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Abstract: We investigate the contribution of unsupervised learning and regular grammatical inference to respectively 
identify profiles of elderly people and their development over time in order to evaluate care needs (human, 
financial and physical resources). The proposed approach is based on k-Testable Languages in the Strict 
Sense Inference algorithm in order to infer a probabilistic automaton from which a Markovian model which 
has a discrete (finite or countable) state-space has been deduced. In simulating the corresponding Markov 
chain model, it is possible to obtain information on population ageing. We have verified if our observed 
system conforms to a unique long term state vector, called the stationary distribution and the steady-state. 

1 INTRODUCTION 

Demographic shifts in the population and the fact 
that people are living longer have created an 
awareness that the health care system is and will be 
increasingly difficult to control, organize and 
finance especially where the ageing population are 
concerned. The senior citizen population is 
increasing along with the diversity of their health 
backgrounds and medico-social needs which cannot 
be provided easily because of health aspects, social 
conventions and lifestyles that are intertwined with 
the ageing process. Long-term care is a variety of 
services that includes medical and non-medical care 
to people who have a chronic illness or disability. 
This illness or disability could include a problem 
with memory loss, confusion, or disorientation. This 
is called cognitive impairment and can result from 
conditions such as Alzheimer’s disease. Care needs 
often progress as age or as chronic illness or 
disability progresses. Long-term care helps meet 
health or personal needs. Most long-term care is to 
assist people with support services such as activities 
of daily living like dressing, bathing, and using the 
toilet. Approximately 70% of individuals over the 

age of 65 will require at least some type of long-
term care services during their lifetime. Over 40% 
will need care in a nursing home for some period of 
time. Nursing homes provide long-term care to 
people who need more extensive care, particularly 
those whose needs include nursing care or 24-hour 
supervision in addition to their personal care needs. 
We focus our interest on nursing homes. This project 
is being carried out in close collaboration with a 
French mutual benefit organization called 
“Mutualité Française de la Loire” which manages 
several nursing homes. The steps of the project 
consist in: 
1. The specification of elderly people profiles in 

using unsupervised learning approach (Combes 
and Azéma, 2013), 

2. The study of the development of these profiles 
over time in using a probabilistic graph of 
transitions between the clusters inferred by k-
TSSI (k-Testable Languages in the Strict Sense 
Inference) algorithm. The objective is to deduce 
Markov process which has a discrete (finite or 
countable) state-space. 

3. Discrete-time Markov chain simulation is used 
to forecast population ageing. It allows to 
identify the elderly people care needs and the 
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workload in short-term, medium-term and long-
term and to predict the future costs. An 
application is presented in (Combes et al., 
2008). 

This presentation is split up into seven sections. 
After an introduction describing the scope of the 
study, we introduce the characteristics of the 
collected data in section 2. In section 3, we describe 
the profiles of residents obtained in using cluster 
analysis. A brief review of previous works is 
presented in section 4. The section 5 treats the 
techniques used (regular probabilistic grammar 
inference) to model the automaton symbolizing the 
changing profiles and their development over time. 
Starting from this automaton, a Markov model is 
deduced. Thereby, it is possible to verify if our 
system is achieving a steady state. The section 6 
presents the obtained results concerning the four 
medical nursing homes (called Bernadette, Soleil, 
Les Myosotis, Val Dorlay situated in France) and 
dementia disease and more particular, Alzheimer’s 
disease. We conclude with some perspectives. 

2 DATA COLLECTED 

The quantitative data arises from the databases and 
the corresponding information system deals with the 
evaluation of autonomy/disability of elderly people. 
Dependence evaluation in France is carried out using 
a specific national scale called AGGIR: Autonomy-
Gerontology-Group-Iso-Resources. The quantitative 
data concerns 628 residents and more than 2,200 
observations of independence evaluations. The 
evaluations are made by the resident doctor in 
collaboration with the medical staff. An item can be 
evaluated using the four adverbs (see figure 1): 
 Spontaneously corresponding to the letter S, 
 Entirely corresponding to the letter T, 
 Correctly corresponding to the letter C, 
 Usually corresponding to the letter H. 

The codification is the following. If all four 
adverbs are marked, the code is C. If less than four 
adverbs are checked (three or two or one), the code 
is B. If no adverb is checked, the code is A. 

The proposed algorithm uses numerical data. So, 
the corresponding values are: 

 0 for code A meaning the person can do it 
alone, 

 1 for code B meaning the person can do 
partially it, 

 2 for code C meaning the person cannot do it 
alone. 

The first step is to analyze the degree of 
autonomy-disability in order to identify clusters. 

 

Figure 1: A.G.G.I.R scale. 

3 IDENTIFICATION OF 
RESIDENTS’ PROFILES 

The aim is to find feature-patterns related to the 
autonomy-disability level of elderly people living in 
nursing homes. These levels correspond to profiles 
based on the people’s ability to perform activities of 
daily living like being able to wash, dress and move. 
To achieve this aim, an unsupervised learning 
approach is proposed (Combes and Azéma, 2013). It 
based on principal component analysis technique to 
direct the determination of the clusters with self-
organizing partitions. Cluster analysis is made on the 
8 variables: Transferring to or from bed or chair, 
Moving indoors, Washing, Toilet, Dressing, Food, 
Orientation, Coherence. The cluster analysis 
identifies two kinds of patterns: 

 The decline in executive functions regarding to 
motor and functional abilities called apraxia 
disorders, 

 The cognitive impairment and 
neuropsychological deficits. 
By combining clustering with a machine learning 

process, we could be able to predict the development 
of physical autonomy loss or mental autonomy loss 
in elderly people over time. To reach this objective, 
we use machine learning approach based on 
grammar inference in order to infer a probabilistic 
automaton. In the article, we only present the 
patients’ profiles evolution regarding to upper 
function disorders (cognitive impairment). 

4 RELATED WORKS 
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We want to obtain a probabilistic graph of 
transitions between states (clusters) with the length-
of-stay in each state (temporal state representations). 
It is also interesting to study cluster succession of 
length k (for example, the 3 last states of resident’s 
clusters, a k timed series). Probabilistic automata are 
used in various areas in pattern recognition or in 
fields to which pattern recognition is linked. 
Different concept learning algorithms have been 
developed for different types of concepts. The 
learning of deterministic finite automata (DFA), also 
called regular inference is based on acceptance of 
regular languages which allow to model the 
behaviour of systems. The aim consists in 
constructing a DFA from information about the set 
of words it accepts. There are many algorithms for 
regular inference (Angluin, 1987); (Garcia and 
Vidal, 1990a); (Rivest and Sphapire, 1993); (Balczar 
et al., 1997); (Parekh et al., 1998); (Parekh and 
Honavar, 2001); (Bugalho and Oliviera, 2005)...  

A finite automaton with transition probabilities 
represents a distribution over the set of all strings 
defined over a finite alphabet. The articles presented 
by (Rico-Juan et al., 2000) and (Vidal et al., 2005) 
present a survey and a study of the relations and 
properties of probabilistic finite-automata and tree. 
(Dupont et al., 2005) clarify the links between 
probabilistic automata and hidden Markov models. 
In a first part of this work, the authors present: 

 the probabilities distributions generated by 
these models, 

 the necessary and sufficient conditions for an 
automaton to define a probabilistic language. 

The authors show that one the one hand, 
probabilistic deterministic finite automata (PDFA) 
form a proper subclass of probabilistic non-
deterministic automata (PNFA) and the other hand, 
PNFA and hidden Markov models are equivalent.  

We assume that our problem could be modelled 
as a state transition graph (probabilistic deterministic 
finite automaton). Consequently, the pattern 
recognition of sequences and the corresponding 
probabilities could be inductively learned via an 
inference algorithm. The k-TSSI (k-Testable 
Languages in the Strict Sense Inference) algorithm 
(Garcia et al., 1990a, 1990b) could be useful, 
convenient and suitable for two reasons: the 
simplicity of implementation and the possibility to 
take into account memory effects (timed macro-
states). The inductive inference of the class of k –
testable languages in the strict sense (k-TLSS) has 
been studied and adapted to local languages, N-
grams and tree languages. A k-TLSS is essentially 
defined by a finite set of substrings of length k that 

are permitted to appear in the strings of then 
language. Given a size k of memory, the objective is 
to find an automaton for the language. This subclass 
of language called k-testable language has the 
property that the next character is only dependent on 
the previous k-1 characters. In our case, it is 
interesting to be able to identify the substrings 
(memory) of length k. But, our goal is to infer a 
timed model and an automaton inferred by the k-
TSSI algorithm does not take into account the timed-
state. The interesting question is how to infer timed 
automata and very few works exist in the domain 
(Alur et al., 1990, 1991); (Alur and Dill, 1994); 
(Grinchtein et al., 2005); (Verwer et al., 2007, 
2011). Timed automata correspond to finite state 
models where explicit notion of time is taken into 
account and is represented by timed events. Time 
can be modelled in different ways, e.g. discrete or 
continuous. The more recent works (Verwer et al., 
2007, 2011) propose an algorithm for learning 
simple timed automata, known as real-time automata 
where the transitions of real-time automata can have 
a temporal constraint on the time of occurrence of 
the current symbol relative to the previous symbol. 
The problem is also that it is difficult to take into 
account a set of substrings of length k (k>1) and the 
algorithm is not generalized to probabilistic timed-
automata. In this section we propose a model in 
order to take into account the concept of time in the 
automaton inferred by the k-TSSI algorithm (i.e. the 
duration of time a resident spends in a particular 
cluster). In the next section, we present the 
implementation of the model.  

5 DEVELOPMENT OF 
PATIENTS’ PROFILES: 
MODEL IMPLEMENTATION 

The method consists in: 
1. Learning a deterministic finite automata (DFA) 

using k-TSSI algorithm. 
2. Transforming this DFA into a probabilistic 

DFA. 
3. Converting this probabilistic DFA in a Markov 

chain model. 

5.1 Preliminaries 

The aim of grammatical inference is to learn models 
of languages from examples of sentences of these 
languages. Sentences can be any structured 
composition of primitive elements or symbols, 
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though the most common type of composition is the 
concatenation. So we infer a grammar and the 
corresponding representation is an automaton. 
An automaton consists of: 

- : a finite input alphabet of symbols, 
- *: the set of all finite length strings generated 

from , 
- L: a sub-set of * corresponding to the 

collected words, 
- Q: a finite set of states with q0 as start state, F 

is a set of final states (F  Q), 
- : a transition function of QQ. So that q’= 

(q,) returns a state for current state q and 
input symbol  from . Each transition is noted 
by 3-tuple (q,,q’). 

A finite automaton is a 5-tuple (Q, , ,q
0
,F). If 

for all q  Q and for all   , (q, ) corresponds 
to a unique state of Q, then the automaton is said to 
be a Deterministic Finite Automaton (DFA). 
Grammatical inference refers to the process of 
learning rules from a set of labelled examples. It 
belongs to a class of inductive inference problems 
(Angluin and Smith, 1983) in which the target 
domain is a formal language (a set of strings 
generated from some alphabet ) and the hypothesis 
space is a family of grammars. It is also often 
referred to as automata induction, grammar 
induction, or automatic language acquisition. The 
inference process aims at finding a minimum 
automaton (the canonical automaton) that is 
compatible with the examples. In regular grammar 
inference, we have a finite alphabet  and a regular 
language L  *. Given a set of examples that are in 
the language (I+) and a (possibly empty) set of 

examples not in the language (I-), the task is to infer 

a deterministic finite automaton A that accepts the 
examples in I+ and rejects the examples in I-. 

5.2 k-TSS Inference Algorithm 

The k-TSSI algorithm (Garcia and Vidal, 1990a) 
allows us to infer k-Testable Languages in the Strict 
Sense. The inductive inference of the class of k-
Testable Languages in the Strict Sense is defined by 
a finite set of substrings of length k that are allowed 
to appear in the strings of the language. Given a 
positive sample I+  L of strings of an unknown 
language, a deterministic finite-state automaton that 
recognizes the smallest k-TLSS containing I+ is 
obtained. An automaton inferred by the k-TSSI 
algorithm is by its construction, non-ambiguous. 

Moreover, our choice is justified by the fact that k-
testable (k > 1) can take into account a memory 
effect (ie N-gram). Indeed, we observed during data 
analysis that the change in evolution of the 
autonomy/disability state depends on the previous 
resident’s states and their diseases (especially for 
chronic and disabling diseases such as osteoarticular 
degenerative diseases, anxio-depressive disorder, 
behavioural disorders…). To illustrate our approach 
and for the sake of simplicity, we will present in this 
article, the results obtained with 1-TSSL (the next 
state depends only on the previous states) in order to 
explain how we turn the time series into sequences. 
We choose to divide up the length-of-stay in the 
each cluster (for example, one discrete step = 30 
days). Consequently, the corresponding automaton is 
a 6-tuple (Q,,,q

0
,F,d) where d corresponds to the 

length-of-stay in the states. In the following sections, 
we explain the implementation of the model through 
an example (on only six residents: 7, 12, 17, 14, 8, 
44 corresponding to an excerpt of the collected 
data). 

5.2.1 Setting Up the Alphabet 

The assessment of elderly people’s 
autonomy/disability allows us to classify residents 
into five levels of mental dependence situation (5 to 
1 in decreasing order of severity). Figure 2 presents 
the data collected from the database. 

 

Figure 2: Data and sequences. 

The resident assessment is made on different 
dates. For example, resident number 7 was evaluated 
at level 3 (mental disorder) on the 06/24/2002. For 
all the assessments concerning resident number 7, 
we can deduce the sequence: 3321111. But this 
sequence does not express the amount of time the 
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person spends in each state (level of mental 
disorder). 

5.2.2 Preliminary Mapping of the Set of 
Strings (k-TSSI Algorithm) 

The objective is to obtain a stochastic state transition 
graph taking into account the length-of-stay in each 
state. 

The first step consists in the definition of the 
alphabet (the set ). The set  is based on an 
alphabet of 6 symbols - {a,b,c,d,e,f} which 
correspond to: 
- a length-of-stay in cluster number 1 during a 

given period (example:30 days), 
- b length-of-stay in cluster number 2 during a 

given period, 
- etc (until the symbol e for cluster number 5). 

The symbol f models the fact that a resident can 
leave the nursing home or corresponds to the last 
resident assessment during the last 30 days before 
the data extraction. It is only used when we want to 
deduce the Markov model. Consequently, in the 
following example, the symbol f does not exist in 
figure 3. 

The second step concerns the identification of 
the words which corresponds to the translation of the 
initial sequence in order to take into account length 
of time spent in each cluster. Resident number 7 
stayed in cluster number 3 from 06/24/2002 to 
03/15/2004 (date at which the resident was evaluated 
and changed to cluster number 2). Thus resident 
number 7 stayed in cluster number 3 for about 22 
periods of 30 days. The symbol modeling cluster 
number 3 for 30 days is c, consequently the initial 
sequence “33” becomes “cccccccccccccccccccccc”. 
The resident stayed in cluster number 2 for 9 
periods… and the corresponding word is: 

ccccccccccccccccccccccbbbbbbbbbaaaaaaaaaa
aaaaaaaa 

So we obtain the set L  *. L corresponds to 
the learning set from which the automaton is 
inferred. The initial set of sequences (figure 2) 

{3321111, 42, 212, 56656, 243333, 4} 

becomes:  

L={ccccccccccccccccccccccbbbbbbbbbaaaaaaa
aaaaaaaaaaa, ddb, bbbbbaaaab, ddddeeeeeeeeddee, 

bbbdddddddccccccccccccccccc, dd} 

From the set L in using k-TSSI algorithm (to 
simplify, we present the case corresponding to k=1), 
we obtain the automaton described in figure 3. This 

algorithm consists in building the sets Q, , ,q
0
,F 

by observation of the corresponding events in the 
training strings. From these sets, a finite-state 
automaton that recognizes the associated language is 
straightforwardly built. The detail of the algorithm is 
described in (Garcia et al., 1990b).  

 
Figure 3: The automaton inferred by the algorithm k-TSSI 
with q0 =0. 

5.3 Computation of Probabilities 

The automaton is inferred by the k-TSSI algorithm. 
We have to associate transition probabilities with 
states. In order to compute these probabilities, we 
use the learning set L. From the words of set L, 
when they are recognized by the automaton inferred 
by k-TSSI, we count: 
- The transition between two states for a given 

symbol (transition from the state q by the 
symbol ): cp(q,)

, 

- each transition in a state q: cpq, 
- if a state q is the final state (end of the words): 

cp
q_final

. 

For the algorithm, we use the three epochs-
counts in order to estimate the probabilities. The 
algorithm computing the probabilities from a 
learning set is the following. 

Input I+ = {x1,…,x I+ } //collected sample 
  Ak = (Q, , ,q0,F) //the inferred automaton 
Output PAk = { p( q,xij), pq_final} //the obtained 

probabilities 
Begin 
For i=1 until I+ //for all words xi in I+ 

 q q0 
 For j=1 until xi //for all symbol xij of the word 

xi  I+  
q’  ( q,xij) //the corresponding transition  

 cpq ++ //epoch-count in passing state  
 cp( q,xij) ++ //epoch-count in passing 

transition 
 q q’ 
EndFor 

 cpq_final++ //epoch-count concerning the 
final states 

c b

3

a

b a0 c 21

4
d

d

b b

b

dc

5e
d e
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 cpq ++ 
EndFor 

For all q  Q 
pq_final= cpq_final / cpq //Computation of final-state 

probabilities 
EndFor 
For all ( q,)  
p( q,) = cp( q,)/ cpq //Computation of transition 

probabilities 
EndFor 
Return PAk 

The obtained results from the sample presented in 
figure 2 are: 

 cpq = (6(0), 39(1), 19(2), 22(3) , 17(4), 10(5)), 
 cpq_final = (0(0), 1(1), 2(2), 1(3), 1(4), 1(5)), 
 cp(q,) = (2(0,b), 1(0,c), 3(0,d), 0(0,e), 

1(1,b), 37(1,c), 2(2,a), 14(2,b), 1(2,d), 
20(3,a), 1(3,b), 1(4,b), 1(4,c), 12(4,d), 
2(4,e), 1(5,d),.8(5,e)). 

And afterwards, we deduce the probabilities: 
 pq_final = (0/6(0), 1/39(1), 2/19(2), 1/22(3), 

1/17(4), 1/10(5)), 
 p(q,) = (2/6(0,b), 1/6(0,c), 3/6(0,d), 

1/39(1,b), 37/39(1,c), 2/19(2,a), 
14/19(2,b), 1/19(2,d), 20/22(3,a), 
1/22(3,b),1/17(4,b), 1/17(4,c), 12/17(4,d), 
2/17(4,e), 1/10(5,d), 8/10(5,e)). 

So we obtain the probabilistic deterministic 
automaton where the time series are taken into 
account. The advantage of using 1-TSSL (k-TSSI 
algorithm with k=1) lies in the fact that one state 
corresponds to one symbol. We have added a new 
symbol f and a final state q

6
 in order to facilitate the 

translation of the probabilistic automaton into a 
Markov process. For all q states where pq_final>0, 

we add a transition (q,g)= q
6
, p(q,g) = pq_final and 

pq_final 0. We note that pq6_final =1.  
From patients’ file living in Soleil nursing home 

and suffering from Alzheimer disease, the 
probability matrix of transitions between states and 
the corresponding automaton are respectively 
presented in the table 1 and in the figure 4.  

Table 1: The corresponding probability matrix of 
transitions between states (figure 4). 

To  
From 

Cluster 5 Cluster4 Cluster3 Cluster2 Cluster1 q6 

q0 0.5072 0.0580 0.3333 0.0290 0.0725  

Cluster5 0.9738 0.0005 0.0009 0 0 0.0248

Cluster4 0.0629 0.9021 0.0210 0 0 0.0140

Cluster3 0.0229 0.0134 0.9408 0.0019 0.0019 0.0191

Cluster2 0 0.0299 0.0299 0.8955 0 0.0448

Cluster1 0 0 0.0122 0.0488 0.9268 0.0122
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Figure 4: The automaton inferred by the algorithm k-TSSL 
(Soleil nursing home: residents suffering from dementia). 

5.4 Markov Model 

The final state q
6
 not only represents the resident 

state when they left the system but also the last 

resident assessment (resident present in the system at 
the date of database extraction). 

In order to obtain the Markov chain model, we 
have to compute the probabilities: 
- Pei: Input probabilities (i.e. the initial resident 

assessments) in each clusteri (i=1..5), 
- Psi: Output probabilities (i.e. the last resident 

assessments when residents leave the system) 
in being clusteri (i=1..5) after 30 days 
(corresponding to the equidistant discrete 
time). 

We have also to modify the probabilities of 
staying in clusteri (i=1..5), regarding if the patient is 
staying in the nursing home at the at the date of 
database extraction (these evaluations are taken into 
account in the transition with the symbol f to q6 in 
table 1). We add the number of evaluations in the 
corresponding clusteri. It is the reason that the 
probability to be in cluster1, (initially is 0.9738 in 
table1) becomes 0.9902 in the Markov matrix.  

When a resident leaves the system, he is 
immediately replaced by a new resident. 
Consequently, two other probabilities are taken into 
account PE and PS. The Markov matrix is presented 
in the table 2. 

Table 2: The Markov matrix obtained from the collected data - Soleil Nursing home: patient suffering from dementia. 

 Pei Cluster5 Cluster4 Cluster3 Cluster2 Cluster1 PSS 
PEE 0 0 0 0 0 0 1 

Cluster5 0.0725 0.9390 0 0.0019 0 0 0 
Cluster4 0.0290 0.0488 0.9403 0.0019 0 0 0 
Cluster3 0.3333 0.0122 0.0299 0.9580 0.0210 0.0009 0 
Cluster2 0.0580 0 0.0299 0.0134 0.9161 0.0005 0 
Cluster1 0.5072 0 0 0.0229 0.0629 0.9902 0 

Psi 0 0 0 0.0019 0 0.0084 0 

Table 4: Evolution of patients’ profiles in 2 years. 

No Dementia Cluster5 Cluster4 Cluster3 Cluster2 Cluster1 Exit 
Cluster5 50.9% 16.0% 5.8% 1.6% 2.4% 23.3% 
Cluster4 3.8% 56.0% 10.6% 3.4% 4.1% 22.2% 
Cluster3 4.3% 4.0% 25.2% 9.1% 13.8% 43.6% 
Cluster2 0.8% 0.9% 11.4% 29.4% 29.6% 27.9% 
Cluster1 0.1% 0.6% 0.7% 1.3% 33.1% 64.2% 

 
 

Dementia Cluster5 Cluster4 Cluster3 Cluster2 Cluster1 Exit 
Cluster5 9.7% 20.6% 27.1% 12.7% 19.4% 10.5% 
Cluster4 0.5% 20.2% 32.4% 14.7% 20.0% 12.2% 
Cluster3 0.6% 1.5% 21.8% 17.7% 34.1% 24.3% 
Cluster2 0.1% 0.1% 1.9% 11.9% 31.7% 54.3% 
Cluster1 0.2% 0.1% 1.5% 15.5% 64.8% 17.9% 

 

q0
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 1 
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4 
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5 
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q6 
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We verify if the system reaches a steady state. Out 
of definition, an eigenvector x is associated to 
eigenvalue l if: A*x =l*x  

(A corresponding to the probabilities matrix 
presented in table 2) 

If an eigenvector of x is associated to a unique 
eigenvalue 1, such a vector is called a steady state 
vector. If we identify only one eigenvalue 1, then the 
distribution is said to be irreducible and aperiodic.  

 

The eigenvector associated with the eigenvalue 1 
has been computed. We have one eigenvalue 1 and 
the corresponding eigenvector x is the following:  
0.00692  0.01263  0.01966  0.12108  0.03768  0.79510  
0.00693  

 

The interpretation of this eigenvector is that the 
system (ratio of the resident profiles without 0.69% 
of resident turnover of input/output in the nursing 
home) evolves towards a state where the percentages 
of population are: 
- 1.28% are in cluster5, 
- 1.99% are in cluster4, 
- 12.28% are in cluster3, 
- 3.82% are in cluster2, 
- 80.63% are in cluster1. 

6 EXPERIMENTS 

The table 3 presents the steady state vectors from 
different samples. We see that the decline is more 
important for elderly people with dementia than non-
demented elderly people. 

Table 3: Steady state: population staying in medical 
nursing homes. 

 
4 Nursing 

Homes 

Patient Without 
Dementia 
Disease 

Patient 
Suffering from 

Dementia 
Cluster5 3.57% 35.98% 0.32% 
Cluster4 13.42% 27.00% 1.93% 
Cluster3 27.80% 15.96% 5.21% 
Cluster2 11.54% 5.65% 6.84% 
Cluster1 43.66% 15.40% 85.69% 

Now, we simulate the evolution over time in 
using transition matrix used to model the Markov 
chain concerning each population. The results 
concerning the patients’ profiles in 2 years are 
presented in table 4.  

If the patient does not suffer from dementia 
disease, if he is initially in cluster5, the probabilities 
that the patient will be staying in: 
 Cluster5 is 50.9%,  
 Custer4 is 16%,  
 Cluster3 is 5.8% ...  
and leaves the system with a probability near to 
23%. 

If the patient suffers of dementia, the 
probabilities that the patient which will be staying 
in: 
 Cluster5 is 9.7%,  
 Cluster4 is 20.6%,  
 Cluster3 is 27.1%, ...  
and leaves the system with a probability near to 
10%. 

7 CONCLUSIONS 

An application of grammatical inference to the 
identification of the resident’s autonomy-disability 
progress over time has been presented. From profiles 
identified in using clustering approach (Combes and 
Azéma, 2013), we propose preliminary results of an 
investigation where regular grammars are used for 
modeling the ageing people evolution over time. The 
finite automaton is inferred in using the k-TSSI 
algorithm and afterward modified in order to obtain 
a probabilistic graph of transitions between states 
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(clusters) with the length-of-stay in each state. From 
this graph, we deduce automatically the 
corresponding Markov chain model. For the sake of 
simplicity, we only present in the article, the case 
where k=1. It is evident that in this case, we can use 
a bi-gram. But we have also study the evolution with 
k=2..n.  

In perspective, we have to extend and to validate 
our approach on different models such that Hidden 
Markov Models which are widely used in many 
patterns recognition areas. We have to study in more 
details probabilistic automata and discrete hidden 
models in order to clarify the links between them 
(Dupont et al., 2005). 

It could be interesting to study other classes of 
diseases. Approximately 1-1,5 % French population 
suffer from dementia and the causes of dementia are 
neurological disorders such as Alzheimer's disease 
(causes 50 percent to 70 percent of all dementia), 
blood flow-related (vascular) disorders such as 
multi-infarct disease, inherited disorders such as 
Huntington's disease, and infections such as HIV 
(Khachaturian, 2007). In fact, we would like to 
simulate the patient’s progress in order to forecast 
and to analyze the facility needs for long, medium 
and short-term care in order to dimension the 
human, financial and physical resources necessary in

the future. 
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