
Modelling and Enterprises
The Past, the Present and the Future

Vinay Kulkarni1, Suman Roychoudhury1, Sagar Sunkle1, Tony Clark2 and Balbir Barn2
1Tata Consultancy Services, Pune, India

2Middlesex University, London, U.K.

Keywords: Modelling, Meta Modelling, Model-Driven Development, Enterprise Systems, Adaptation, Analysis,
Simulation.

Abstract: Industry has been practicing model-driven development in various flavours. In general it can be said that
modelling and use of models have delivered on the promises of platform independence, enhanced
productivity, and delivery certainty as regards development of software-intensive systems. Globalization
market forces, increased regulatory compliance, ever-increasing penetration of internet, and rapid advance
of technology are some of the key drivers leading to increased business dynamics. Increased number of
factors impacting the decision and interdependency amongst the key drivers is leading to increased
complexity in making business decisions. Also, enterprise software systems need to commensurately change
to quickly support the business decisions. The paper presents synthesis of our experience over a decade and
half in developing model-driven development technology and using it to deliver several business-critical
software systems worldwide.

1 INTRODUCTION

Business applications typically conform to a layered
architecture wherein each layer encapsulates a set of
concerns and interfaces with adjoining architectural
layers using a well-defined protocol. Typically, the
architectural layers are wired together by
middleware infrastructure that supports message
passing in a variety of architectures such as
synchronous, asynchronous, publish-subscribe etc.
As a result, developing a distributed application
demands wide-ranging expertise in distributed
architectures and technology platforms which is
typically in short supply. Large size of application
further exacerbates the problem. Moreover,
documenting critical design decisions is always
sacrificed at the altar of delivery deadlines.
Therefore maintenance of such systems becomes a
nightmare especially when some key members have
to leave the project or have to revisit a part of the
system that have not received attention for a long
time (Naur, 1985).

To address some of the challenges mentioned
above, we have been applying MDE techniques for
developing database-intensive enterprise systems
using high-level models (Kulkarni and Reddy,

2008). These models capture some of the critical
design decisions along multiple dimensions namely
functionality, technology and architecture. A set of
code generators transform these high-level models
into low-level implementation encoding the various
design decisions suitably. Thus, models help to shift
the focus of application development from code to a
higher level of abstraction promising enhanced
productivity and quality.

In the remaining part of the paper, we begin by
taking a look at the extent to which modelling is
practiced in enterprises today and various uses these
models are put to. We then discuss what sorts of
models will be required to meet the needs of future
enterprises and what uses can they be put to. Finally
we conclude by presenting an analysis of key
investigations necessary for realizing a model-driven
enterprise.

2 THE PAST

Models-as-pictures has probably been the most
common and widespread use of modeling techniques
in enterprises. Here, models provide a common
language for bridging business domain and software

95Kulkarni V., Roychoudhury S., Sunkle S., Clark T. and Barn B..
Modelling and Enterprises - The Past, the Present and the Future.
DOI: 10.5220/0004310700950100
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 95-100
ISBN: 978-989-8565-42-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

development worlds (Hailpern and Tarr, 2006).
Models-as-high-level-specifications has recently
witnessed increased following among practitioners
(Hailpern and Tarr, 2006); (Hutchinson et al., 2011).
Multiple variants of this usage are noticed, for
instance, Models are automatically transformed to
derive partial implementation to be taken to
completion using code-centric development
processes (known as code completion) with models
forgotten hereafter or maintained so that changes
introduced during code-completion can be taken
back automatically to models (known as round-trip-
engineering) (Medvidovic et al., 1999); and
complete implementation is derived from models
through model-transformation with models
remaining primary SDLC artefacts (Kulkarni and
Reddy, 2003). Models-as-executable-artefacts is the
least common of all usages and that too in niche
domains of life-critical systems (Rumpe, 2004).

Enterprises use IT systems principally to obtain
mechanical advantage through automation of
repetitive processes/tasks. As enterprises have
traditionally valued stability, IT systems have been
designed/architected so as to result in low
maintenance costs. The underlying assumptions
being: requirements of the IT system are fully
known a priori and they are unlikely to change
significantly during the lifetime of the application
(complete-knowledge-hypothesis). Change requests
are assumed to be few and far between, and each
change is assumed to have small ripple effect.
Therefore, high analysis/design cost for IT systems
is justifiable and acceptable as long as the
maintenance cost remains a tiny fraction of the
former. Under complete-knowledge-hypothesis it is
possible to know about foreseeable enough future
and encode this knowledge into the implementation
of IT systems using techniques such as
parameterization, decision look-up tables, lazy
instantiation, delayed binding etc. Thus, it shouldn’t
come as a surprise that Models-as-high-level-
specifications approach remains the most widely
adopted MDE approach by industry practice. Here,
the focus had been on coming up with modelling
languages (metamodels/DSLs etc) that are necessary
and sufficient for automatic derivation of IT system
implementation there from (France and Rumpe,
2007).

Model-based code generators compile the model
specifications into a desired implementation using
model-to-model (QVT, 2011) and model-to-text
(MOFM2T, 2008) transformations. The proven idea
of retargetable code generation helps deliver the
same model into multiple technology platforms as

long as care is taken to keep the model agnostic of
platform concerns. Moreover, model-to-model and
model-to-text transformation specification languages
enable declarative specification of a model-based-
code-generator which can either be interpreted for
code generation or execution (Kulkarni and Reddy,
2008).

3 THE PRESENT

Globalization forces and increased connectedness
have led to increased business dynamics and
shortened time-to-market windows for business
opportunities. Thus, IT systems designed for
operation in an inherently stable environment are
becoming a misfit (Truex et al., 1999). Moreover,
we discovered that no two applications, even for the
same business intent such as straight-through-
processing of trade orders, back-office automation of
a bank, automation of insurance policies
administration, etc., are identical. Though there
exists a significant overlap across functional
requirements for a given business intent, the
variations are manifold too.

Software Product Line Engineering (SPLE)
attempts to address these needs by shifting the focus
of application development from ground-up coding
to assembly of pre-defined components (Kang et al.,
1990). The idea is to identify what changes where
and when in system functionality – the what leads to
the variations, the where leads to the variation
points, and the when leads to internally consistent set
of what-to-where bindings. However, IT systems
tend to vary along multiple dimensions -
functionality, business process, extra-functional
characteristics, and implementation platform to
name only a few (Kulkarni and Reddy, 2003).
Therefore, the notion of ‘what changes where and
when’ needs to be addressed along every dimension
and then across them all at the application level. In
theory, all it means is to define Meta Object Facility
describable metamodels for each dimension but, as
of now, there is no evidence of this issue being
addressed at industry scale. In fact, modeling of/for
extra-functional characteristics is pretty much in
infancy and variability management as well as
composition concerns are yet to be properly
addressed for business processes though some work
is reported (Kulkarni and Barat, 2010) (Barat and
Kulkarni, 2011). Though feature model has become
a popular notation for describing variability (Kang et
al., 1990), there is no handle on tracing features to
application specification and/or implementation

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

96

artefacts. Ideally, feature should be a first class
concept in realizing product lines so that all software
development life cycle (SDLC) phases can be
feature-centric (and hence time- and effort-optimal)
and it should be possible to compose application
specification/implementation from feature
specification hierarchically ad infinitum (Sunkle,
2011). Enterprise IT systems constitute an ill-
defined or hard-to-be-fully-defined space. As a
result, complete-knowledge-hypothesis, the
cornerstone for SPLE, does not hold. Therefore,
there is a need to support product-line-by-evolution
as opposed to product-line-by-design (Kulkarni,
2010); (Kulkarni et al., 2012).

4 THE FUTURE

4.1 Modelling Language Engineering
Platform

From our past experience in delivering enterprise
systems we have found that no two enterprises are
exactly alike; it was not possible to meet their
functional demands - even for identical business
intent such as an order processing system for a
financial services organization, policy administration
system for an insurance organization, retail banking
system for a bank, etc., - with one software system.
In traditional code-centric approaches, it would
mean introducing suitable changes in a copy of the
implementation. In a model-driven approach, it
means introducing changes in the various models,
metamodels and the model-based code generators.
Thus, the problem of evolutionary maintenance of
application code gets transformed into evolutionary
maintenance of models, modeling languages and
model-processing infrastructure, and hence the need
for a modeling language engineering platform. For
want of space, we direct readers to (Kulkarni et al.,
2012) for details of the platform.

Much of the core technology to implement such
a platform is already available. For instance, Eclipse
can provide the backbone plug-in architecture for the
platform. Eclipse's eCore is a good starting point for
the reflexive meta metamodel. Text-based (meta)
model editors can be realized with little
modification, if at all, to the various model editors
available. OMG QVT (QVT, 2011) and OMG
MOFM2T (MOFM2T, 2008) should suffice as
specification languages for model-to-model and
model-to-text transformation respectively. Both have
many implementations available - licensed as well as
freeware variety. In OCL (OCL, 2012), there exists a

sophisticated declarative mechanism to specify
model constraints. However, it is possible to imagine
a situation where a new constraint specification
language seems appropriate. Therefore, the platform
should have the capability to define another
constraint specification and execution mechanism.

The proposed modelling language engineering
platform will provide the minimal tooling
infrastructure for improving productivity of current
MDE practitioners. Also, its existence is likely to
make MDE enthusiasts to 'take the plunge' so to say.
The high level of standardization should help
develop MDE community for and around the
proposed platform. We believe development (and
continuous maintenance) of the proposed platform is
best supported through open source community
model.

4.2 Towards Formal and Precise
Enterprise Architectural Modelling

Economic and geo-political uncertainties are putting
increasingly greater stress on frugality and agility of
enterprises. Large size and increasing connectedness
of enterprises is fast leading them to a system of
systems which is characterized by high dynamics
and absence of a know-all-oracle. Multiple change
drivers are resulting in increasingly dynamic
operational environment for enterprise IT systems,
for instance, along Business dimensions the change
drivers are dynamic supply chains, mergers and
acquisitions, globalization pressures etc., along
Regulatory compliance dimension the change
drivers are Sarbanes Oxley, HiPAA, Carbon
footprint etc., and along Technology dimension the
change drivers are Cloud, smartphones, Internet of
things etc. At the same time, windows of
opportunity for introducing a new
service/product/offering and/or for adapting to a
change are continuously shrinking. Furthermore,
business-critical nature of IT systems means the cost
of incorrect decision is becoming prohibitively high
and there is very little room for later course-
correction. Therefore it is important that we look
beyond the traditional model-based generative/SPLE
based techniques that we have been using in the past
and put more emphasis on understanding of the
target organizational environment including its
business, IT systems, and stakeholder perspectives.
In other words, model the whole enterprise. Formal
and precise enterprise architecture modelling is an
important step towards realizing this goal.

To translate business vision and strategy into
effective enterprise change by creating and

Modelling�and�Enterprises�-�The�Past,�the�Present�and�the�Future

97

communicating the models centered on business and
IT, a set of techniques are used, referred to as
Enterprise Architecture (EA) techniques (IEEE
1471, 2000). Irrespective of the architectural
methodology followed by an EA technique, there
exist a few shortcomings in current EA techniques.
Architectural artefacts in current EA techniques are
only documents used as reference material by
enterprise architects to communicate with various
stakeholders for achieving goal such as Business-IT
alignment. These models are not machine-
manipulable. An enterprise architect is supposed to
use these artefacts and his knowledge and
experience in achieving enterprise-specific goals.

None of the available EA techniques provides a
mechanism to evaluate the technique itself as it is
applied to an enterprise. Some EA frameworks
provide an assessment framework, but its use is
again dependent on the knowledge and experience of
the enterprise architect. This means that there is
really no guarantee that these techniques will lead to
correct EA.

These and other observations make clear that
applying these EA techniques to an enterprise is a
highly person dependent activity with complete
reliance on the enterprise architect’s knowledge and
experience. Furthermore, validation of goals, such as
business-IT alignment, is carried out in a blue-print
way in current EA techniques (Wagter et al., 2012).
It means that if the enterprise architect feels, based
on his knowledge and experience, that an enterprise
has been architected according to principles laid out
by these EA techniques; then goals such as business-
IT alignment have been accomplished by definition.
An enterprise may also strive for other goals such as
adaptability or cost optimality, for which no
mechanism is provided by current EA techniques to
prove that a property is satisfied across the
enterprise.

Also, the as-is state of an enterprise captured in
current EA techniques is not machine-manipulable.
The various means of architectural description rely
on the expertise of the enterprise architect to provide
a path to the desired to-be state of the enterprise
(Rolland et al., 1999). Essentially, the problem with
regards to enterprise modeling boils down to - what
help can be provided so that relatively less
experienced person will be able to function at the
level of an experienced and knowledgeable
enterprise architect in applying EA techniques to
enterprises?

4.3 Enterprise Adaptation

With enterprises having to become increasingly
dynamic, their supporting IT systems are becoming
increasingly complex. Ever-shortening window of
opportunity means supporting IT systems need to
adapt quickly. Business-critical nature of IT systems
means there is no room for an error in what should
the adaptation be and how should it be effected.
Software engineering community has been focusing
on mechanisms to support the latter, but, as of now,
the former is still the preserve of gurus. Given the
size and complexity of typical enterprises, even
experts find it difficult to determine which
adaptation would be the best response, as per the
chosen criterion, for a given set of changes.
Therefore, we strongly believe that modeling
community should focus on providing help so as to
make this problem more scientific and hence
tractable.

Ideally, the more automatically a system can
adapt, the better, but, given the nature of enterprise
IT systems, it seems hard, at least as of now, to
imagine all adaptations being automatic. Adaptation
under human supervision seems a more pragmatic
solution. Investigations on the role of software
engineering for self-adaptive systems (Cheng et al.,
2009); (Lemos et al., 2011) have emerged in the
recent past. These investigations reveal two broad
lines of attack: one applying control-theoretic ideas
of model reference / mode identification adaptive
control (Brun et al., 2009) and the other applying
adaptation techniques from biology (Brun, 2008).
Both have key dependence on the ability to sense
changes in the environment. To summarize, some of
the key questions that should be investigated to
model enterprise adaptation are: What are the
dimensions of adaptation with respect to functional
or non-functional requirements? What are the
adaptation architectures for business applications,
business processes and the context (e.g.,
Goal/Decision/Component based) (Sykes et al.,
2008)? How to design MAPE-K (Jacob, 2004)
feedback loop for Business, IT and Infrastructure
planes? How to determine the ideal adaptive
controller (i.e., control theoretic, biological or
hybrid) that is best suited for a typical business
need? Can the required Sensors interface be fully
realized using underlying middleware and operating
system level sensors augmented with
instrumentation of IT systems?

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

98

4.4 Open Issues and Possible Solution
Approaches

With regards to enterprise modelling, a key open
issue is to come up with a set of models for the
enterprise that are amenable to rigorous analysis and
simulation. Assuming, a Graph (or network)
adequately models the structural aspect of the
enterprise, the behavioural aspect can be modelled
using an event paradigm wherein nodes, as producer
and/or consumers of events, participate in publisher-
subscriber protocol. Exchange of information within
the nodes can be modelled as side-effects on a
‘global’ context and a variety of data can be
obtained through instrumentation of enterprise
system model. This leads to several interesting
questions: Can first-cut model be automatically
derived from this data? Can the desired analysis be
expressed as a set of properties, structural or
behavioural or both, of the graph? Can impact of
graph perturbations on a given property be
computed? Can the list of graph perturbations
necessary to bring a property within acceptable
value range be identified / computed?

Several results for networks with known
topology seem useful: A property for the whole
network can be computed / optimized (Nagurney,
2011); effect of perturbations such as deletion of a
node and/or link on global properties can be
computed (Nagurney, 2012); analysis support for
‘network of networks’ is claimed (Nagurney, 2012).
However, this work needs to be built further along
multiple dimensions leading to a set of questions:
How to obtain the network topology in a largely
automated manner? Can techniques pertaining to
random graph model (Erdős and Rényi, 1959);
(Barabási and Albert, 1999) suffice in arriving at
first-cut topology that can be further refined by
subject matter experts? Do agent-based ideas (Maes,
1990) help in devising an action plan so as to bring
the network back to the desired range of a given
global property after perturbation? How to simulate
‘what-if’ and ‘if-what’ business scenarios? Can
belief propagation (Kim et al., 1983) help? How to
translate inferences from analysis and simulation
into an action plan for the enterprise IT systems?

With regards to Enterprise Adaptation,
introducing MAPE-K architecture (Jacob, 2004)
across the IT systems plane seems to be a good
starting point. Presuming suitable sensors are in
place, it boils down to coming up with a way to
specify adaptation rules and mechanisms to effect
application adaptation. Event-Condition-Action
paradigm seems adequate for specifying adaptation

rules, but a key challenge is - how to ensure
adaptations are semantically correct i.e. intent-
preserving. Moreover, adaptation mechanism should
have component nature so that it is possible to
decompose application into components and
connectors both of which can be adapted
independently or in concert. Making the abstraction
first-class will help adaptation at any desired level of
granularity. There exists reasonable handle on
structural aspects of component and connector, but,
more work is required for addressing the behavioral
aspects. Plug-n-play architecture to enable open
extensibility is another topic of investigation. As
software processes are also software, application
adaptation techniques are applicable to business
processes as well (Osterweil, 1987). Therefore, the
ability to support adaptations at application as well
as business process levels seems critical for
developing dynamic business platforms (SOA,
2008).

5 CONCLUSIONS

In the past, we have embarked upon a model-driven
approach and the necessary tooling infrastructure for
development of database-centric business
applications. Our MDE endeavour has led to several
benefits such as higher productivity, uniformly high
code quality (i.e., best practices without developer
dependence) and easy retargeting to multiple
technology platforms. At present with increased
globalization and variable business dynamics, SPLE
helped us to create custom solutions for enterprises
using the notion of ‘variability’ – i.e., what changes
where and when in system functionality. However,
with highly uncertain and demanding economic
conditions in the future, enterprises would be
encouraged to investigate the concept behind
modelling an enterprise with a goal to analyse,
predict, simulate and adapt an enterprise on demand.
This paper summarized the role of modelling with
respect to enterprises looking back at our
experiences in the past to the immediate challenges
and needs of the future.

REFERENCES

Barabási, A-L., Albert, R., 1999. Emergence of scaling in
random networks. Science, American Association for
the Advancement of Science, 286, pp: 509-512.

Barat, S., Kulkarni, V., 2011. A component abstraction
for business processes. Business Process Management

Modelling�and�Enterprises�-�The�Past,�the�Present�and�the�Future

99

 Workshops 2011, pp: 301-313.
Beyond SOA: A new type of framework for dynamic

business applications - Part II, 2008
http://www.infoq.com/articles/beyond-soa-dba-part-2

Brun, Y., 2008. Building biologically-inspired self-
adapting systems - extended abstract. Software
Engineering for Self-Adaptive Systems, Springer-
Verlag, 2008.

Brun, Y., et al., 2009. Engineering self-adaptive systems
through feedback loops. Software Engineering for
Self-Adaptive Systems, Springer-Verlag, pp: 48-70.

Cheng, B., et al., 2009. Software engineering for self-
adaptive systems: a research roadmap. Software
Engineering for Self-Adaptive Systems, Springer-
Verlag, pp: 1-26.

Erdős, P., Rényi, A., 1959. On random graphs.
Publicationes Mathematicae, Volume 6, pp: 290-297.

France, R., Rumpe, B., 2007. Model-driven development
of complex software: A Research Roadmap. FOSE’07,
pp: 37-54.

Hailpern, B., Tarr, P., 2006. Model-driven development:
the good, the bad, and the ugly. IBM Systems Journal,
Volume 45 Issue 3, July 2006, pp: 451-461.

Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen,
S., 2011. Empirical assessment of MDE in industry.
ICSE 2011, pp: 471-480.

IEEE Standard 1471-2000: IEEE Recommended practice
for architectural description of software-intensive
systems.

 Jacob, B., 2004. A Practical guide to the IBM autonomic
computing toolkit.
www.redbooks.ibm.com/redbooks/pdfs/sg246635.pdf

Kang, K., Kohen, S., Hess, J., Novak, W., Peterson, A.
1990. Feature-orientation domain analysis feasibility
study. Technical Report, CMU/SEI-90TR-21,
November 1990.

Kim, J. H., Pearl, J. Bundy, A. (Ed.), 1983. A
computational model for combined causal and
diagnostic reasoning in inference systems.
IJCAI, pp: 190-193.

Kulkarni, V., Reddy, S., 2003. Separation of concerns in
model-driven development. IEEE Software 20(5), pp:
64-69.

Kulkarni, V., Reddy, S., 2008. A model-driven approach
for developing business applications: experience,
lessons learnt and a way forward, ISEC, pp: 21-28.

Kulkarni, V., Reddy, S., 2008. An abstraction for reusable
MDD components: Model-based generation of model-
based code generators, GPCE, pp: 181-184.

Kulkarni, V., Barat, S., 2010. Business process families
using model-driven techniques, Business Process
Management Workshops 2010, pp: 314-325.

Kulkarni, V., 2010. Raising family is a good practice.
FOSD 2010, pp: 72-79.

Kulkarni, V., Barat, S., Roychoudhury, S., Sunkle, S.,
2012. Model driven development – where to from
here, ISEC 2012 workshops

Kulkarni, V., Barat, S., Roychoudhury, S., 2012. Towards
Business Application Product Lines, MoDELS 2012
pp: 285-301

Lemos, R., et al., 2011. Software engineering for self-
adaptive systems: a 2nd research roadmap. Dagstuhl
Seminar,
http://drops.dagstuhl.de/opus/volltexte/2011/3156

Maes, P., 1990. Situated agents can have goals Robotics
and autonomous systems. 6, pp: 49 – 70.

Medvidovic, N., Egyed, A., Rosenblum, D., 1999. Round-
Trip Software Engineering Using UML:From
Architecture to Design and Back, 2nd Workshop on
object-oriented reengineering, Sep'99, pp: 1-8.

Nagurney, A., 2011. Supernetworks: The science of
complexity. Journal of University of Shanghai for
Science and Technology 33: (2011), pp: 205-228.

Nagurney, A., 2012. Supply chains and transportation
networks. Prepared for the Handbook of Regional
Science, 2012.

Naur, P., 1985. Programming as theory building.
Microprocessing and Microprogramming, 15(5), pp:
253 – 261.

OCL Object Constraint Language, 2012.
http://www.omg.org/spec/OCL/2.3.1/PDF

MOFM2T MOF Model to Text Transformation, 2008.
http://www.omg.org/spec/MOFM2T/1.0/PDF

QVT Query/View/Transformation, 2011.
http://www.omg.org/spec/QVT/1.1/PDF/

Osterweil, L., 1987. Software processes are software too.
ICSE '87, pp: 2-13

Rolland, C., Loucopoulos, P., Kavakli, V., Nurcan, S.,
1999. Intention based modelling of organizational
change: an experience report, EMMSAD'99.

Rumpe, B., 2004. Executable modeling with UML - a
vision or a nightmare?, www.se-
rwth.de/~rumpe/publications/ps/IRMA.UML.pdf

Sykes, D., Heaven, W., Magee, J., Kramer, J., 2008.
From goals to components: a combined approach to
self-management. SEAMS 2008, pp: 1-8.

Sunkle, S., 2011. First-class features. PhD thesis. Otto von
Guericke University Magdeburg.

Truex, D., Baskerville, R., Klein, H., 1999. Growing
systems in emergent organizations. Communications
of the ACM, Volume 42 Issue 8, Aug. 1999, pp: 117-
123.

Wagter, R., Proper E., Witte, D. A practice-based
framework for enterprise coherence. PRET, 2012, pp:
77-95.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

100

