covers a smaller. The criterion is the following. 

Lemma 2. [6] Two m-points C1, C2 are adjacent to n-edge iff: a) there is m'-cube C 

such that m '> m; b) record C1 precedes C2 in 
_

f ; c) in binary notation of 2N -ary digits 

m, m +1, ..., m'-1 bits with the number n are recorded for C1 (C2) in the list 
_

f  with 

values 1 (respectively, 0); d) all of the other bits in the records for the C1, C2 in the 
_

f  

coincide.  
We describe some of the ways to use this criterion, which also formulate as lem-

mas. Our goal is to choose the simplest representations of the form
t

tLR , and the 

main result here is the following. 

Lemma 3. Correct extension of the boundaries A, B, C of any elementary logical 
regularity does not increase the complexity of the decision rule.  
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Proof follows immediately from the fact that after extension of any elementary logi-
cal regularity to the new boundaries exactly the same sequence of calculations is 
made. Moreover, some of conjunctions can be removed from the decision rule, if their 
domain of truth is entirely covered by the extension, and the complexity of the deci-
sion rule in this case is reduced. □ 

If the latter is implemented for at least one of elementary logical regularities, we 
say that the extension of the boundaries of the regularity is efficient. Let m-point C1 
and m'-point C2 included in a set of logical regularities, both belong to the class k, k = 
1, ..., K, are adjacent to each other along n-edge, and m ≤ m'. 

Lemma 4. If all 2m’-m m-points adjacent to C2 on n-edge belong to the class k, then 
there exist an efficient extension of any logical regularity that includes a hypercube 
C2 as its frontier on the axis n and does not cover C1.  

Proof. In fact, in the hypothesis boundary of such regularity can always be extended 
with a layer of m-points adjacent to C2. This extension is efficient because C1 can 
now be excluded from the set of logical regularities. □ 

Lemma 5. For any logical regularity R, which contains C1 as a boundary on the axis 
n, the efficient extension along the axis n is possible if and only if in the set of regu-
larities there is some m''-point C3, m'' ≤ m, adjacent on n-edge with C1 or C2, for 
which the positional representation in 2N-ary digits, older than m, is different from the 
representation for C1 only in the n-th bits, and for the pair C3, C1 conditions of Lem-
ma 4 are realized.  

Proof. Necessity follows from the fact that at any extension of border there is m such 
that the layer of 2m’-m m-points belonging to class k will be fully included in the vol-
ume of extended regularity. Sufficiency. Indeed, m''-point C3 with these properties 
must be adjacent to n-edge with the point C1, or with point C2, but not on their com-
mon n-edge. The conditions imposed on the binary structure of positional representa-
tion of C3 limit the possible location of C3 with respect to C1 and C2. Point C3 can be 
found only on the n-edge of some m-point C’1, which differs from C1 only in the 
value of coordinate n. If C3 is adjacent to C1, then the conditions of Lemma 4 are 
implemented for the pair C3, C1 obviously, where C3, C1 act as C1 and C2, respective-
ly. Otherwise, the regularity R is made up of m-points of the form C’1, and it passes 
through the hyper-cube C2 at least until its opposite n-edge, as the point C3 can not be 

completely covered by the hyper-cube C2, in accordance to constructing the list 
_

f  

This means that the conditions of Lemma 4 are implemented on a pair of C3, C’1 for 
some m-point C’1, which, like the C1, is the boundary of the regularity R, but it limits 
R on opposite side with respect to the axis n.□ 

Let extensions of this type are made for logical regularities 
t

t
qq LRL  , q=1,2,..,Q, 

which are built for a set of Q transforms )( Nq RGLg  and for corresponding new 

directions of main axes in RN. Advantage of the approach is the fact that the results of 
extensions can be easily combined: universal criterion is the total number of effec-
tively employed elementary logical regularities of Type 1 in each Lq, whatever gq is 
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used. The smaller the total number needed to cover the training set, the better the 
decision rule. 

Of course, this criterion is too general, and on this basis it is difficult to formulate 
direct recommendations on choosing a suitable family of transforms )( Nq RGLg  , 

q=1,2,..,Q. However, the new approach presented here can combine the merits of the 
two types of logical regularities and essentially neutralize their weaknesses in the 
combined solutions. Thus, the solution presented in the example in Fig. 1b corre-
sponds to Q = 3, one of the transforms is the identity, and for the new object x it’s 
required to fulfill only two additional linear transforms. After that, all the calculations 
are reduced to a mere comparison of its coordinates with thresholds. 

4 Conclusions 

A new approach to the problem of using two types of logical regularities in pattern 
recognition tasks is presented, which reduces the impact of some of the known short-
comings while maintaining the basic benefits. Positional representation of digital data 
is used that allows implementing fast bit operations in the process of converting types 
of logical regularities. The approach can be used in various areas of data analysis in 
pattern recognition and data mining. Mathematical techniques open up the possibility 
of using the approach in software for specialized processors, based on the implemen-
tation of bit transforms, particularly in the processing of the images and video data. 
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