A MDE Framework for Semi-automatic Development of Web
Applications

Javier Solis, Hasdai Pacheco, Karen Najera and Hugo Estrada

Fondo de Informacion y Documentacion para la Industria INFOTEC
Av. San Fernando 37, Col. Toriello Guerra, Mexico D.F, Mexico

Keywords:

Abstract:

Semantic Web Applications, Ontologies, Ontology-driven Development.

One of the current trends in computer science is the use of ontologies in Software Engineering. In this context,

several academic and industrial works have used ontologies as mechanism for system requirements represen-
tation and automatic code generation. However, most of current works propose generic development platforms
regardless the reuse of components for a specific domain. In this paper, a Model-Driven Development Frame-
work, called SemanticWebBuilder (SWB) is presented. SWB provides an agile development platform for the
Web application domain, where system requirements are modeled through ontologies and from this knowl-
edge representation, the infrastructure of the system is automatically generated. The resultant system can be
extended by reusing of code, thus allowing to build complex systems in a short time. Moreover, system data
is represented as RDF triples, making this data available in the Semantic Web. SWB has been widely used to
develop Web applications for several government dependencies in Mexico.

1 INTRODUCTION

Currently, there is a consensus, in academia and in-
dustry, about the importance of analysis and design
phases in developing large scale software systems. In
this context, most of current software development
environments are based on traditional UML analysis
and design techniques, and on the use of Domain Spe-
cific Languages for modeling system requirements.
This approach, even when it gives partial solution to
the automatic code generation following the Model-
Driven Development paradigm, has some issues that
need to be addressed. For instance: the need to de-
velop several models to specify system requirements,
such as, architecture, behavior and data model; the
static structure of the data model; and the mecha-
nism to store system information. To solve this, other
mechanisms to model a system have been proposed.
One of the most promising trends in this are area is
the use of ontologies.

In this context, research works have proposed the
use of ontologies to drive the process of software ap-
plications development, since ontologies brings ad-
vantages to the software development cycle (Happel
and Seedorf, 2006) enabling analysts to better face the
evolution of systems. However, most of the current
works in this area have proposed generic software de-
velopment platforms which do not consider the reuse

Solis J., Pacheco H., Najera K. and Estrada H..

A MDE Framework for Semi-automatic Development of Web Applications.

DOI: 10.5220/0004321302410246

of components for a specific domain.

In this paper, a Model-Driven Development
Framework called SemanticWebBuilder (SWB) is
presented. SWB provides an agile development plat-
form for Web applications. It uses domain knowl-
edge as a starting point by modeling system require-
ments through ontologies. Then, the infrastructure of
the system (in object-oriented source code) is auto-
matically generated from ontologies. The resultant
infrastructure contains the basic functionality for the
system, however, it could be extended to add spe-
cific functionality by reusing of code, thus allow-
ing to build complex systems in a short time. SWB
aims the automatic generation of interoperable soft-
ware systems to be feasible for several application
domains by representing system and business infor-
mation in a common format, that is as RDF triples.
Moreover, SWB provides the mechanisms to expose
business information in the Semantic Web. SWB has
been widely used in practice to develop real semantic
applications for several government dependencies in
Mexico.

The paper is structured as follows. Section 2
presents the definition of ontologies in Computer Sci-
ence. Section 3 describes the motivation of using on-
tologies as models in our proposal. Section 4 explains
the SWB Framework. Section 5 presents the ontol-
ogy driven development process. Section 6 describes

241

In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 241-246

ISBN: 978-989-8565-42-6

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

related works. And finally, section 7 presents conclu-
sions and future works.

2 ONTOLOGIES

The term ontology is defined as ‘an explicit represen-
tation of conceptualization’ (Gruber, 1993), as well
as ‘a formal specification of a shared conceptualiza-
tion” (Borst, 1997). ‘Conceptualization refers to an
abstract model which represents the relevant concepts
of some phenomenon in the world; Explicit means
that the type of concepts used, and the constraints
on their use are explicitly defined; Formal indicates
that the ontology should be machine readable. And
Shared denotes that an ontology captures consensual
knowledge accepted by a group’ (Studer et al., 1998).

3 MOTIVATION

We aim to provide a Framework based on the MDE
approach to automatically generate Semantic Web ap-
plications by exploiting ontologies. Following we de-
scribe our motivation for using ontologies and the
Web application domain. Model-Driven Engineer-
ing (MDE) is an approach to software development
in which abstract models of software systems are cre-
ated and systematically transformed to concrete im-
plementations. In this context, modeling languages
such as the Unified Modeling Language (UML) and
Domain Specific Languages (DSL) have been pro-
posed to represent these abstract models. However, to
cover the complete software specification, these mod-
eling languages use of several models, for instance,
to represent system structure, behavior, data model,
etc. The use of ontologies as models in MDE allows,
rather than UML and DSLs, to represent system struc-
ture, behavior and data model in a single ontology,
together with business logic and software restrictions
that would be commonly hard coded in most current
systems. Furthermore, ontologies bring the follow-
ing advantages: they provide a shared understanding
of the problem domain and formal specification of
system requirements, allow reuse of existing domain
knowledge definitions, guide automatic generation of
source code through an API that maps concepts of the
ontology to classes in an object-oriented language,
provide better support for logical inference, integra-
tion and interoperability with other components or ap-
plications and improve maintenance and update tasks
because the source code could be automatically re-
generated from ontology definitions if requirements
change (Uschold, 2008; Happel and Seedorf, 2006).

242

On the other hand, the engineering of Web ap-
plications is a fairly mature field, however, although
there is an abundance of libraries and Frameworks
supporting the construction of Web applications, cur-
rent works do not consider directly the tendencies of
the Web domain, such as Semantic Web and Linked
Data approaches. In order to provide a Framework
that takes into account this tendencies, we propose
the use of ontologies as models in the MDE approach
to enable Semantic Web application development. In
this way, business data is represented as Semantic
Web data, that is as RDF triples, therefore, it can be
exposed in the Semantic Web.

4 SWB FRAMEWORK

e present our Model-Driven Development Framework
called SemanticWebBuilder (SWB)!. SWB provides
semi-automatic system development. The starting
point of the development process is the representa-
tion of the system requirements of a particular do-
main in terms of an ontology. Then, transformations
rules are provided in order to obtain, in an automatic
way, object-oriented source code according to con-
cepts and properties defined in the ontology. As an
output, the SWB Framework provides the infrastruc-
ture of the domain system which manages the per-
sistence of system and business information as RDF
triples. Although SWB supports the development
of different domain systems, it is specialized in the
Web application domain. Therefore, an ontology with
Web applications requirements has been developed
and specific components capable to manage Web ap-
plications features have been integrated to the SWB
Framework.

Following, we describe the main components of
the SWB Framework (Fig. 1):

SWB Components

‘ SWB Portal

‘ SWB Model

SWB Ontology
SWB Platform

SWB Triplestore

SWB Base

11111

Figure 1: SWB Framework components.

1SemanticWebBuilder website.
webbuilder.org.mx

http://www.semantic

A MDE Framework for Semi-automatic Development of Web Applications

SWB Ontology. A predefined OWL ontology called
SWB ontology is provided by the Framework. It
has been described by the Web Ontology Language
OWL?2. The SWB ontology contains a base structure
with predefined classes and properties for the trans-
formation from the ontology to object-oriented source
code. The classes are OWL class extensions, i.e., sub-
classes of owl:Class. For instance, swb:Class, to map
ontology concepts to Java classes and swb:Interface,
to map shared behaviors as Java interfaces; SWB on-
tology accelerates the development of specific do-
main ontologies by reusing its base structure. For the
Web applications domain, it has been extended with
classes to describe Web components and Web sites
features.

SWBBase. SWBBase corresponds to a set of libraries
implementing generic code utilities, such as string
formatting, e-mail sending, database query manage-
ment, error handling, file manager, etc.
SWBPIlatform. It is the main component of the
SWB Framework. SWBPlatform implements a
Model-Driven- Development platform which. gener-
ates object-oriented source code in the Java language.
Its main elements are: the Application layer and the
Code Generator.

The Application layer corresponds to the Java rep-
resentation of RDF and OWL concepts. RDF and
OWL concepts (resource, class, property, literal, etc.)
has been mapped in a set of of Java classes as is shown
in the first two columns of Table 1. Each Java class
has defined a set of methods that allow to represent
some of the relations considered in RDF and OWL
such as: subclass relation (isSubClassOf) and sub-
Property relation (isSubPropertyOf). These relations
are listed in Table 2.

The Code generator makes use of the the SWB
ontology and the Application layer to carry out the
automatic code generation. It consist of transforma-
tion rules and a transformation engine. By running
the transformation engine, the Code generator classi-
fies each concept and property defined in the SWB on-
tology to generate its corresponding Java implemen-
tation according to the transformation rules. For in-
stance: each subclass of swh:SWBClass is mapped as
a Java class where each class contains a set of acces-
sors methods (getters and setters) to manipulate the
bounded properties defined for the SWBClass con-
cept in the ontology; RDF properties or literals are
mapped as Java properties or literals as presented in
the last column in Table 1; and, each subclass of
swh:SWBInterface is mapped as a Java interface since
swh:SWBInterface represents specific behaviors that
require to be inherited by more than a concept. After

20WL Reference. http://www.w3.org/TR/owl-ref/

running the Code generator, two Java layers are gen-
erated: Java Base layer and Java Extended layer. The
Java Base layer implements the wiring among classes,
properties and interfaces defined in the ontology with
their supporting Java objects. Classes in this layer
must not be modified, due they are automatically re-
generated accordingly to the SWB ontology if code
generator is re-executed. The Java Extended layer al-
lows developers to implement specific functionality
required by the system, such as specific objects be-
havior.

Fig. 2 represents the transformation from the SWB
ontology to Java source code according the MDE ap-
proach. On the left side is situated the OWL meta-
model in the M2 layer and the SWB ontology in the
M1 layer. On the right side is situated the Applica-
tion layer at the same level than the OWL metamodel
(M2) since it represents OWL language in Java code.
The transformation rules have been defined in this
layer. The transformation engine applies the transfor-
mation rules in the layer M1, transforming the SWB
ontology into Java code.

rator
M2 OowWL
Metamodel Transformation
rules

Application Layer
Java Source Code
| s—
0
!

! tnstance of

Instance of In: .
. Syst
stem
M1 SWB.Ontology o Java Source Code
l Trasformation
engine

Figure 2: Code generation through the MDE approach.

Additionally, SWBPIlatform contains classes that
implement the communication mechanism with dif-
ferent triple stores and encapsulates the complexity
associated with the direct manipulation of RDF data.
SWBModel. It is a set of classes automatically gen-
erated by the SWBPIatform for the Web applications
domain. It contains the implementation of Web page,
Web site, User and Role concepts. The classes pro-
vide methods to manipulate RDF data in a high level
of abstraction through Semantic managers, Semantic
Vocabularies and native Java objects.
SWBTripleStore. It is a set of classes to encapsulate
methods for RDF management with the Jena API. The
classes provide features to improve the performance
when accessing triple stores in several database man-
agers through different built-in connectors.
SWBPortal. It is a set of classes to develop Web ap-
plications for a Java application server. It implements
a set of embeddable Web components, an HTML tem-
plate processor, a request distributor and utilities for
user session management, data validation, security is-
sues, a content management system for testing com-
ponents, an extension point for the rapid development
of new Web components, etc.

243

MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

Table 1: Application layer.

RDF/OWL Concept | Application layer object | Java Concept
RDF Resource Semantic object Object instance
OWL Class Semantic class class
RDF Property Semantic property property
RDF Literal Semantic literal literal

Table 2: OWL relationships representation.

Application layer object Relationship Application layer object
Semantic class isSubClassOf Semantic class
Semantic class hasProperty Semantic property

Semantic property isSubPropertyOf Semantic property
Semantic object hasDataTypeProperty Semantic class
Semantic object hasObjectProperty Semantic object

The Ontology-Driven Development process
through the SWB Framework and a descriptive
example are presented in following sections.

5 DEVELOPMENT PROCESS

We present the Ontology-Driven Development pro-
cess which automatically generates the source code
of Web applications and extensions to existing ones
by exploiting the SWB Framework. The process con-
sists of three steps:

1. Problem conceptualization: Problem require-
ments, such as: concepts and interactions, proper-
ties, and behaviors of each concept needed in the
problem domain are modeled by means of OWL
ontologies.

2. Automatic source code generation: By running
the Code generator, each element in the ontol-
ogy is transformed into Java code according to the
transformation rules. After the code generation,
developers have these elements available: a) Java
classes for all defined concepts in the ontology, b)
methods for objects communication as defined in
the ontology properties and relations, including:
association, aggregation, inheritance and compo-
sition, ¢) methods for object persistence in differ-
ent triple-stores and databases, d) view modes to
display and manipulate properties of each object
instance and e) cache system of semantic objects
for system and data access performance.

3. Specific functionality implementation: Additional
Java source code could be developed to accom-
plish specific functionalities required by the sys-
tem, such as, specific behavior of each object, data
validation or user interface implementation.

SWB provides a software requirement traceability
mechanism which ensures that the model is consistent

244

with the resultant source code. Changes in the model
affect the implementation directly, however, exten-
sions to the implementation do not affect the model.
This allows to easily modify and to previously extend
developed functionality, to reduce code maintenance
and to increase reuse of code.

Following we describe an example of the devel-
opment process where a Web application is extended
with a specific functionality.

5.1 Extending a Web Application

Web applications generated through the SWB Frame-
work can be extended with several specific functional-
ities depending on the domain of the Web application,
for instance, tourism, economics, health, etc.

In order to illustrate the development process a ba-
sic example is presented. The example is related to
the development of an online contact directory. The
contact directory manages personal contacts as part
of a social Web site. It allows to add, edit and delete
contacts. Each contact entry holds the name, address,
phone and email. The contact directory should pro-
vide four views: a view with the list of all registered
contacts, a view to visualize detailed information of
each contact; a view to add new contacts, and a view
to modify the information of a contact.

The application of the proposed development pro-
cess for the contact directory is presented below.
Problem Conceptualization. The conceptualization
consists of modeling the problem domain to extract
important entities and relations. In this way, a first un-
derstanding of the knowledge implicit in the problem
domain is obtained. The first analysis of the contact
directory leads to the creation of the draft diagram of
Fig. 3. By using the draft diagram and knowledge
of domain experts, we can start with the contact di-
rectory ontology definition by reusing and extending
the basic structure of the SWB ontology. Therefore,
concepts, properties, relations, object behavior and

A MDE Framework for Semi-automatic Development of Web Applications

phoneNumber

Figure 3: Contact directory conceptualization.

restrictions related to the contact directory are mod-
eled in the SWB ontology via an ontology editor such
as Protege® or TopBraid*. Properties to display and
to format the contact directory are added to let the
SWBPIlatform automatically build the necessary Web
forms for the manipulation of the contact directory in
the Web application. The Contact directory ontology
is described in Fig. 4.

C Thing

C SWBInterface € SWBClass € SWBSemanticResource

C Traceable p valid
¥
e ot P creator
SWBOntology
-

C Contact C DirectoryResource

P. Nhame T y
p hasContacts

honeNumber P, email p. address
- DirectoryOntology

Figure 4: Contact directory ontology.

Code Generation. A script is created for code gen-
eration through SWBPIlatform. The script applies the
transformation rules embedded in the Code genera-
tor and, from de SWB ontology, it generates the base
source code for the contact directory. This script al-
lows to regenerate the source code if the ontology
changes. The generated source code represents a high
level domain Java API that hides all complexity of
RDF data management (Fig. 5). The contact directory
is represented as the DirectoryResource class. It con-
tains all the methods needed to implement the contact
directory and its behavior using SWBPortal.

Specific Functionality Implementation. An ‘All
contacts’ view has to be implemented to accomplish
the contact directory requirements. The development
is carried out in the Java Extended layer by using the
methods and properties encapsulated in the Java Base
layer. Each mode and action is created through the
SWBPortal to manage http requests, render HTML
code for the user view and to achieve user interac-
tion. Object persistence and retrieval is done through

3http://protege.stanford.edu/
“http://www.topquadrant.com/products/
TB_Composer.html

SWBModel SwEBPortal

<<@interface>> [Swaciass]
Traceable

getCreated() isvalid()

getCreator() 7

=
|
I

DirectoryResource

tor.
created
Ivalid

name
phoneNumber
email

address

isvalid()
getCreator() [Contact]
getCreated() it
setCreated()

processAction()

getAddress()

Figure 5: Contact directory classes.

nnnnnnnn

Contact directory

Contact list

Add new conta

Blanca Vazquez Dotails
Jose Jimenez Details
Samuel Vieyra
Tania Mares

Martha GonzalezD

Francisco Lopez Details
Carlos Ramos Details.

Figure 6: ‘Contact list’ view.

M SemanticWebBuilder

sbBuilde

Contact directory

Add new Contact

Name: Blanca Vazquez
Address: Pleyades 35
Telephone: 5521658965
E-mail blanca@qmail.con]

[save)

Back to contact list

Figure 7: “Add new contact’ view.

SWBPlatform, which manages all RDF data.

The final contact directory source code is incor-
porated to the Web application source code by the
content management system provided by SWBPortal.
Fig. 6 shows the ‘All contacts’ view and Fig. 7 the
‘Add contacts’ view.

6 RELATED WORKS

Currently, there is a growing trend, in academia and
industry, of works that propose the use of MDE for
software development. General purpose develop-
ment tools such as AndroMDA (Bohlen et al., 2012)
and Acceleo (Musset et al., 2012) are open source
MDA Frameworks. AndroMDA generates compo-
nents in different programming languages by means
of customizable plug-ins that support code genera-
tion. It mainly uses UML models stored in XMI.
Acceleo provides code generators (JEE, .Net, Php)

245

MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

and template editors for Eclipse. Web application
domain purpose such as WebDSL generator (Hemel
et al., 2010) and WebRatio (Brambilla et al., 2010).
WebDSL is a DSL for web-applications with rich
data models. WebDSL provides sub languages for
the specification of data models, for the definition of
custom pages, and for the manipulation of data. We-
bRatio is a an eclipse-based case tool for engineering
web applications. It uses the WebML modeling lan-
guage for designing Web sites. This kind of tools use
several models to represent system specification, such
as, architecture, behavior and data model. Instead,
SWB uses only an ontology to represent those mod-
els. Moreover, by using ontologies SWB provides
the mechanism to expose system data in the Semantic
Web.

Other works are those related with the use
of ontologies for code generation, such as:
ODASE (Uschold, 2008), an ontology-driven
architecture which permits to represent into an
ontology the business knowledge needed to build an
IT application. ODASE is a general purpose plat-
form, instead SWB has a specialized set of reusable
components for the Web applications domain,
therefore, in this domain, SWB can be more usable.
RDFReactor (Volkel and Sure, 2005) automatically
generates Java classes from OWL ontologies through
an intermediate model.This intermediate model must
be updated as RDF specifications evolve and the Java
generated classes must be extended manually in order
to keep all changes made during the development
process. SWB automatically supports the evolution
of models by the modification of the SWB ontol-
ogy.Jastor (Kalyanpur et al., 2004) generates Java
code from OWL ontologies using Java Beans. OWL
classes are mapped into Java interfaces to solve the
problems of multiple inheritance. Manual extensions
need to be addressed for each generated Java interface
to achieve the system implementation. With SWB,
Java Class extensions are defined automatically.

7 CONCLUSIONS

We have presented an Ontology-Driven Development
Framework called SemanticWebBuilder (SWB). The
starting point of the development process is the onto-
logical representation of a problem domain by extend-
ing the base structure of our proposed ontology SWB
ontology. As output, SWB automatically generates
the infrastructure of the domain system which man-
ages the persistence of system and business informa-
tion as RDF triples. The semi-automatic development
process through SWB has been described, so that, a

246

resultant system could be easily extended, being able
to build complex systems. SWB is specialized in the
Web application domain. Therefore, the SWB ontol-
ogy has been supplemented with Web applications re-
quirements. Additionally, specific components have
been integrated to the SWB Framework to manage
Web applications needs. Through the use of ontolo-
gies SWB provides the following advantages: flexi-
ble and agile mechanisms to adapt to new business
needs, reducing code maintenance issues and increas-
ing reuse of code; increased reliability since human
errors are reduced; reasoners can run over ontologies
and data to make proof of assertions about business
information; and finally, Semantic Web mechanisms
can be applied to expose business information in the
Semantic Web and to exploit data through paradigms
such as Linked Data.

SWB has been successfully applied in the
development of several Web applications ac-
tually used Dby government dependencies in
Mexico. For instance, Visit Mexico - http://
www.visitmexico.com/, Secretary of labor and social
welfare - http://www.stps.gob.mx, and Secretary of
public education - http://www.sep.gob.mx/.

REFERENCES

Bohlen, M. et al. (2012).
www.andromda.org/.
Borst, W. N. (1997). Construction of Engineering Ontolo-
gies for Knowledge Sharing and Reuse. PhD thesis,

Enschede.

Brambilla, M., Butti, S., and Fraternali, P. (2010). Webra-
tio bpm: A tool for designing and deploying business
processes on the web. In Web Engineering, volume
6189, pages 415-429.

Gruber, T. R. (1993). Toward principles for the design
of ontologies used for knowledge sharing. In Inter-
national Journal of Human-Computer Studies, vol-
ume 43, pages 907-928.

Happel, H.-J. and Seedorf, S. (2006). Applications of
ontologies in software engineering. In SWESE’06,
Athens, USA.

Hemel, Z., Kats, L. C. L., Groenewegen, D. M., and Visser,
E. (2010). Code generation by model transformation:
a case study in transformation modularity. Software
and System Modeling, 9(3):375-402.

Kalyanpur, A., Pastor, D. J., Battle, S., and Padget, J. A.
(2004). Automatic mapping of owl ontologies into
java. In SEKE’04, pages 98-103.

Musset, J. et al. (2012). Acceleo. http://www.acceleo.org/.

Studer, R., Benjamins, R., and Fensel, D. (1998). Knowl-
edge engineering: principles and methods. Data and
knowledge engineering, 25:161-197.

Uschold, M. (2008). Ontology-driven information systems:
Past, present and future. In FOIS’08, pages 3-18.

Volkel, M. and Sure, Y. (2005). Rdfreactor - from ontolo-
gies to programmatic data access. In ISWC’05.

AndroMDA.. http://

