Making Sense to Modelers
Presenting UML Class Model Differences in Prose

Harald Storrle

Department of Informatics and Mathematical Modeling, Technical University of Denmark,
Richard Petersens Plads, 2800 Lyngby, Denmark

Keywords:

Abstract:

Model based Development, Model Version Control, Model Difference Presentation.

Understanding the difference between two models, such as different versions of a design, can be difficult.

It is a commonly held belief in the model differencing community that the best way of presenting a model
difference is by using graph or tree-based visualizations. We disagree and present an alternative approach
where sets of low-level model differences are abstracted into high-level model differences that lend themselves
to being presented textually. This format is informed by an explorative survey to elicit the change descriptions
modelers use themselves. Our approach is validated by a controlled experiment that tests three alternatives to
presenting model differences. Our findings support our claim that the approach presented here is superior to

EMF Compare.

1 INTRODUCTION

Motivation. In model based and model driven de-
velopment, code is increasingly being replaced by
models. Thus, model version control becomes a criti-
cal development activity for all but the smallest mod-
eling projects. (Kuhn et al., 2012) provide empir-
ical evidence to this claim. Consequently, version
control operators for models have attracted great at-
tention over the last years. For instance, there are
two ongoing workshop series on this issue, “Model
Evolution” (ME) and “Comparison and Versioning of
Software Models” (CVSM). The on-line bibliography
“Comparison and Versioning of Software Models”
(see (CVSM Bibliography, 2012)) records well over
400 publications in the area in the last 20 years, more
than 250 of which have been published in the last five
years. However, only less than ten out of these 250
publications consider the presentation of differences,
even though the best difference computation is little
use if the modeler cannot make sense of the change
report.

Apparently, it is a commonly held belief in the
model differencing community that the best way of
presenting a model difference is by graph or tree-
based visualizations, while text-based difference re-
ports are considered inferior. For instance, Ohst et al.
maintain that “the concept of [side-by-side presenta-
tion] works well with textual documents, [...but] does

Storrle H..

Making Sense to Modelers - Presenting UML Class Model Differences in Prose.

DOI: 10.5220/0004320900390048

not work well with graphical documents such as state
charts, class diagrams, etc.[...].” (cf. (Ohst et al.,
2003, p. 230)). Schipper at al. believe “that there is
a real need for a visual comparison” (cf. (Schipper
et al., 2009, p. 335)). Wenzel even claims that “The
textual presentation [of differences] [...] is very dif-
ficult, or even impossible, to be read by human read-
ers” (cf. (Wenzel, 2008, p. 41)).

Approach. We disagree with this opinion. It is
certainly true that high-accuracy difference compu-
tations leads to very large numbers of low-level dif-
ferences, and simply dumping these to the user is
not very helpful: modelers are overwhelmed by
the amount of information they are confronted with.
There is, however, no reason, why we cannot try and
find a more abstract textual difference representation
that is equally accurate but less detailed, and thus eas-
ier to understand for modelers.

Also, it is well known that conformance between
questions and answers increases task performance
and reduces cognitive load. We therefore propose
presenting model differences in the same terminology
and with the same aggregation size that modelers use
to describe changes in their models. This way, we
hypothesize, will modelers find it more easy to un-
derstand model difference presented to them. In other
words: a model difference will make more sense to
a modeler if it is presented in the right terms. We ex-

39

In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 39-48

ISBN: 978-989-8565-42-6

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

plore this idea, formalize its notions, implement them,
and present empirical evidence comparing it to exist-
ing approaches.

Contribution. In this paper we propose an ap-
proach to compute model differences with maximum
accuracy, automatically derive high-level explana-
tions from them to reduce the level of detail, and
present these high-level differences in user-friendly
textual way. Our approach to version control of mod-
els looks at models as knowledge bases providing
an abstract view into some application domain. We
present a tool implementation of our approach and
briefly evaluate its performance.

We report on two empirical studies discovering
the model change terminology and granularity used
by modelers, and exploring and comparing ways to
present model differences. We find considerable ev-
idence in support of our hypothesis. The ideas re-
ported in this paper have evolved through a series of
papers (see (Storrle, 2007b; Storrle, 2007a; Storrle,
2012)).

2 DIFFERENCE ALGORITHM

In the context of model comparison for version con-
trol, we typically want to compare two models that
are subsequent versions of the same model. Thus,
we can typically assume that (1) the two models have
been created using the same tool, and (2) they have a
large degree of overlap. This means, that both mod-
els use the same kind of internal identifiers for model
elements, and that most of the model elements have
the same identifiers in both versions. Thus, there is no
need to align models, and matching between their ele-
ments becomes trivial. These assumptions are clearly
not applicable in other, related areas, such as general
comparison of models, or model clone detection (see
e.g., (Storrle, 2011a)). Note that EMF Compare (see
www.eclipse.org/emf/compare) has a wider focus and
includes an explicit matching phase before computing
model differences, although only identifier and hash-
based matching seem to be currently available.

Mathematically speaking, we interpret a model as
a finite function from model element identifiers to
model element bodies, which are in turn finite func-
tions from slot names to values, which of course may
be (sets of) model element identifiers. We define the
following domains.

I Identifiers are globally unique elements.

S Slot names are identifiers that are unique in a given
model element, in meta-model based languages

40

like UML they correspond to meta-attributes.

V Slot values may be of arbitrary type, including ba-
sic and complex data types, and references to (sets
of) model elements.

B:P(S ¥ V) Model element bodies are maps from
slot names to slot values.

M :P(l ¥ B) Models are maps from model ele-
ment identifiers to model element bodies.

We use the notation dom(f) to denote the domain
of a function, and f #y to denote the restriction of
f to the sub-domain X dom(f). For example, if
f:A ¥ B, thendom(f) =Aand f #x="fhx; f(x)ijx 2
X;X Ag. The operator = denotes set difference, i.e.,
X=Y =fXjx 2 X~x8Yqg.

The domain definitions and notations introduced
above allow us to formulate the difference computa-
tion as basic set-operations. Let P and P’ be two ver-
sions of a model, then the following definitions are

obvious.

Unchanged U= P\P

Added A= P #dom(P")=dom(P)
Deleted D= P #jom(p)=dom(P")
Changed C= P'=(U[A)

In order to compute the detailed changes of the
changed elements, similar definitions apply. For ev-
ery changed model element ¢ 2 C with identifier i, we
define the following sets for the slots of C.

unchanged ¢, = P(i)\P(i)

added ca= PY(i) #aomr(iy)
deleted ca = P(>i) #dom(pi(iy) =Cu
changed ce= PUi)=(cy [ca)

Clearly, all of these sets can be computed trivially
and efficiently. Observe that the result of applying
these operators are not necessarily consistent models.
For instance, if model P contains only a class A, and
model P’ contains also a class B and an association
between A and B, then P’ #gom(pty=domcpy (the set of
added elements) contains class B and the association,
but not class A, that is, the association contains a slot
pointing to A, i.e., a dead link.

Algorithm 1: Compute difference between two models
OLD and NEW.
function DIFF(OLD;NEW)
compute sets A, D, and C as defined
for all c 2 C compute c;, ¢, and ¢y
tag elements wig their change type

return ALD [~ coc(Ca Lce [Ca)
end function

Consider the example in Fig. 1. It shows two sub-
sequent versions of a class model in the insurance do-
main. Obviously, this is only a small toy example with
a modest number of straightforward changes, finding

Making Sense to Modelers - Presenting UML Class Model Differences in Prose

Insurance Entities v.1/

Supplier
Date
1 | fed
1
il
Product 1 Person
validThru: Datem®' name: String
gender: Char a
last change: Date Are‘k
LifePlan

Insurance Entities v.2/

Insurance
,.mﬁ”cA

1
1

Product

change?
1

LifePlan Person

1
validThru: Date,aov ed name: String f
signed: Date ad gender: String © -

ed - 1.5 Aded EE—
MedicalPlan 1 Company

Figure 1: Running example for versioning models: orig-
inal version (top); and subsequent version (bottom), with
changes annotated in red.

all of them can be difficult. But even a complete and
explicit list of the changes may be difficult to read
if the number of changes grows too large. Even in
the small example from Fig. 1, there are 36 changes
between the two models, making this change report
difficult to understand.

However, we have observed patterns in these low-
level change reports: usually, groups of changes oc-
cur together as the effect of a single modeling action.
Reconstructing these high-level changes from the low
level observations will improve the understanding of
model changes. This is the topic of the next section.

3 EXPLORING MODELERS’
DIFFERENCE PERCEPTION

In order to learn what concepts and abstractions mod-
elers find helpful when talking and reasoning about
model differences, we explored modelers’ perception

of model differences through a qualitative study. We
created three pairs of sample UML class diagrams
that contained between 8 and 12 changes each. All
kinds and sizes of changes were covered at least
twice. We highlighted all changes by circling their
effect in the diagrams in red and numbering them ran-
domly. Fig. 2 (left) shows an example. Next we pre-
sented these model pairs to 4 graduate students and
asked them to describe the highlighted model changes
in their own words. We asked them to write down
their change descriptions, referring to the numbers
associated to the changes in the diagrams. We also
asked them to speak out loud what they were thinking
in the process and audio-recorded their utterances.

We found that there were three dimensions of vari-
ation in the ways study participants described model
differences. Firstly, there were variations in the gram-
mar and vocabulary, particularly the choice of verbs.
For instance, subjects might use “remove” instead of
“delete”, and “change” instead of “update”. Similarly,
subjects might use either present tense or past tense,
or even a mix of both when describing changes. Since
both of these variations appeared without any perceiv-
able pattern, we hypothesize that the variables gram-
mar and vocabulary are of little importance to model
change description. Mostly, subjects used the pas-
sive voice rather than the active voice or imperative.
For instance, the change marked 1 in Fig. 2 would be
described as “Class ’Date’ was deleted” rather than
“Delete Class *Date’ ”. We attribute this to the fact
that it was not clear to the study participants who had
actually done the changes, so there was no obvious
grammatical subject to use in the change descriptions.

Secondly, some changes were described in a
generic way while others were described in a more
specific way. For instance, the change marked (2)
in Fig. 2 would always be described as a ’renaming’
rather than a change or update of the meta-attribute
‘name’. In some cases, both types of change de-
scriptions could be observed. For instance, change
(3) would often be described as a decrease in ’Prod-
ucts’ associated to ’Persons’, but sometimes subjects
might also describe it as “change the multiplicity of
the association from 1..* to 1. Similarly, changes to
the meta attribute *isAbstract’ would usually be de-
scribed as "making abstract’ or ’'making concrete’ of
a class. There were yet other occasions, however,
where no specific description applied, and subjects
would use a variant of the generic description schema,
i.e., we would observe a change description like “The
type of feature "gender’ was changed from "Char’ to
'String” 7. Generally speaking, most subjects pre-
ferred ’special case descriptions’ over the generic de-
scription pattern most of the time. Assuming that

41

MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

Insurance Entities v.1/

D 2 -
/ (Date)
0I5

1

_/4 4 A

1

Product 1 Person

validThru: Date ‘1/ name: String

gender: Char

Zﬁ S—{ ast change: Daté) B
LifePlan

Figure 2: Exploration of change descriptions by modelers:

description (right).

the subjects always tried to describe the changes in
the most accurate way they could, we concluded that
these changes were considered strictly different by the
subjects, and should be described in specific terms
rather than generic terms. However, there were some
changes that were described in rather different ways
by different subjects. For instance, changing general-
izations between classes, was described as ’let x in-
herit from y rather than z’ by one subject, while an-
other subject described it as "replace z by y as gener-
alization of x’. We attribute this variation to different
degrees of UML-sophistication in the subjects, which
might mean that there should be different ways of de-
scribing the same change in different situations and to
different audiences.

Thirdly, we observed that the wording of the task
description had great influence on the change descrip-
tions produced by the subjects, as this description
would hint at an application scenario which lead sub-
jects to use different constructions matching the imag-
ined scenario. Consider the variants of task descrip-
tions and resulting change descriptions as shown in
Fig. 2 (right). These two scenarios describe models
as (A) subsequent or (B) alternative versions, i.e., as
dependent or independent of each other. In the former
case, descriptions typically used past tense and pas-
sive voice, using activity verbs like “add” or “delete”
to describes changes. In the latter case, change de-
scriptions typically contrasted two states using the
present tense of state-describing verbs, especially "be’
or ’have’.

4 DIFF INTERPRETATION

Abstraction Rules. The overall idea is to provide
rules to explain sets of changes in a more abstract

42

Task Change Description

You are looking at two versions (1) Class 'Date’ was deleted.
of a class model retrieved from (2) Class 'Supplier' was renamed to
a version control systems. De- Insurance'.

cribe the changes made in the (3) The number of 'Products' associ-
second version! ated with a 'Person' was reduced

from 'one or more' to 'one'.

You are looking at two alterna- (1) V.1 has a class ‘Date’ while v.2 does
tive versions of a class model. not.
Describe the differences be- (2) Class 'Supplier' in v.1 is called

) .
tween these two versions! [ISURIGE 2 i
(3) In v.2, a 'Person’ is associated to

only one 'Product’, while in v.1
there may be one or more.

model markup (left); change description as a function of task

way. For instance, if a class C is deleted, its transi-
tive parts and attached associations are also deleted.
So, computing the difference results in a large num-
ber of detail changes that might confuse the modeler.
This set of detail changes can often be replaced by a
single modeler-level explanation, e.g., something like
"deleted C and parts (cascading)’. Also, some changes
are more important than others, and some may be re-
ported summarily. For instance, changing the name
of a class is often more important than changing its
visibility. So we defined the following rules for ab-
stracting low-level changes, based on observations
on change protocols of difference computations of a
set of modeling case studies (see (Stérrle, 2011a) for
more details on these case studies).

Rename. Replacing a change “‘update attribute
'name’ of class ’Supplier’ to ’Insurance’ ” into
“rename ’Supplier’ to ’Insurance’ obviously does
not reduce the number of changes, but makes it eas-
ier to understand the change.

Move. Moving an element from one container to an-
other changes the list of contained elements of both
containers, so a pair of low-level changes can be ac-
counted for with a single high-level change, and the
operation “move” is easier to make sense of than a
pair of addition and deletion, in particular if these
are not presented together.

Delete. Deleting an element also deletes its parts, re-
moves a link to it from the part-list of its con-
tainer, and any references from other elements to
it. Typically model elements have several parts,
which might again have parts so that deleting a sin-
gle element may cascade a number of times, and
a substantial number low-level changes can be ab-
stracted this way.

Add. Similarly, adding an element again also
changes the part-list of its container, often adds

Making Sense to Modelers - Presenting UML Class Model Differences in Prose

parts, and possibly references from other elements
to it. Furthermore, similar additions could be
grouped, such as when adding several properties
to a class: a single change can summarize such a
change set.

Associate/Dissociate. Adding or removing an asso-
ciation between some elements amounts to adding
or removing the element itself, its (transitive) parts
and properties, and references to these parts. For
instance, an association is a connection between
properties of the associated elements, and it is them
who own the properties rather than the association.

Re-associate. Exchanging one participant of an as-
sociation by another replaces a pair of overlapping
associate and dissociate-changes.

Tool Specific. Some changes refer to tool specific
elements such as extension elements, internal li-
braries and so on. These should be suppressed in
a high-level view.

Implementing these rules must satisfy two ma-
jor design goals. Firstly, the number of the reported
changes should be substantially reduced and their un-
derstandability increased (Goal 1: reduce number of
changes). Secondly, it should be easy to inspect a
high-level change and find out what low-level changes
it actually accounts for, so that both the results and the
procedure are transparent (Goal 2: account for ab-
stractions). Thirdly, the rules should be independent
of each other such that it is easy to add or change them
(Goal 3: Independence).

Difference Abstraction Algorithm. In a first at-
tempt, we tried to provide a set of explanation rules
that would consume the computed changes of a model
difference. This way, each high-level change could be
made to contain the low-level changes it accounts for
which would satisfy the design goals 1 (change reduc-
tion) and 2 (accountability). Such an algorithm works
fine when considering only renaming, moving, and
additions/deletions of classes, properties, and similar
entities.

However, there are many cases where the same
low-level change can be explained by different ex-
planations. For instance, consider the following three
high-level changes possible to deduce from our above
rules.

adding class *Company’,

associating class Company’ to class ’Medi-
calPlan’, and

re-associating another class with *’Company’

All of these high-level changes would account for
the low-level changes ““add anonymous property’” and

“update ownedMember of ’Company’*“. Of course,
creating a high-level change report should explain as
many low-level changes as possible, and so each rule
is “greedy”. This would imply that each rule must
have a great number of case distinctions that encode
deep knowledge about all other rules and what low-
level changes may or may not have already been ac-
counted for by another rule. Clearly, this contradicts
the third design goal (independence of rules). So, the
first design of simply consuming low-level changes is
inadequate.

Instead we chose a different approach. If a high-
level explanation E is found to account for a set of

marked as accounted for, and linked to their high-
level explanation E, while E is being added to the list
of computed changes. Clearly, this approach allows
to satisfy design goals 2 (accountability) and 3 (in-
dependence), but not 1 (reduce number of changes),
since the number of changes steadily increases. How-
ever, the number of changes not accounted for does
decrease, and so a slight variant of design-goal 1 is in-
deed satisfied. This solution has the added benefit that
there may now also be rules to abstract from previous
abstractions (e.g., rule “Re-associate”).

Since the number of low- and high-level changes
never reaches zero and we cannot know in advance
how far their number may be reduced, we use a fixed-
point algorithm to implement this solution. In other
words, the rules are applied until the set of changes
does not change any further, which includes both the
overall size of the set and the number of accounted-
for changes. Conflicts between different explana-
tion rules need to be resolved by the programmer at
design-time; different orderings might result in dif-
ferent interpretations. The final algorithm is shown
as Algorithm 2. Clearly, the algorithm terminates, if
there is at least one explanation for each change. We
achieve this by adding the default explanation, where
a change is explained by itself. This rule applies only
as a fall-back, i.e., if no other explanation applies ear-
lier.

As an added benefit, this approach is indepen-
dent of the ordering in which rules for interpreting
low-level changes are applied. While the ordering of
model changes has no influence on the interpretation,
some sequences of operations are currently not de-
tected. For instance, deleting an element and creating
another element that is equal up to identity in another
place might be understood as a movement by a user,
but will not be recognized as such by the tool.

43

MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

Algorithm 2: Interpret difference D between two models
OLD and NEW.

function EXPLAIN(DIFF)
pick some d 2 DIFF marked as ’fresh’
if there is an explanation E for change d then
find largest D DIFF explained by E
add E to DIFF
link D to E for tracing
mark E as ’fresh’ in DIFF
mark all D as ’stale’ in DIFF
end if
return DIFF
end function

function INTERPRET(DIFF)
mark all D 2 DIFF as "fresh’

DIFF" DIFF
repeat
DIFF DIFF'
DIFF' explain(DIFF)

until DIFF = DIFF’
remove all “stale” elements in DIFF’
return DIFF’

end function

5 IMPLEMENTATION

As in previous work on other model management op-
erations (see (Storrle, 2011b; Storrle, 2011a)), we
equate domain models with domain knowledge bases
and represent models as collections of Prolog facts.
Therefore, we have implemented our algorithm in
Prolog, too. There is a straightforward reversible
mapping between more conventional model formats
such as XMl and our Prolog representation.

Modelers can choose between different formats
for model difference, including low and high levels
of abstraction, and tabular or textual presentations.
Modelers are also offered statistics about the model
size, number of changes, and change rate.

Change Description Size. Using the running ex-
ample from Fig. 1, we may obtain difference reports
from EMF Compare, the low-level output from our
approach, and our high level output, presented in tab-
ular and textual format. In the remainder, we will
refer to these as treatments (1), (2), (3A) and (3B),
respectively.

Observe that the table and the prose text contain
identical information; they just present them in dif-
ferent formats. Clearly, EMF Compare uses by far

44

the most screen real estate to present changes, which
will be detrimental in maintaining an overview over
large differences. Also, the difference presentation of
EMF Compare is much more verbose without offer-
ing more information, while at the same time demand-
ing heavy interaction by the modeler inspecting the
differences when unfolding the difference tree. This
will likely increase the effort of the modeler in trying
to understand a model difference.

A quantitative comparison of the number of
changes is shown in Fig. 3. It is obvious that the
number of high-level changes is lower than the num-
ber of changes reported by EMF Compare, which
in turn is markedly smaller than the number of low-
level changes (36 vs. 15). Observe, however, that the
difference in numbers of changes reported by EMF
Compare and the low-level changes is almost en-
tirely explained by changes to the container attributes
(“ownedMember” et al.), and EMF Compare does not
report most of these changes.! Simply dropping this
type of information from the low-level change report
will result in almost identical numbers as compared
to EMF Compare. The number of high-level changes,
on the other hand, is notably smaller than the num-
ber of changes reported by EMF Compare (10 vs.
15). What is more important, however, is the way the
changes are presented in our approach, which we will
show to be much more understandable in Section 6.

Numbers of Changes by Type

o) Add
[=
)
£ Delete
)
w
Move
o Container
= add
.-g Container
£ del
<
other
Total

10 20 30 40

B EMF Compare H Low level B High Level

Figure 3: Computational Performance.

Computational Performance. Contrary to com-
mon prejudice, using a high-level language like Pro-
log does not necessarily sacrifice run time for devel-

1The exception being the order of the entries in one such
container attribute, which, conversely, our approach does
not consider.

Making Sense to Modelers - Presenting UML Class Model Differences in Prose

opment time. In fact, we have consistently observed
that our approach outperforms conventional Eclipse-
based tools, often by an order of magnitude or more.
In order to test this in the present setting, we have
timed a series of sample runs of our tool on a laptop
computer with an Intel Core i5-2520M, 2.5 GHz, 8GB
RAM under Windows 7. Fig. 4 summarizes our find-
ings. It seems that both model size and change size
have an impact on execution time. The sample mod-
els range approximately from 1,000 to 2,000 model
elements, which makes them non-trivial, though not
extremely large. The response times are well below
a second, that is, our approach is practically viable.
A direct comparison to EMF Compare would require
instrumentation of the EMF Compare source code,
and is thus beyond our reach. Timing a user is in-
adequate, as EMF Compare requires interactions dur-
ing the differencing procedure. Discounting for these,
EMF Compare needs between 1 and 4 seconds for the
same models, i.e., it is considerably slower than our
approach.

Model Size vs. Difference Size

2500 800
[ms]
— - 700
2000

- 600

1500 7Z - 500
/ I: - 400
1000

- 300
- 200
500+
- 100
0' T T T T o 0
3C 4C 2B 1A 4B
== Duration mmm Changes 1 Model Elements

(Base / Additions)

Figure 4: Relating model and difference size with run time:
the gray bars indicate the number of changes, the white
bars represent the sizes of two model versions by number
of model elements. The different case studies are plotted
left to right.

6 EVALUATION

Study Design, Materials, and Participants. We
validated our approach using a controlled experiment.
We prepared two pairs of diagrams with differences,
based on the models shown in Section 3. We removed

the change markup and created the difference descrip-
tions for each pair with EMF Compare and both our
own high level change descriptions, respectively. We
created a set of questionnaire sheets that display a pair
of models together with one of the difference presen-
tations and the instruction to check the difference de-
scription for correctness wrt. the diagrams shown. We
then combined two of these sheets into one question-
naire, permuting the sequence of the presentation for-
mats in different questionnaires.

We presented these questionnaires to 25 graduate
and undergraduate students; 17 of them returned a
questionnaire. All participants had an IT-related uni-
versity degree or were studying to obtain one. We
asked the subjects to validate the correctness of the
change presentations at their own pace. The tasks
were assigned randomly. A number of data points
were unusable because participants did not complete
all tasks or misunderstood tasks. Completion ranged
from 36% to 93% (average at 63%) depending on
treatments and measure.

Observations. We recorded the following three
variables:

the number of errors (including both false nega-
tives and false positives);

cognitive load (assessed subjectively through two
independent questions), recorded on a 5-point
Likert scale and later normalized to the interval
from 0 to 10;

and the time used by the participants.

The observations are summarized in Table 1, a vi-
sualization is shown in Fig. 5. As the data clearly
show, subjects make two to three times as many errors
when using EMF Compare as compared to when us-
ing one of the other difference descriptions, although
they spend approx. 50% more time on the task. At the
same time, subjects report the highest subjective dif-
ficulty and lowest confidence when using EMF Com-
pare. Interestingly, there is no large difference in both
objective measures (errors and time) for treatments
(3A) and (3B), while substantial differences in favor
of treatment (3B) can be observed in subjective as-
sessments.

Inferences. We have tested hypothesis of the form
H; “There are no differences wrt. x in modeler per-
formance for the three difference presentation for-
mats”, where x is number of errors, difficulty, confi-
dence, and duration. As the distributions are strongly
skewed, we used the Wilcoxon test. Despite the small
number of replies in some categories, there are some
significant results as shown in Table 2. We calculate

45

MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

Table 1: Observations in our experiment: Confidence and
Difficulty are normalized to a scale 0..10, time is in seconds;
Treatments are EMF Compare (1), Table (3A), and Prose
(3B).

Table 2: Results of testing hypotheses “There is no differ-
ence in modeler performance for the change presentations
of EMF Compare vs. our approach” for different measure-
ments, with p-value of a one-tailed Wilcoxon test and Co-
hen’s d, showing large effect size.

TREATMENT (1) (3A) (3B)
H(s) H(s) H(s)
ERRORS 42(20) | 1.2(0.7) | 1.8(1.6)
CONFIDENCE | 4.0(1.8) | 3.8(1.0) | 5.3(1.8)
DIFFICULTY 6.3(1.3) | 5.8(15) | 45(15)
TIME 947 (348) | 640 (56) | 636 (390)

Treatments ~ Measurements

10 1000
9 \ 900
8 \ 800
7 \‘ 700
6 600
5 r 500
4 A - 400
3 4 - 300
2 A I 200
1 4 - 100
0 - -0
EMF Compare Table Prose
(1) (3A) (3B)
EEErrors [JConfidence WM Difficulty e=@m»Time

Figure 5: Observations of the controlled experiment.

the effect size as Cohen’s d for the significant results
and find large effect sizes.

Overall, we conclude that treatment (1) — using
EMF Compare to represent model differences — is
significantly inferior to both novel methods presented
in this paper. The data are not as clear when distin-
guishing between treatments (3A) and (3B), though.
Follow-up interviews revealed, that some subjects
were confused by the sequence in which the differ-
ences were presented. In particular, treatment (3A)
accidentally presented changes in a more intuitive
way than treatment (3B). As one subject put it: “The
table is better...I don’t have to jump around”. Simi-
larly, the prose presentation can be improved by pro-
viding more context to a given change. One partic-
ipant commented that “locating the elements [in the
diagram] takes too much time”. We conclude that
there is room for improvement that would likely im-
pact on the findings reported here.

Threats to Validity. There are several potential
threats to validity. We eliminated bias through the ex-

46

MEASURE / TREATMENTS | p d
ERRORS 1 s3a | 0016 (9| 0.155
DiFFIcuLTY ﬂ::gg 8:828(*) 1282
CONFIDENCE ¢ 35| g3
e L o

perimenter by assigning the tasks randomly, provid-
ing only written instructions, and asked the subjects
to fill in and return the questionnaires anonymously.
We eliminated bias through learning effects by pre-
senting all task permutations roughly the same num-
ber of times; any learning effects are canceled out this
way.

Bias through unrepresentative population sample
is controlled by a relatively large sample size (n = 25)
and by using three disjoint, relatively different pop-
ulations. All of the subjects are representative in
the sense that they are comparable to junior software
developers in the industry in terms of their exper-
tise. Observe that cultural bias can safely be excluded
since the participants came from more than 15 dif-
ferent (western) countries. Likewise, using class dia-
grams might be criticized as not representative for all
of UML. Indeed, collateral observations lead us to be-
lieve that different types of model might require very
different types of descriptions. However, class models
are by far the most commonly used of all UML dia-
grams, as Dobing and Parsons have repeatedly shown
(see e.g., (Dobing and Parsons, 2006)).

Another potential source of bias is the measure-
ment procedure, in particular wrt. cognitive load mea-
sures. We have taken two different measurements
that can be understood as aspects of cognitive load
(cf. (Paas et al., 2003)). Both of these measurements
show the same effect, though to varying degrees. Us-
ing subjective assessments rather than objective mea-
sures such as skin conductivity or pupillary dilatation
is justified by the high correlation between subjective
and objective assessments of cognitive load (cf. (Go-
pher and Braune, 1984)). Finally, the task formula-
tion could bias the outcome. However, the task was
presented in mostly visual form with no reference to
difference formats, with only very generic and brief
textual instructions.

Making Sense to Modelers - Presenting UML Class Model Differences in Prose

7 RELATED WORK

There are mainly two approaches to presenting model
differences, both of which are primarily visual. On
the one hand, model differences may be visualized
by color-highlighting different change states in the
diagrams used for presenting the model (see e.g.
(Girschick, 2006)). While initially quite appealing,
this approach has some severe limitations. First, us-
ing colors to differentiate element status is limited by
the number of colors humans effectively (i.e.: pre-
attentively) distinguish in a diagram. Long-standing
research in psychophysics informs us that this limit
is at five different colors (Bertin, 1981). Second, the
relatively wide-spread occurrence color vision defi-
ciencies limits the effectiveness of this approach (up
to 10% of the western male popultion have partial or
total color blindness). Third, only those changes can
easily be represented by color highlighting that affect
elements presented in some diagram. Changes to the
model structure, say, or removal of hidden model ele-
ments (which is frequently the case for model clones)
have to be presented in different ways. Finally, even
those model changes that are presented in a diagram
might be difficult to present when they affect more
than one diagram. For instance, consider the changes
done to a model as part of the rework assignment af-
ter a model review: this is likely to be spread out all
over the model and over several diagrams of different
types.

On the other hand, model differences may be vi-
sualized by side-by-side presentations of containment
trees of models, possibly enhanced by color coding
or connecting lines for movements (see e.g. the treat-
ment in EMF Compare). This way, some of the lim-
itations inherent in the first approach are avoided: is-
sue relating to color vision are less important or can
be neglected altogether. Also, all changes can be dis-
played uniformly, whether the elements affected are
presented in a set of diagrams, a single diagram, or
no diagram at all. However, this approach does not
offer a satisfactory solution for large change sets: if
a model difference results in a large number of low
level changes, modelers can easily be overloaded by
the amount of information, resulting in confusion and
errors.

8 SUMMARY & RESULTS

In order to overcome problems with existing model
differencing approaches, we propose a new approach
to difference computation and presentation in this pa-
per. The difference computation and presentation we

propose here has been developed in a series of papers
(see (Storrle, 2007b; Storrle, 2007a; Storrle, 2012)).
The current paper contributes numerous small im-
provements such as a better formalization of the do-
mains and algorithms, implementation, and perfor-
mance evaluation. The main contribution, however,
are the qualitative study to explore modelers’ under-
standing of changes, and the controlled experiment to
validate our approach.

These studies provide strong evidence to support
our hypothesis that a textual model difference presen-
tation can be as effective or even more effective than
the model difference presentation provided by EMF
Compare. Follow-up interviews reveal, that there is
further potential for improving the difference presen-
tations. We expect these to yield even clearer results
when testing.

REFERENCES

Bertin, J. (1981). Graphics and Graphic Information- Pro-
cessing. Verlag Walther de Gruyter.

CVSM Bibliography (2012). Bibliography on Compar-
ison and \ersioning of Software Models. main-
tained by the SE group at the University of
Siegen, Germany, http://pi.informatik.uni-siegen.de/
CVSM/cvsm_bibliography.html, last visited Septem-
ber 19th, 2012.

Dobing, B. and Parsons, J. (2006). How UML is used. Com.
ACM, 49(5):109-113.

Girschick, M. (2006). Difference detection and visual-
ization in UML class diagrams. Technical Report
TUD-CS-2006-5, TU Darmstadt.

Gopher, D. and Braune, R. (1984). On the psychophysics
of workload: Why bother with subjective measures?
Human Factors, 26(5):519-532.

Kuhn, A., Murphy, G. C., and Thompson, C. A. (2012).
An exploratory study of forces and frictions affect-
ing large-scale model-driven development. In France,
R. B., Kazmeier, J., Breu, R., and Atkinson, C., edi-
tors, Proc. 15th Intl. Conf. Model Driven Engineering
Languages and Systems (MODELS), pages 352-367.
Springer Verlag. LNCS 7590.

Ohst, D., Welle, M., and Kelter, U. (2003). Differences
between versions of UML diagrams. In Proc. 3rd Eur.
Software Engineering Conf. 2003 (ESEC’03), pages
227-236.

Paas, F., Tuovinen, J. E., Tabbers, H., and Van Gerven, P. W.
(2003). Cognitive Load Measurement as a Means to
Advance Cognitive Load Theory. Educational Psy-
chologist, 38(1):63-71.

Schipper, A., Fuhrmann, H., and Hanxleden, R. v. (2009).
Visual Comparison of Graphical Models. In Proc.
14th IEEE Intl. Conf. Engineering of Com plex Com-
puter Systems, pages 335-340. IEEE.

Storrle, H. (2007a). A formal approach to the cross-
language version management of models. In Kuz-

47

MODELSWARD 2013 - International Conference on Model-Driven Engineering and Software Development

niarz, L., Staron, M., Systé, T., and Persson, M., edi-
tors, Proc. 5th Nordic Ws. Model Driven Engineering
(NW-MODE’07), pages 83-97. Blekkinge Tekniska

Hgskolan.
Storrle, H. (2007b). An approach to cross-language
model versioning. In Kelter, U., editor, Proc.

WSs. Versionierung und Vergleich von UML Modellen
(VVUU’07). Gesellschaft fir Informatik. appeared in
Softwaretechnik-Trends 2(27)2007.

Storrle, H. (2011a). Towards Clone Detection in UML Do-
main Models. J. Software and Systems Modeling. (in
print).

Storrle, H. (2011b). VMQL: A Visual Language for Ad-
Hoc Model Querying. J. Visual Languages and Com-
puting, 22(1).

Storrle, H. (2012). Making Sense of UML Class Model
Changes by Textual Difference Presentation. In
Tamzalit, D., Schtz, B., Sprinkle, J., and Pierantonio,
A., editors, Proc. Ws. Models and Evolution (ME),
pages 1-6. ACM DL.

Wenzel, S. (2008). Scalable visualization of model differ-
ences. In Proceedings of the 2008 international work-
shop on Comparison and versioning of software mod-
els, pages 41-46. ACM.

48

