
Extending Cloud-based Object Storage with Content Centric Services

Michael C. Jaeger1, Alberto Messina2, Spyridon V. Gogouvitis3, Elliot K. Kolodner4,
Dimosthenis Kyriazis3, Enver Bahar1 and Uwe Hohenstein1

1Siemens AG, Corporate Technology, D-80200 Munich, Germany
2RAI Radiotel. Italiana, Centre for Research and Technological Innovation, Corso Giambone 68, I-10135 Turin, Italy

3National Technical University of Athens, Heroon Polytechniou, 15773 Athens, Greece
4IBM Haifa Research Lab, Haifa, 31905, Israel

Keywords: Cloud Computing, Cloud Storage, Metadata Management, Object Storage.

Abstract: Content centric storage refers to a paradigm where data objects are accessed by applications through informa-
tion about their content, rather than their path in a hierarchical structure. Applications are relieved from having
knowledge about the data store organization or the place in a (physical) storage hierarchy. Instead, applications
can use metadata associated with objects in order to to query for the desired content. In this paper, we explain
the new functionality added to our first version of the content centric storage (Jaeger et al., 2012): We present
a new REST API for the management of relations and the ability to use schemas for enforcing metadata. The
need for such a content centric storage is presented with examples from the media production domain.

1 INTRODUCTION

There are an increasing number and a variety of ap-
plications that face a growing need for digital storage.
For example, there are many media authoring appli-
cations that work with video files beyond high defi-
nition video: Ultra HD represents the next generation
video format which defines sizes up to 7680 by 4320
pixels. Archives for large virtual machine disks also
require growing quantities of storage due to the vir-
tualization trends in today’s enterprise IT. Moreover,
mobile devices are producing multimedia content in
an exponentially growing manner.

All this contributes to an ever increasing number
and size of storage objects, which mostly are large
and unstructured. New challenges arise not only from
the numbers and sizes of objects, but also through dis-
tributing data in order to increase fault tolerance and
the availability of data anytime and anywhere, by any
device. To satisfy applications, storage systems must
be capable of handling large objects or files and/or
a large number of files. This includes the ability to
easily ingest content of any type, to quickly find the
desired content, and to smoothly access the content
through any desired device. This functionality ex-
tends the plain data storage features offered by cloud
storage providers or database systems today.

A common way to handle large content is to put
them into files and to organize them in a hierarchical
structure. This enables a user to navigate the hierar-
chy. However, when the amount of data gets huge, it
becomes more and more difficult to set up an appro-
priate hierarchy that provides flexible search options
with a acceptable performance for access.

We present in this paper a new approach to con-
tent centric storage in which the user is not restricted
to organizing his content in hierarchies. Rather, the
user describes the content through metadata and then
accesses the content based on its associated metadata.
Moreover, the storage system itself is also able to de-
rive metadata from usage statistics or access mecha-
nisms. The basis for this approach to content centric
storage are efficient mechanisms to automatically cre-
ate or ingest and later retrieve any kind of metadata
about the content, which is the entry point to objects.

Our goal is to provide similar functionality in a
more generalized form, in particular that extends the
scope to any type of data, not just videos. We expect
that all kinds of data become ever more valuable since
more and more areas of life are touched by all types
of data, no matter whether text, pictures and moving
images with updates from sensors, mobile clients etc.
Nowadays, handling and using metadata in a conven-
tional data object storage system is often restricted

279Jaeger M., Messina A., V. Gogouvitis S., K. Kolodner E., Kyriazis D., Bahar E. and Hohenstein U..
Extending Cloud-based Object Storage with Content Centric Services.
DOI: 10.5220/0004376602790289
In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 279-289
ISBN: 978-989-8565-52-5
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

(for example, not offering support for queries).
The EU project VISION Cloud (Kolodner et al.,

2011) aims at developing a cloud storage system that
allows for efficient and federated storage of all types
of content-centric data. In contrast to public cloud of-
ferings such as Amazon S3 (Amazon Web Services,
2012a), Microsoft Blob Service (Microsoft Corpora-
tion, 2012) or specific hardware appliances, VISION
Cloud stresses supporting metadata flexibly and as an
integral part of the storage. VISION Cloud supports
private cloud installations and does not require the use
of specialized hardware.

Overall we present the motivation, the require-
ments, and the design for a metadata-enhanced large
storage system, called content centric storage in de-
tail. The structure is as follows: In Section 2, we
introduce a motivating scenario and derives the cor-
responding requirements. In Section 3, we provide an
overview of our approach to content centric storage.
In Sections 4 and 5, we describe our solutions for two
aspects of content centric storage, relations and meta-
data schema, respectively. In Section 6we present a
request throughput evaluation and its results. Finally,
we explain related work in Section 7 and we conclude
the paper in Section 8.

2 THE MEDIA PRODUCTION
AND BROADCASTING USE
CASE

One of the business domains in which metadata-
based access is crucial, is that of media production
and broadcasting. In this environment, the ability to
search and retrieve objects from an archive for new
productions constitutes a key enabler. Media Asset
Management Systems are the systems in charge of
this task. However, very often the focus of these
systems is to provide separate indexing and retrieval
functionality from the actual storage. This results in
limited or no possibility to integrate systems that op-
erate on the same content, and in the necessity to
introduce complex metadata import/export/adaptation
modules, which in most cases are not lossless from
the information point of view.

An approach that treats metadata as an integral
part of the content, instead, has the benefit of mak-
ing media content items more re-usable across sys-
tems and applications, since all its informative con-
tent (metadata) is natively attached to them. Meta-
data can be of several types: technical (e.g., related to
the parameters that describe the encoding of the me-
dia), descriptive (e.g., about the content of pictures,

the people that took part), administrative (e.g., costs
related to production), content-related (e.g., color re-
lated features or loudness) and relational or structural
(e.g., information about interlinked media items).

Specifically with respect to the last metadata type,
it should be pointed out that the ability to retain the
relations between content items allows for more pow-
erful access to many aspects concerned with con-
tent, e.g., derivation history, editorial versions, equiv-
alent content items, related items, and enrichments.
The data items, scenes, videos, audio tracks, differ-
ent sequences etc. have important relations between
them that should be supported by the storage. A pro-
ducer searching an archive requires information about
which audio tracks belong to which video tracks, or,
which material belongs together because it represents
a sequence of shots, etc. Therefore the storage needs
to support relations between the items. Finally, meta-
data often already exists in different forms or as part
of different domain specific file formats. This meta-
data is very important for searching across the con-
tent. Therefore, the metadata capabilities of the stor-
age must support the metadata data models already
established in the media domain.

3 GENERAL OVERVIEW OF THE
CONTENT CENTRIC
APPROACH

The first version of our approach was presented
in (Jaeger et al., 2012). In this paper, we present in
the subsequent three sections new functionality and
findings based on this work. The cornerstones of our
approach did not change: Our work focuses on the
content centric functionality not on the implementa-
tion of a storage system. Therefore, the implemen-
tation is separate from the data object store. It can
be combined with several ”classic” data object stores.
For our development, we work with either the storage
of the project VISION Cloud or the CouchDB docu-
ment database (Anderson et al., 2010).

The anticipated deployment for the content cen-
tric service is a cloud-deployment. When the service
components are combined with a data object store
or CouchDB, the components are deployed on every
node where the actual storage can be requested. It
acts as a wrapper to the underlying storage. The ap-
proach is to store metadata in the form of key-value
pairs with data objects and implement the additional
functionality on top of it. A REST-based service im-
plementation is provided, similar to existing storage
services, such as Amazon S3 or the Microsoft Azure

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

280

Blob Service. In fact, the content centric REST inter-
face is oriented towards the Cloud Data Management
Interface Version 1 from the SNIA consortium (Stor-
age Networking Industry Association (SNIA), 2011).

The general technical structure features a Java
servlet application with a three tier design: An inter-
face layer to decode the REST requests, a logic layer
to perform the actual request, and a storage client
layer that allows for a pluggable access to different
underlying storage system. The handling of REST re-
quests is based upon the Jersey framework (Java.net,
2012). Jersey is a javax-rs implementation and part
of the Glassfish project. Every application can store
metadata with data objects in the underlying stor-
age service. The content centric service provides ad-
vanced capabilities on top. Consider the requirements
from the media use case to support relations: For ex-
ample, different media assets can form a sequence.
This sequence information should be also placed at
the media assets in the storage. However, this implies
a systematic approach for expressing relations. Other-
wise, different applications develop their own propri-
etary way of expressing the relation information and
then reuse of this metadata becomes difficult. Thus,
in our approach is domain-independent, and appli-
cations, e.g., media applications, can concentrate on
managing the relations with a stable API.

Figure 1 shows the subcomponents of the content
centric service. Applications can access this compo-
nent via the top layer, the access layer. The separa-
tion from the actual implementation, placed one layer
below, allows for supporting different interface tech-
nologies in future, if necessary. All implementation
code accesses an abstract storage adaptor, which is
placed in the third layer, the storage layer. Currently,
the CouchDB and the VISION Cloud storage are pri-
marily supported. Additional storage services can be
added, if an adaptor is implemented that adheres to
the abstract storage interface. The Figure 1 also ex-
poses the functional modules: An upload service al-
lows for the batch import of existing metadata for
multiple objects. As a configuration, a mapping file
is uploaded that explains how the information in the
XML document is translated into the key-value meta-
data pairs. This service allows to import metadata for
data objects from existing sources. A schema service
allows for uploading a metadata schema which is used
for checking the metadata of data objects. The CDMI
Storage Service follows the Cloud Data Management
Interface (CDMI) for normal metadata operations as
well as adding additional query capability. In addi-
tion, this part implements the REST interface for the
relations. CDMI is a standard from the Storage Net-
working Industry Association (Storage Networking

Access Layer:
eu.visioncloud.cci.access.*

Logic Layer: eu.visioncloud.cci.core.*

Interface Layer: eu.visioncloud.cci.javaxrs.*

Metrics
Service

Relations
Service

Admin
Service

Upload Service

Upload Impl Relations Impl

Parallel
Query

Processor

Metrics
Impl

Admin Impl

Java In-memory
Test Storage

Adaptor

Storage Container
Service

Object
Service

Upload
Processing

Schema
Mapping

Social Network
Data Mapping

Set Impl

Equivalence
Impl

List Impl

Set Ressource

List Ressource

Equiv Ressource

CouchBase

IBM Object Service
Adaptor

Tomcat Web Application / Jersey REST Servlet (Year 2)

Abstract Adaptor

Basic Object
Service

CDMI Storage Service

Basic Object
Storage

Template

Schema
Service

Query
Processing

CouchDB Adaptor

Ektorp Lib

Relations
Impl

CciDataObject

Schema Impl

Figure 1: Overview of the Content Centric Service Compo-
nent.

Industry Association (SNIA), 2011) The Basic Object
Service allows for basic object and metadata creation,
update and delete methods. It represents a simplified
version of CDMI Storage Service. The Metrics Ser-
vice offers an interface for addint metrics to data ob-
jects as metadata.

4 RELATIONSHIP CONCEPT

The support for relations between entities is funda-
mental for the querying capabilities provided by con-
tent centric service. The first content centric service
implementation (Jaeger et al., 2012) supported the
following relations: a) a set relation, b) a list rela-
tion and c) an equivalence relation. In a nutshell, a
set relation can mark several content items that be-
long together. A list relation adds ordering informa-
tion to the set property. If two different data objects
actually contain the same content, maybe at different
video screen resolutions for example, an equivalence
relation can be used. However, the first version re-
quired a REST service implementation for each rela-
tion, which implies that for each new relation, a new
service must be implemented and deployed. Here, we
present the new more general approach which allows
for new relations to be implemented in the future. The
relation information is entirely stored as metadata of
the data objects. More relations are required, for ex-
ample if we consider the idea of storing relations is
similar to the Subject-Predicate-Object approach in
the Resource Description Framework (RDF, (World
Wide Web Consortium, 2004)).

4.1 Storing Relation Metadata in a
Key-value Storage

An important design decision of this implementation

Extending�Cloud-based�Object�Storage�with�Content�Centric�Services

281

is to avoid separate data entities in the store that
contain information about relations. Our goal was
to avoid distributing metadata over several entities,
because the physical storage location of two dif-
ferent data entities can be distributed in a cloud-
oriented architecture. Then, access latencies would
be likely. Instead, we place information about the
relations directly in the data object’s metadata. The
implementation makes use of metadata keys and val-
ues. The use of key and values in a metadata of a
data object bears some issues: For example, a set
membership can be defined using key-value meta-
data as key:"set", value:"somesetid1". This raises
the problem that in order to express two set mem-
bership for the same data object at once, the value
needs to contain the set ids of both sets. For example:
key:"set", value:"somesetid1,somesetid2". How-
ever, our underlying key-value storage may not sup-
port wildcard queries (i.e. querying for items that be-
long to set id 2: ”*somesetid2*”). Therefore the
next approach is to denote a relation membership
with the key of a key-value pair only, for example:
key:"@setid-somesetid1". The set is represented by
a key @setid� somesetid1, i.e., each member of the
set contains the same key @setid�somesetid1. Here,
”@” denotes that this metadata key is not explicitly
set by the user. And the ”setid”-part defines that this
key refers to a set relation. Searching for all mem-
bers of a set means that a query can just search for
data objects where the key @setid� somesetid1 ex-
ists. To denote a second membership for the same ob-
ject, another key can be easily added to the metadata
catalogue of a data object.

This approach works if the storage system allows
for searching for keys that are in use by a prefix. Then,
the implementation can query for keys beginning with
@setid��. The sets actually in use (or already as-
signed set ids) can efficiently be queried, so that an
application does not need to keep track of the sets in
use. An issue arises, if the underlying storage sys-
tem does not support removing metadata items from a
data object’s metadata catalogue. In a distributed ver-
sioned storage, consistency problems can be solved if
metadata keys are not erased but invalidated at some
version while the values can be changed. However, if
the key remains in the metadata catalogue of a data
object once it was created, the membership of a re-
lation cannot be removed. As a solution, the value
of the referring key can be toggled between true or
false denoting whether the relation membership is ac-
tive or not. For example, a set membership decla-
ration is represented through key-value metadata as:
key:"@setid-somesetid1", value:"true" in order to
denote that set membership for set somesetid1 is cur-

rently valid for this data object.
While these issues refer to the approach for stor-

ing relations, the design of the REST API has also
some issues. The general way of integrating the rela-
tions into the hierarchy of containers and objects was
to see the relations as a concept valid within one con-
tainer. And, the relations refer to one or more data
objects. Accordingly a natural way of expressing a
resource path in the REST sense is for example PUT
/container/someset1id/myDataObject1 to define the
set relation membership for an existing data object.
Or, the request path GET /container/someset1id/ re-
quests the objects of the relation. We introduced
a new Content-Type header value for the HTTP re-
quests in order to distinguish a data object resource
path from a relation resource path. Therefore, re-
quests on relations use the Content-Type cdmi �
relation. Note that this is aligned with the other con-
tent types of the CDMI standard from SNIA, such as
cdmi�query or cdmi� container.

Besides the resource path, the content for the
Content-Type cdmi � relation is used to place or
request information about the relation. Existing
industry standards already cover general schemes
for expressing relations. Popular examples are
the MetaObject Facility (MOF, (Object Management
Group (OMG), 2006)) by the OMG, which covers
relations between entities in software or data mod-
els or the RDF. As related work, also Zygmuntowicz
has discussed how to express relations in a key-value
store (Zygmuntowicz, 2010). So continuing with the
previous example expressing set membership for the
set with the id somerelid1 at a data object looks like:

@reltype : set
@relid-somerelid1 : true

However, this way of expressing it bears the con-
flict that only one membership per relation is allowed,
otherwise it would be unclear what the relation type
refers to. Therefore we use the following metadata
scheme instead:

@reltype-somerelid1 : set
@relid-somerelid1 : true

Continuing, a list needs a number, or a rank. And this
brings us to RDF where we have a triple consisting of
a subject, a predicate and an object:

@reltype-somerelid1 : list
@relid-somerelid1 : true
@relobj-somerelid1 : 3

The above example denotes that the data object (to
which the metadata is attached) is a member of a list
with Id somerelid1 at index/rank/position 3. This di-
rectly corresponds to an RDF scheme for data proper-
ties of objects: (1) A subject which is data object that

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

282

has the metadata information attached, (2) a predi-
cate, which is a combination of @reltype value and
encoded relation id in attribute, and (3), the object,
which is the value of the @relob j��attribute. Stay-
ing with the RDF comparison, a different situation
holds when we want to represent object properties,
i.e., relations that hold among objects. In this case the
following scheme should be applied:

@reltype-somerelid1 : list
@relid-somerelid1 : true
@relobj-somerelid1 : 3
@relcontext-somerelid1: someobjid

Above, the ”relcontext” specifies the object in the
context of which this relation is valid. We consider a
concrete example. If we store both a PhotoCollection
object and the list of its contained photos, we want to
represent: a) the position of all the photos in the list;
b) the fact that the list is valid in the context of a spe-
cific photo collection. The following example states
that the photo ”myphoto101” is in position 3 of the
list named ”contained photos” for the parent object
”PhotoCollection1”.

id : "myphoto101"
@reltype-contained_photos : list
@relid-contained_photos : true
@relobj-contained_photos : 3
@relcontext-contained_photos: PhotoCollection1

This solution allows to search for specific relations
in which an object is involved without filtering out
the part of the key which encodes the context ob-
ject. One could search for the presence of ”@relid-
contained photos” as a key to know what photos are
in any possible collection. By making this exten-
sion, we als extend the RDF relation model, by intro-
ducing a ”role specifier” represented by the attribute
”@relobj-somerelid”. Please note that we provide an
example application REST request flow using the re-
lations in the appendix.

4.2 Application in the Media Use Case

As anticipated, media production processes are
metadata-eager. This is true both from the descrip-
tive and the structural perspective, as outlined in Sec-
tion 2. In this Section, we provide a couple of ex-
amples of how the functionalities of the content cen-
tric relations have been employed in this domain. The
MXF (Material eXchange Format, (SMPTE, 2011)) is
the master reference nowadays for professional media
production. MXF files are metadata-rich both in de-
scriptive and in structural terms, being able to repre-
sent a full range of possible operational patterns with
media files and to carry user-defined and standard sets

of metadata. In one of the VISION Cloud experi-
ments an MXF file is uploaded starting with an XML
metadata import descriptor using the upload service
of the content centric service. As part of the subse-
quent metadata imports, also two lists of objects are
created: one that groups the video frames together and
another that groups the audio clips from the MXF file
import. These lists allow one later to respectively ac-
cess the individual video frames and audio clips of the
file with plain HTTP GET requests:
GET /container/Materialid_videoframes
GET /container/Materialid_audioclips

In this example, ”Materialid videoframes” is the list
id that holds objects of the container named ”con-
tainer”.

A significant functional progress w.r.t. the previ-
ous example is represented by the integration with ex-
ternal enterprise-level media production applications
like cross-media aggregators for news (Messina et al.,
2011). This import operation involves complex mul-
timedia data rather than just plain MXF files. An ag-
gregation platform (Messina et al., 2011) performs
complex analysis operations on data sources which
result in hybrid aggregations of Web and television re-
sources around automatically detected topics. These
aggregations form the basis for further editorial work
performed by journalists who want to enrich or fol-
low a detected story. It is therefore very important
being able to losslessly transfer the information struc-
ture that links together the resources of a determined
topic in the production environment. Using a set rela-
tion, the items are grouped together. The set relation
is created at import of the metadata using the Upload
service. From then, the items belonging to the set can
be accessed by HTTP GET requests:
GET /container/AggregationId_webnews
GET /container/AggregationId_tvnews
GET /container/AggregationId/TVClipId_keyframes

The first call returns the web articles included in a
specified aggregation (topic), the second call returns
the television news items of the same aggregation, the
third call returns the list of key frames of a specific
television resource of the same aggregation.

5 METADATA SCHEMA
CHECKING

The metadata items associated with objects in the un-
derlying storage service, e.g., CouchDB and the VI-
SION Cloud object service, are schema-less. That
means the number of keys and their designation is
flexible. Arbitrary metadata keys can be attached to

Extending�Cloud-based�Object�Storage�with�Content�Centric�Services

283

each data object. This can be useful, as it provides
flexibility. However, for certain use cases, some con-
trol on the metadata use is desired. For example, an
application would like to ensure that uploads of data
objects comply with a certain schema in order to en-
able further processing of this data. An application
must be able to define a schema for the metadata keys
to be used. When such a schema exists, creating or
changing metadata should be checked for compliance.
As a first step, such a check should ensure that certain
metadata keys are actually present for a data object.
A challenge arises when considering a classic XML
Schema definition for metadata information derived
from standard data formats. An example schema that
is used to define the metadata items to check for looks
like the following listing:
...<xs:element name="shiporder"> <xs:complexType>

<xs:sequence>

<xs:element name="orderperson" type="xs:string"/>

<xs:element name="shipto">

<xs:complexType> <xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="address" .../>

<xs:element name="city" .../>

<xs:element name="country" .../>

</xs:sequence> </xs:complexType>

</xs:element>

<xs:element name="item" maxOccurs="unbounded"

minOccurs="0">

<xs:complexType> <xs:sequence>

<xs:element name="title" type="xs:string"/>

<xs:element name="note".../>

<xs:element name="quantity" type="xs:pos...Int"/>

... </xs:sequence> </xs:complexType>

</xs:element> </xs:sequence>

<xs:attribute name="orderid" type="xs:string"/>

</xs:complexType> </xs:element></xs:schema>

In this example, the data is structured hierarchically:
an ”orderperson” consists of several subelements. In
this case, ”item” and ”orderperson” are elements that
contain several subelements and also form together
the complex element ”shiporder”. In contrast, the un-
derlying key-value storage offers only metadata key-
value pairs. Therefore, the implementation of the
schema check must also provide a means for ex-
pressing the hierarchy of XML tags in the hierarchy-
agnostic metadata format. Consider the following hi-
erarchical JSON example:
{ metadata={ "shiporder"={ "orderperson"={

"name"="J.A.",

"address"="Flat 3B, 3 Hans Crescent",

"city"="London SW1X 0LS",

"country"="UK" },

"item" ={

"title"="...", "note"="...",

"quantity"="...", "price"="..." },

"orderid"="12345678"

} } }

If the hierarchy remains without cross references,
which is the assumption made, then the equivalent
representation using flat key-value metadata looks as
follows:
{ "shiporder.orderperson.name"="J.A.",

"shiporder.orderperson.address"=

"Flat 3B, 3 Hans Crescent",

"shiporder.orderperson.city"=

"London SW1X 0LS",

"shiporder.orderperson.country"="UK",

"shiporder.item.title"="...",

"shiporder.item.note"="...",

"shiporder.item.quantity"="...",

"shiporder.item.price"="..." }

The schema defines the metadata information to be
present. Because schemas could be either XML
Schema or equivalently use a hierarchical JSON rep-
resentation, for this schema a representation for a hi-
erarchy agnostic metadata such as that supported in
the underlying storage services is created.

5.1 Functionality of the Provided
Service

We implemented a REST service that allows for the
upload, listing and deletion of such schemas. It pro-
vides the general translation of hierarchical JSON /
hierarchical XML into flat keys or key-value pairs for
an ”internal schema” and storing them for further pro-
cessing. The internal representation uses flattened key
names where the hierarchy is transformed into a dot-
separated chain of hierarchy elements. In our imple-
mentation, the ”internal schema” is stored in the meta-
data section of a data container. Then, also the meta-
data of the data object must be translated from hierar-
chical JSON into flat keys. Contrary to the previous
point, a schema (not necessarily an XML schema) is
uploaded to the VISION Cloud first. Then, the subse-
quent upload of metadata of a data object’s in JSON
or XML is translated accordingly and compared with
the schema. If the upload of data object metadata does
not conform, the request fails (HTTP response code
400). Conformance is defined that the defined meta-
data keys must exist at metadata creation or metadata
modification.

A metadata schema, to which object metadata
must conform, is known to VISION Cloud. It is
stored at container level of the VISION Cloud stor-
age or at the level of the CouchDB database. Accord-
ingly, every object in a container can be covered by
this schema. In addition, the application can also de-
fine a schema for a particular mime-type. In this case,
the schema check is only applied to objects that have a
specific mime-type defined. Note that the application
can upload such a schema for a specific mime-type,

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

284

but this applies to the coverage of a single container
as well. The usage flow is as follows:

1. The developer or user defines an application meta-
data schema, or uses an existing metadata schema
using the XML Schema syntax.

2. The developer or user uploads this schema. Either
this schema defines the metadata structure for all
objects of a container or only for objects with a
specific mime-type of a container.

3. The developer or user uploads data objects with
metadata or changes metadata. The content cen-
tric service checks for conformance with the
schema. In the negative case, a response code 400
is returned and the request is not fulfilled.

6 REQUEST THROUGHPUT
VALIDATION

The requests to the underlying storage pass through
the content centric service component. Therefore, it
is important to ensure that this component handles re-
quests in an efficient way and must not represent a
bottle neck. In order to verify its efficiency, we have
conducted a set of performance tests in order to eval-
uate the query performance of the content centric ser-
vice component’s layered approach, presented in our
previous work (Jaeger et al., 2012). In our recent de-
velopment, we have performed the validation again,
considering more statistical measures in order to also
assess the volatility of the results; our validation goals
were as follows: (1) If the implementation shows
a continuous and repeatable level of query through-
put. (2) Check for an acceptable query handling time:
How much milliseconds are spent on each individual
request? (3) Gain a deeper understanding about how
to process queries internally: a) work with multiple
threads or work in a single thread behavior?, and b)
when a set of metadata fields is fetched, how does it
impact performance if we get all the metadata at once
or fetch a couple of individual items?

For this run of tests, we have used the same com-
puter (virtual) hardware and the same test application
as in our previous work (Jaeger et al., 2012). This
has the advantage that the results are directly compa-
rable. The scenario originates from the media domain
and is a test application of the VISION Cloud project,
developed by Deutsche Welle (DW). The query is as
follows: from a repository of news video material,
find all news video assets within a given date range
sorted by popularity, grouped by news channels. For
the request throughput evaluation of the content cen-
tric service component, video material data objects

were considered with metadata information attached
to them. The size of the metadata, not the data ob-
jects, amounts to 450MB in total. These items were
stored in a CouchDB server.

Figure 2 is based on Figure 1 and shows the re-
quest path in the software stack for this test. The
measured time started when the REST request from
the test application arrived at the REST service im-
plementation and ended before the request was passed
back. This is indicated by the top horizontal line in
the Box ”CDMI Storage Service” of Figure 2. Tech-
nically, these times correspond to the time from when
the Jersey servlet calls the REST service implemen-
tation to the point when the service implementation
”returns” to the Jersey servlet. It also includes the
query to the underlying storage. For the evaluation,

Figure 2: Technical View on the Test Path.

the following cases were investigated:
� Evaluate the request response time on a single

core and a multi core machine.
� Evaluate the request response time for three dif-

ferent query date ranges: 1 day, 2 weeks and 4
weeks. Each of the query date range resulted in
a different number of data objects that should be
part of the result set (30, 663, and 969 data sets
respectively).

� For the elements of the result set, additional meta-
data key-values must be queried. We evaluated
the response time when querying for the meta-
data items in individual queries to the underly-
ing storage (”channel’, ”popularity” and ”date”)
compared to querying for all of the metadata as-
sociated with the data object at once. The average
size of metadata for each data object was about
1KB.

6.1 Evaluation Results

We have conducted the tests on two test platforms
summarized in Table 1.

Extending�Cloud-based�Object�Storage�with�Content�Centric�Services

285

Table 1: Overview of the Two Test Setups.

Name CPU Cores Speed L2 RAM OS Storage

Virt. 1-core 1/1 2.13Ghz 4MB 8GB RHEL 500GB
Vir. 4-core 4/4 2.13Ghz 4MB 8GB RHEL 500GB

For the evaluation, a plain setup of the VISION
Cloud software stack was used, disabling services
such as authorization and monitoring. Also, the log
level was set to f atal in order to avoid efforts for con-
sole I/O. It should also be noted that schema checks
did not apply, because no metadata was modified or
created. The measurements were analyzed with basic
statistics, such as the deviation and a 95% confidence
interval. The results are presented in Table 2 for a sin-
gle core deployment of the test setup and in Table 3
for a quad core deployment of the test setup.

In both tables, the first column specifies the test
configuration: a) using either a single threaded ap-
plication or using a thread pool, and b) the setting of
querying each metadata value in individual REST re-
quests or querying the entire metadata catalogue of
the data object in one REST request. The next col-
umn lists the resulting number of requests to the un-
derlying key-value storage which the content centric
service has used in the test. The measured times
(”mean”) are given in milliseconds and represent the
average mean of 20 runs. For the mean calculation
the longest and shortest run of the measured execu-
tion times have been omitted. The last column con-
siders the overall run time of the application requests
and the number of resulting requests issued to the un-
derlying storage. From these two values the fractional
response time per each request to the underlying key-
value storage is given.

Table 2: Second Test Run Results: Single Core Virtual Ma-
chine (times in milliseconds).

Individual Req. Av.Tot. Std 95% Single
Count (msec) Devia. Conf. msec

Single Separate 90 823,8 117,8 42,1 9,2
Thread Metadata 1989 12761,8 1189,1 425,5 6,4

Calls 2907 18310,3 273,0 97,7 6,3
Combined 30 320,6 26,7 9,5 10,7
Metadata 663 6632,6 59,8 21,4 10,0
Calls 969 9409,9 126,9 45,4 9,7

Thread Separate 90 431,8 24,6 8,8 4,8
Pool Metadata 1989 8807,6 207,4 74,2 4,4

Calls 2907 12842,6 200,7 71,8 4,4
Combined 30 226,2 12,0 4,3 7,5
Metadata 663 4596,4 115,1 41,2 6,9
Calls 969 6631,2 125,2 44,8 6,8

These results show the following w.r.t. to our eval-
uation goals:

� Continuous and repeatable level of query pro-
cessing throughput: The confidence intervals and
the deviations let us conclude that response times
show low deviation. It must be noted that the dif-
ferent measurements on one machine were con-

Table 3: Second Test Run Results: Quad Core Virtual Ma-
chine (times in milliseconds).

Individual Req. Av.Tot. Std 95% Single
Count (msec) Devia. Conf. msec

Single Separate 90 836,8 54,4 19,4 9,3
Thread Metadata 1989 13735,0 785,5 281,1 6,9

Calls 2907 20276,4 963,8 344,9 7,0
Combined 30 358,0 32,5 11,6 11,9
Metadata 663 7790,4 234,0 83,7 11,8
Calls 969 11344,2 420,7 150,6 11,7

Thread Separate 90 172,2 13,3 4,7 1,9
Pool Metadata 1989 3217,1 158,1 56,6 1,6

Calls 2907 4574,4 99,2 35,5 1,6
Combined 30 101,1 12,5 4,5 3,4
Metadata 663 1823,0 102,2 36,6 2,7
Calls 969 2546,0 117,4 42,0 2,6

ducted without restarting the components.

� Check for an acceptable query handling time:
When performing the largest setup, the average
response results in a few milliseconds. Since
the underlying storage is also queried by using a
REST call, which is also included, this represents
an acceptable value.

� Gain a deeper understanding about how to pro-
cess queries internally: (a) Working with threads
or work in a single thread behavior: The evalua-
tion shows that parallel queries to the same stor-
age results in lower response times. (b) Get all the
metadata at once or fetch individual items: Given
three individual metadata items to query, lower re-
sponse times were yielded when querying the en-
tire metadata set from the storage and filter the
three relevant values locally.

7 RELATED WORK

One of the known commercial solution is Amazon
S3 (Amazon Web Services, 2012a). S3 allows the
storage of large objects along with a set of metadata
values. Nevertheless, there is no support for find-
ing specific objects based on their metadata. More-
over, there is no support for user metadata to fol-
low a specific schema. Some of this functionality
can be achieved by storing object metadata exter-
nally through Amazon’s SimpleDB (Amazon Web
Services, 2012b). Such a solution relies on building
proper functionality on top of S3 and simpleDB to en-
sure consistency and is not provided inherently. The
Microsoft Windows Azure platform provides storage
services in the form of the Blob Storage service (Mi-
crosoft Corporation, 2012), the Table service, and the
Windows Azure Drives service which provides single
volumes (NTFS VHD). Similar to S3, objects can also
have metadata, but the platform does not allow for the
advanced queries. Other storage cloud solutions such
as (Google, 2012) or (Rackspace, 2012) have the sim-

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

286

ilar characteristics. EMC Atmos (EMC Corporation,
2012a) is a storage platform that can be used to build
private or public clouds. EMC Atmos allows queries
by metadata key but it does not provide the schema
checking support or setting relations between objects
for example.

Object database such as Versant Store (Versant,
2012), Objectivity/DB (Objectivity, 2012) or Veloc-
ityDB (Velocitydb.com, 2012) could be also used.
While fault-tolerance, high-performance and scal-
ability can be achieved, this is accompanied by
a high technical effort. Moreover, the maximum
size of the stored objects is limited compared to
cloud offerings. Apache HBase (Apache Founda-
tion, 2012b) is a distributed data store built on top
of Hadoop/HDFS (Apache Foundation, 2012a). The
solution is inherently scalable; but it is more oriented
towards table storage and lacks features needed to en-
able content centric access. VISION Cloud, through
the content centric service, allows accessing stored
objects, the content they hold, their relationships and
the interpretation of their metadata.

Content-addressable storage (CAS) systems, such
as EMC Centera (EMC Corporation, 2012b) and
Venti (Quinlan and Dorward, 2002), assign a unique
name to objects that is produced based on the object
contents. This makes the location of the object ir-
relevant, since it can be retrieved solely based on its
unique name. CAS systems are tailored for archiv-
ing data and are therefore not suited for general pur-
pose. A notable research effort is CIMPLE (Delaet
and Joosen, 2009). In CIMPLE, every content item is
represented with a unique key that is calculated from
the content and it is associated with a set of attributes
that contains information regarding the owner, the key
used to create the unique ID etc. Moreover, metadata
can be associated with every item that can be used
to carry out search operations. Metadata is expressed
through RDF, queried through SPARQL and stored in
a separate database. While some of the ideas of CIM-
PLE are also applicable in our effort, there are differ-
ences. First of all, it is a stand-alone system whereas
our solution is part of a complete cloud storage solu-
tion. Secondly, CIMPLE relies on a separate database
to handle metadata, which is in direct contrast to our
data model, where data and metadata are treaded as
one entity. Moreover, the solution also not covered
scalability issues, as acknowledged by the authors.

8 CONCLUSIONS

The approach of content centric storage enables an
application or user to access storage items based on

their content, rather than a path in a hierarchical di-
rectory tree. In particular, an application or user de-
scribes the content of a storage object through meta-
data associated with the object and then finds or ac-
cesses a storage object based on its associated meta-
data. In this paper, we extend our work on content
centric storage, including a generalized approach to
expressing relations between data objects, metadata
schema checking and a performance evaluation.

Our earlier approach to implementing relations
was not easily extensible; each new relation required
a new implementation. In this paper, we describe a
unified and extensible scheme for the metadata fields
used to express relations. We also demonstrate how
to apply it to express the relations required by the me-
dia production process. Given the number and size
of metadata fields that can be associated with an ob-
ject, we introduce metadata schema to describe and
enforce the use of metadata. The metadata schema
checker allows the application to input hierarchical
metadata; it flattens the hierarchical metadata to a
representation expected by the lower level storage
service. Finally, we did a performance evaluation
to check implementation alternatives and the request
throughput in order to make sure that the implemen-
tation meets the expectations from a cloud computing
enviroment: scalability and performance.

ACKNOWLEDGEMENTS

The research leading to these results is partially
supported by the European Community’s Seventh
Framework Programme (FP7/2001-2013) under grant
agreement nr. 257019 - VISION Cloud Project.

REFERENCES

Amazon Web Services (2012a). Amazon Simple Storage
Service. http://aws.amazon.com/s3/.

Amazon Web Services (2012b). Amazon Simpledb. http://
aws.amazon.com/simpledb/.

Anderson, J. C., Lehnardt, J., and Slater, N. (2010).
CouchDB: The Definitive Guide Time to Relax.
O’Reilly Media, Inc., 1st edition.

Apache Foundation (2012a). Apache Hadoop. http://
hadoop.apache.org/.

Apache Foundation (2012b). Apache HBase. http://
hbase.apache.org/.

Delaet, T. and Joosen, W. (2009). Managing your content
with CIMPLE - a content-centric storage interface. In
IEEE 34th Conf. on Local Computer Networks, 2009.
LCN 2009, pages 491 –498.

Extending�Cloud-based�Object�Storage�with�Content�Centric�Services

287

EMC Corporation (2012a). EMC Atmos. http://
www.emc.com/storage/atmos/atmos.htm.

EMC Corporation (2012b). EMC Centera. http://www.
emc.com/products/family/emc-centera-family.htm.

Google (2012). Google Cloud Storage. http://
cloud.google.com/products/cloud-storage.

Jaeger, M. C., Messina, A., Lorenz, M., Gogouvitis, S. V.,
Kyriazis, D., Kolodner, E. K., Su, X., and Bahar, E.
(2012). Cloud-based content centric storage for large
systems. In Fed. Conf. on Computer Sc. and Infor-
mation Systems - FedCSIS 2012, Wroclaw, Poland,
September 2012, pages 987–994.

Java.net (2012). Java.net / glassfish: Jersey project page,
accessed in september 2012 at http://jersey.java.net/.

Kolodner, E. K., Tal, S., Kyriazis, D., Naor, D., Al-
lalouf, M., Bonelli, L., Brand, P., Eckert, A., Elm-
roth, E., Gogouvitis, S. V., Harnik, D., Hernández, F.,
Jaeger, M. C., Lakew, E. B., Lopez, J. M., Lorenz,
M., Messina, A., Shulman-Peleg, A., Talyansky, R.,
Voulodimos, A., and Wolfsthal, Y. (2011). A cloud
environment for data-intensive storage services. In
CloudCom, pages 357–366.

Messina, A., Montagnuolo, M., Di Massa, R., and Bor-
gotallo, R. (2011). Hyper media news: a fully au-
tomated platform for large scale analysis, production
and distribution of multimodal news content. Multi-
media Tools and Applications.

Microsoft Corporation (2012). Microsoft Azure Blob Ser-
vice API. http://msdn.microsoft.com/en-us/library/
dd135733.aspx.

Object Management Group (OMG) (2006). Meta Object
Facility (MOF) Core Specification Version 2.0, 2006,
http://www.omg.org/cgi-bin/doc?formal/2006-01-01.

Objectivity (2012). Objectivity DB. http://
www.objectivity.com/pages/objectivity/default.asp.

Quinlan, S. and Dorward, S. (2002). Venti: A New Ap-
proach to Archival Storage. In FAST’02, pages 89–
101.

Rackspace (2012). Rackspace Cloud Files. http://
www.rackspace.com/cloud/public/files/.

SMPTE (2011). S377m-2011 Material Exchange Format.
Storage Networking Industry Association (SNIA) (2011).

Cloud data management interface, version 1.0.1,
september 2012 at http://snia.org/sites/default/files/
CDMI SNIA Architecture v1.0.1.pdf.

Velocitydb.com (2012). VelocityDB. http://
velocitydb.com/.

Versant (2012). Versant website http:// www.versant.com.
World Wide Web Consortium (2004). RDF Primer, feb.

2004, at http://www.w3c.org/TR/rdf-primer/.
Zygmuntowicz, E. (2010). Redis - remote dictionary server,

at http://nosql.mypopescu.com/post/408913109/
presentation-redis-remote-dictionary-server-by-ezra.

APPENDIX

The following lists the HTTP request trace of a unit
test implementation for the relations functionality. It

shows how the relations API works on HTTP request
level. The requests perform the following steps: (1)
Creation of a test container at tenant ”siemens” for
placing data objects. (2) Creation of one data ob-
ject named ”ccs test object 8”. (3) Adding this data
object to a set named ”ccstest sets 14”. Please note
that the header fields ”Date”, ”Transfer-Encoding”
and ”User-Agent” have been omitted due to space re-
strictions.

>>>>

PUT /CCS/_c/siemens/sietestcontainer HTTP/1.1

X-CDMI-Specification-Version: 1.0

Authorization: Basic bWNqQHNpZW1lbnM6c2VjcmV0

Accept: application/cdmi-container

Content-Type: application/cdmi-container

Host: 10.0.1.101:8080

Connection: keep-alive

<<<<<

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

X-CDMI-Specification-Version: 1.0

Content-Type: application/cdmi-container

{ "objectName": "sietestcontainer/",

"children": [],

"metadata": {},

"capabilitiesURI": "/cdmi_capabilities/container",

"completionStatus": "Complete",

"objectURI": "/sietestcontainer/",

"parentURI": "/",

"childrenrange": "0-0" }

>>>>>

PUT /CCS/_c/siemens/sietestcontainer/ccs_test_object_8 HTTP/1.1

Authorization: Basic bWNqQHNpZW1lbnM6c2VjcmV0

X-CDMI-Specification-Version: 1.0

Accept: application/cdmi-object

Content-Type: application/cdmi-object

Host: 10.0.1.101:8080

Connection: keep-alive

Content-Length: 56

{"value":"some data","metadata":{"examplekey":"value"}}

<<<<<

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

X-CDMI-Specification-Version: 1.0

Content-Type: application/cdmi-object

{ "value": "some data",

"objectName": "ccs_test_object_8",

"metadata": {

"cdmi_owner": "mcj@siemens",

"mimetype": "text/plain",

"valuetransferencoding": "utf-8",

"cdmi_size": 11,

"cdmi_acl": "[{\u0027aceflags...}]",

"asdf_": "true"

},

"mimetype": "text/plain",

"capabilitiesURI": "/cdmi_capabilities/dataobject",

"completionStatus": "Complete",

"objectURI": "/sietestcontainer/ccs_test_object_8",

"parentURI": "/sietestcontainer/" }

>>>>>

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

288

PUT /CCS/_c/siemens/sietestcontainer/

ccstest_sets_14/ccs_test_object_8 HTTP/1.1

X-CDMI-Specification-Version: 1.0

Authorization: Basic bWNqQHNpZW1lbnM6c2VjcmV0

Accept: application/cdmi-relation

Content-Type: application/cdmi-relation

Host: 10.0.1.101:8080

Connection: keep-alive

Content-Length: 14

<<<<<

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

X-CDMI-Specification-Version: 1.0

Content-Type: application/cdmi-relation

{ "context": "0-0",

"type": "set",

"children": ["ccs_test_object_8"],

"childrenRange": "0-0" }

Extending�Cloud-based�Object�Storage�with�Content�Centric�Services

289

