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Abstract: This paper presents an efficient approach for integrating occlusion culling and hardware instancing. The 
work is primarily targeted at Building Information Models (BIM), which typically share characteristics 
addressed by these two acceleration techniques separately – high level of occlusion and frequent reuse of 
building components. Together, these two acceleration techniques complement each other and allows large 
and complex BIMs to be rendered in real-time. Specifically, the proposed method takes advantage of 
temporal coherence and uses a lightweight data transfer strategy to provide an efficient hardware instancing 
implementation. Compared to only using occlusion culling, additional speedups of 1.25x-1.7x is achieved 
for rendering large BIMs received from real-world projects. These speedups are measured in viewpoints that 
represents the worst case scenarios in terms of rendering performance when only occlusion culling is 
utilized. 

1 INTRODUCTION 

With the creation of Building Information Models 
(BIM), the content produced by architects and 
designers has evolved from traditional 2D-drawings 
to semantically-rich, object-oriented 3D-models. 
With all of the data available in 3D, this concept 
further facilitates the use of real-time visualizations 
in various contexts. However, as primarily created to 
describe a complete building in detail, many 3D 
datasets extracted from BIMs provides a challenge 
to manage in real-time without additional 
acceleration techniques (Steel et al., 2012). 

In this context, occlusion culling has been shown 
to provide a suitable option (Johansson and Roupé, 
2012). Given that typical building models naturally 
exhibit a lot of occlusion this is an efficient approach 
to increase rendering performance for many 
viewpoints. Still, for viewpoints where many objects 
are, in fact, visible, occlusion culling alone may not 
always be able to provide sufficiently high frame 
rates. Common examples include exterior views of 
whole building facades where the sheer number of 
draw calls, and hence CPU burden, easily becomes 
the limiting factor in terms of rendering performance 
(Wloka, 2003). 

Another characteristic of typical BIMs is the 
frequent reuse of identical building components. As 

similarity tends to reduce design, production and 
maintenance costs, use of multiple identical 
components, such as doors and windows, is common 
in any building (Sacks et al., 2004). For viewpoints 
where many objects are visible it is therefore a high 
probability that many of these objects are identical, 
albeit placed at different locations. One way to take 
advantage of this is to utilize the hardware 
instancing functionality of modern GPUs. With 
hardware instancing it is possible to render multiple 
copies of the same geometry with a single draw call, 
thereby reducing CPU-burden for scenes with much 
repetition. However, even if the reduction of draw 
calls improves performance in CPU-limited 
scenarios, the GPU still has to process all the 
instantiated geometry. As such, culling of invisible 
instances is still important to reduce overall 
workload 

This paper presents a method to integrate 
occlusion culling and hardware instancing in order 
to provide efficient real-time rendering of large 
BIMs. By using an efficient occlusion culling 
algorithm hardware instancing can be restricted to 
visible replicated objects only. For viewpoints when 
many objects are visible, hardware instancing 
complements the occlusion culling by providing an 
efficient rendering path for visible replicated objects. 
The key component to realize this is an efficient 
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dynamic hardware instancing implementation that 
takes advantage of temporal coherence and uses a 
lightweight data transfer strategy. 

2 RELATED WORK 

2.1 Occlusion Culling 

With occlusion culling the aim is to identify and 
reject occluded regions of 3D scenes in order to 
improve rendering performance. Within this 
category of acceleration techniques a vast amount of 
research has been conducted and for a general 
overview interested readers are referred to the 
surveys provided by (Cohen-Or et al, 2003) and 
(Bittner and Wonka, 2003). In essence, available 
algorithms can be classified according to whether 
they require time-consuming offline computations or 
not.  

When considering online approaches, which 
require no pre-computations, the support for 
hardware accelerated occlusion queries has provided 
a simple mechanism to detect visibility. With 
hardware occlusion queries the GPU returns the 
number of pixels that passes the depth test when 
rasterizing a given object. This way, proxy 
geometries can be used to detect occlusion before 
the actual object is rendered. However, due to the 
delayed processing in the graphics pipeline the result 
of the query is not immediately available on the 
CPU which makes an efficient implementation more 
complex. This problem was addressed with the 
Coherent Hierarchical Culling (CHC) algorithm, 
which exploits spatial and temporal coherence in 
order to reduce latency and overhead of the queries 
(Bittner et al., 2004). However, although the CHC 
algorithm works well in highly occluded scenes, 
wasted queries and unnecessary state changes makes 
it less reliable for viewpoints when many objects are 
visible. In order to reduce the number of wasted 
queries, (Guthe et al., 2006) proposed a method, 
called Near Optimal Hierarchical Culling (NOHC), 
based on a statistical model for occlusion probability 
and a hardware calibration step. Assuming proper 
hardware calibration their approach always performs 
better than view-frustum culling. In (Mattausch et 
al., 2008) an improved version of the CHC 
algorithm, called CHC++ was presented. Although 
the core ideas of the algorithm remain the same, the 
additional components introduced by CHC++ 
provide a significant improvement in rendering 
speed compared to both NOHC and CHC. Mainly, 
this was achieved by introducing batching of queries 

as a means to reduce costly state changes. 
When considering the case of rendering complex 

BIMs, the efficiency of the CHC++ algorithm has 
been recently demonstrated (Johansson and Roupé, 
2012). Compared to view-frustum culling, CHC++ 
provided significant speedups for a number of fairly 
large BIMs during both interior and exterior 
viewpoints. 

As an alternative to occlusion queries, (Hill and 
Collin, 2011) recently proposed a modern variant of 
the hierarchical z-buffer (Green et al., 1993), where 
all visibility tests are performed on the GPU. The 
state of visibility is then read-back to the CPU, so 
that un-occluded objects can be rendered in a single 
stage. However, although reported as being 
successfully used in recent computer games, the 
performance implications are still largely unknown 
for general 3D models. In addition, this approach 
requires a set of good occluders in order to initiate 
the z-buffer. 

A problem common to practically all visibility 
culling methods is that of granularity. On the one 
hand, in order to maximize culling efficiency, we 
ideally want to perform visibility determination on 
the level of granularity provided by the individual 
objects contained in a 3D scene. On the other hand, 
for viewpoints with many visible objects, this is not 
an optimal organization of the 3D scene, considering 
the aim of keeping a low draw call count (Wloka, 
2003). In this case, reduction of draw calls can often 
be addressed by geometry batching, where spatially 
coherent objects (with similar material properties) 
are combined into larger ones during a pre-process 
(Buchholz and Döllner, 2005). However, even if this 
process enhance rendering performance for certain 
viewpoints, it potentially reduces culling efficiency, 
and hence, performance, for other viewpoints. 
Besides requiring a dedicated pre-process, geometry 
batching also complicates the use of additional 
acceleration techniques applied per-object, such as 
level-of-detail (LOD). 

The proposed method addresses this situation by 
performing implicit geometry batching. By taking 
advantage of hardware instancing capabilities of 
modern GPUs, culling can be performed at fine 
granularity at the same time as the amount of draw 
calls is reduced for viewpoints with many visible 
objects. 

2.2 Hardware Instancing 

For 3D scenes where many individual objects have 
to be rendered it is not uncommon that the large 
number of draw calls (and related state changes and 
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buffer binds) becomes the limiting factor in terms of 
performance (Wloka, 2003). Given a large amount 
of replicated geometry, hardware instancing is one 
way to address this problem. The idea behind this 
concept is to use a single draw call when rendering 
multiple copies of the same geometry. By using a 
previously uploaded buffer or texture object 
containing per-instance data (i.e. transformation 
matrix), each instance can then be transformed to its 
correct location on the GPU. Typical applications 
that can benefit from hardware instancing include 
rendering of crowds and vegetation, which usually 
require a large number of instances at the same time 
as there exists much repetition. In (Park et al., 2009), 
(Dudash, 2007), and later (Ramos et al., 2012), 
examples on how to render several thousands of 
animated characters in real-time with the use of 
hardware instancing is presented. Recently, (Bao et 
al., 2012) presented a GPU-driven framework for 
rendering large forests. Hardware instancing, 
together with level-of-detail selection on the GPU, 
allow them to render several thousands of detailed 
trees, with shadows, in real-time.    

However, even if hardware instancing reduces 
the number of draw calls, and hence CPU-burden, 
the GPU still have to process all the geometry that is 
instantiated. Without any type of visibility culling, 
this may lead to unnecessary high GPU-burden for 
3D scenes with many instances. In order to limit the 
number of instances, (Park et al., 2009) and (Bao et 
al., 2012) perform view-frustum culling on the GPU.  

Still, for highly occluded scenes, such as 
Building Information Models, view-frustum culling 
only allows a subset of the invisible geometry to be 
rejected. The proposed method addresses this 
problem by an efficient dynamic hardware 
instancing implementation. By taking advantage of 
temporal coherence together with a lightweight data 
transfer approach, occlusion culling can be 
performed at object level at the same time as 
replicated geometry is efficiently rendered using 
hardware instancing. 

3 THE IFC BUILDING MODEL 

For the majority of BIM authoring tools the 
underlying data-model closely resembles that of the 
Industry Foundation Classes (Eastman et al., 2011). 
Instead of pure geometrical entities, this scheme 
represents a building or facility in terms of its 
individual building components, such as walls, 
doors, windows and floors. For each component a 
visual representation is then provided in the form of 

one or several geometrical entities (i.e. triangular 
meshes). When considering instancing, this concept 
is performed at the building component level. As an 
example, all instances of a specific window type will 
be considered a unique building component but 
share the same visual representation. For the 
implementation and tests presented in this paper, no 
additional processing of the input 3D-data has been 
performed except organizing it in a bounding 
volume hierarchy. In this hierarchy, leaf nodes 
represent the individual building components. As 
such, culling is performed at a granularity 
corresponding to the individual building 
components. However, hardware instancing is 
performed at a level corresponding to the 
geometrical entities that represent each component.  

For the rest of this paper replicated components 
that are suitable for hardware instancing are referred 
to as instanceable. The specific geometry being 
instanced is referred to as the geometry reference. 

4 ALGORITHM OUTLINE 

The proposed method consists of three main steps. 
In order to give an overview of the algorithm all 
three steps are briefly discussed below. 

Determine Visible Instances. Using an efficient 
occlusion culling system, we inherently have access 
to the set of potentially visible objects in a certain 
frame. Based on the assumption that hardware 
instancing is the most efficient way to render 
multiple copies of the same geometry, this set is 
searched for replicated components. These objects 
are then scheduled for rendering with hardware 
instancing in the next frame. 

Upload Required Data to GPU. Given a set of 
visible objects to be rendered using hardware 
instancing, per-instance data need to be uploaded to 
the GPU. To reduce per-frame data transfer, an 
indexed approach is used: During scene loading, 
transformation matrices for all potential instances 
are uploaded to the GPU.  During rendering, only a 
single index per instance needs to be transferred in 
order to locate the corresponding transformation 
matrix in GPU memory. Thus, at the end of each 
frame, data in the form of indices is uploaded to the 
GPU for processing during the next frame. 

Render using Hardware Instancing. At the 
beginning of each frame opaque instances collected 
during the previous frame are rendered using 
hardware instancing. However, for semi-transparent 
geometry hardware instancing introduces 
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complexities. As correct depth ordering no longer 
can be maintained, an order-independent 
transparency rendering technique (Everitt, 2001) is 
needed to support hardware instancing of semi-
transparent geometry. 

5 INTEGRATING OCCLUSION 
CULLING AND HARDWARE 
INSTANCING 

As outlined, the general idea behind the proposed 
method is to dynamically select candidates for 
hardware instancing, based on visibility knowledge 
provided by the occlusion culling system. For the 
purpose of this, any efficient occlusion culling 
algorithm can be used as long as it provides 
visibility classification for all objects in a scene. For 
the implementation and tests presented in this paper 
the latest version of the Coherent Hierarchical 
Culling algorithm, CHC++ has been used. This 
choice is based on the simplicity of the algorithm 
and the fact that it has already been proven to work 
well when applied to large Building Information 
Models. As such, it provides a good basis for further 
enhancements. In the followings subsections the 
details of the algorithm is presented, starting with a 
review of the hardware instancing API together with 
important aspects of the CHC++ algorithm. 

5.1 Hardware Instancing API 

Taking OpenGL as an example, the instancing API 
extends the conventional draw call by exposing the 
option to specify the number of times a particular 
batch of geometry should be rendered. In the vertex 
shader an internal counter (gl_InstanceID) is then 
accessible which advances for each iteration. Using 
the internal counter as an index, the per-instance 
transformation matrix can then be sourced from any 
type of previously uploaded array, texture or buffer 
object. However, the arrangement of per-instance 
data must reflect the fact that the internal counter 
advances with a fixed step. In order to render a 
specific set of instances with a single draw call, the 
per-instance data must be arranged sequentially.  

5.2 CHC++ 

The original CHC algorithm takes advantage of 
spatial and temporal coherence in order to provide 
efficient scheduling of hardware occlusion queries. 
The state of visibility from the previous frame is 

used to initiate queries in the current frame 
(temporal coherence) and by organizing the scene in 
a hierarchical structure (i.e. bounding volume 
hierarchy) it is possible to test entire branches of the 
scene with a single query (spatial coherence). While 
traversing a scene in a front-to-back order, queries 
are only issued for previously invisible interior 
nodes and for previously visible leaf nodes of the 
hierarchy. The state of visibility for previously 
visible leaves is only updated for the next frame and 
they are therefore rendered immediately (without 
waiting for the query results to return). The state of 
visibility for previously invisible interior nodes is 
important for the current frame and they are not 
further traversed until the query results return. By 
interleaving the rendering of (previously) visible 
objects with the issuing of queries, the algorithm 
reduces idle time due to waiting for queries to 
return. 

Although the core ideas remain the same, 
CHC++ introduced several optimizations which 
make it perform very well even in situations with 
low occlusion. Most notably, the improved version 
addressed the problem of redundant state changes 
due to the interleaved rendering and querying. 
Instead of directly querying a node, it is appended to 
a queue. When this queue reaches a certain size, the 
rendering state is changed to querying and an 
occlusion query is issued for each node in the queue. 
In addition, this mechanism allows an application to 
perform material sorting before rendering visible 
objects in order to reduce costly API calls. 

In order to reduce the number of queries, the 
original CHC algorithm introduced an important 
optimization based on temporal coherence - A 
visible object is assumed to stay visible and will 
only be tested for visibility again after a user-
specified amount of frames (typically 10-20). This 
optimization, together with the assumption that 
hardware instancing is the most efficient way to 
render multiple copies of the same geometry, is the 
entry-point for the proposed method. When an 
object suitable for instancing is found visible, it is 
scheduled to be rendered using hardware instancing 
in the following frame. 

5.3 Data Preparation 

In a static situation, where the same set of instances 
should be rendered every frame, per-instance data 
can be uploaded to GPU-memory once, and then, 
during subsequent draw calls, be fetched in the 
vertex shader based on the value of the internal 
instance counter. In the proposed approach, 
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however, a dynamic behaviour is needed in order to 
support per-frame selection of which geometry to 
render using hardware instancing. As per-instance 
data needs to be arranged sequentially in order to 
facilitate a single draw call per geometry reference, 
this require complete or partial updates of the shared 
buffer or texture every frame. In order to optimize 
this process an indexed approach is used, as 
explained visually in Figure 1. During scene loading, 
transformation matrices for all instanceable objects 
are collected and placed in a single array, denoted 
M. The location of each instance’s transformation 
matrix within this array is recorded for later use. 
During rendering, a single index is then needed to 
locate each instance’s transformation matrix within 
M. For a 4x4 transformation matrix, this approach 
effectively reduces the required data transfer by a 
factor of 16. Both the index array (I) and matrix 
array (M) are implemented as a Texture Buffer 
Objects. 

 

Figure 1: An array of indices (I) is used to locate each 
instance’s transformation matrix, encoded in a single, 
shared array (M). 

5.4 Collecting Visible Instances 

Depending on the occlusion culling algorithm of 
use, the state of visibility for objects in a scene 
might be known at different stages. For instance, the 
GPU-based implementation of the Hierarchical Z 
Buffer proposed by (Hill, 2011), resolves visibility 
for all objects in a single phase in the beginning of a 
frame. The CHC++ algorithm, on the other hand, 
distributes this process by interleaving the rendering 
of objects with the issuing of queries, effectively 
delaying the complete visibility knowledge of a 
scene towards the end of the frame. In order to cope 
with different implementations and to provide 
additional time for the required data transfer, the 
rendering of instanceable geometry is deferred by 
one frame. Thus, an object detected visible in frame 
n will be scheduled for rendering using hardware 
instancing in frame n+1. Figure 2 presents the 
modifications to the original CHC++ algorithm that 
is needed in order to implement this behavior. When 
a node of the spatial hierarchy is found visible, the 

TraverseNode function is called for its children (For 
a complete picture of the algorithm the reader is 
referred to the original CHC++ paper). During 
traversal of an instanceable leaf node the algorithm 
first checks if it is scheduled for rendering using 
hardware instancing in the current frame. If this is 
not the case it is rendered in a conventional way by 
adding it to a render queue. In a second step, it is 
scheduled for rendering using hardware instancing 
in the next frame. 

TraverseNode(N) { 
  if isLeaf(N) { 
+   if isInstanceable(N) { 
+     if N.nextInstFrameId != frameId { 
+       Render(N); 
+     } 
+     EnqueueForInstInNextFrame(N); 
+     N.nextInstFrameId = frameId + 1; 
+   } 
+   else { 
      Render(N);     
+   } 
  } 
  else { 
    DistanceQueue.PushChildren(N); 
    N.IsVisible = false; 
  } 
}; 

Figure 2: Pseudo-code for the collection of visible 
instances. Difference to the CHC++ algorithm is marked 
in blue. 

5.5 Data Transfer 

At the end of frame n, a set of objects suitable for 
rendering using hardware instancing in frame n+1 
has been collected. As illustrated in Figure 3, this set 
is sorted by geometry reference to generate a single 
array of indices (I) to upload to GPU memory. Thus, 
for m unique geometry references the array will 
contain m regions of indices. Within each region, the 
array is populated with indices corresponding to the 
location of each instance’s transformation matrix in 
M. While generating the array the offset to each 
specific region is also recorded. This offset is needed 
during rendering in order to use a single indices 
array for all geometry references (Section 5.6). 

During this stage, before the actual upload, the 
minimum number of instances per geometry 
reference is also considered. Geometry rendered 
with hardware instancing uses a more complex 
vertex shader and require additional data transfer, 
which itself introduce a performance penalty. In 
order to gain an increase in performance the 
reduction of draw calls must reflect this. If the 
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number of collected instances per geometry 
reference is below a user-defined parameter, NImin, 
they are not scheduled for instancing in the next 
frame. Instead the parameter nextInstFrameId 
(Figure 2) is set to zero on the corresponding objects 
in order to render them using a non-instanced 
approach in the next frame. For the different BIMs 
evaluated in this paper (Section 6), empirical tests 
have shown that a minimum requirement of three (3) 
instances per geometry reference is a suitable 
choice. However, ultimately, this parameter should 
be set per geometry reference, taking number of 
triangles into account. 

 

Figure 3: Collected instances (top) are sorted by geometry 
reference (middle) to generate the final index array and 
corresponding offsets (bottom). The numbers (indices) 
corresponds to the location of each instance’s 
transformation matrix in M. 

5.6 Rendering 

As based on hardware occlusion queries, the CHC++ 
algorithm requires that visible objects are rendered 
before occluded ones in order to properly detect 
occlusion.  Thus, in order to preserve the state of 
visibility, opaque instances are rendered using 
hardware instancing in a single single step at the 
beginning of each frame. However, if the visibility 
determination system is separated from the 
conventional rendering, this step can be performed 
at a later stage. 

The actual rendering of all collected instances is 
performed by a single draw call per geometry 
reference. During this stage, the transformation 
matrix array (M) and indices array (I) are bound to 
the context. In Figure 4, GLSL code fragments from 

the vertex shader are shown. Here, the internal 
counter (gl_InstanceID) is used to fetch the current 
index from the indices array (I). This index is then 
used to locate the correct transformation matrix in 
the transformation matrix array (M). However, when 
invoking an instanced draw call, the internal counter 
will start its iteration from zero (0). As a single array 
is used for all indices an offset is required to define 
which region to fetch values from. This offset is 
recorded during the actual forming of the global 
indices array (Section 5.5), and during rendering it is 
supplied as a uniform per geometry reference. 
 
uniform samplerBuffer M; //Matrices 
uniform samplerBuffer I; //Indices 
uniform int _offset; 
 
void main() 
{ 
   //Fetch index by offset 
   int id = gl_InstanceID + _offset; 
 
   int idx =  
   int(texelFetchBuffer(I,id).x); 
 
   mat4 OT =  
   mat4(texelFetchBuffer(M,idx*4), 
        texelFetchBuffer(M,idx*4+1), 
        texelFetchBuffer(M,idx*4+2), 
        texelFetchBuffer(M,idx*4+3)); 
  
   gl_Position =   
   gl_ModelViewProjectionMatrix *  
   OT * gl_Vertex; 
 
   //------------------------------- 
   //Other per-vertex calculations. 
   //-------------------------------  
  
}; 

Figure 4: Vertex shader used for the instanced rendering 
path (GLSL-code). 

5.6.1 Semi-transparent Geometry 

Using conventional methods, semi-transparent 
geometry is rendered after opaque objects, in a back-
to-front order, using alpha blending (Akenine-
Möller et al., 2008). With hardware instancing 
correct order among transparent objects can no 
longer be preserved and, consequently, an order-
independent transparency rendering technique is 
needed. A common technique within this category of 
algorithms is depth peeling (Bavoil, 2008), where 
transparent fragments are sorted by rendering the 
geometry several times, peeling off one transparent 
layer at a time. However, although accurate, the  
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Figure 5: Transparency rendering modes: Depth peeling (left), Weighted average (middle) and sorted by object (right). 

performance penalty of depth peeling is rather high 
which makes it unsuitable in practice. As a 
performance efficient alternative, a single pass 
approximation of depth peeling is suggested in 
(Bavoil, 2008). The technique, referred to as 
weighted average transparency, calculates the final 
color as the alpha-weighted sum of colors divided by 
the average alpha. When blending pixels of equal 
color and transparency, this technique produces 
correct results. However, when colors and 
transparency values differ too much, the result of the 
weighted average technique starts to deviate in terms 
of correctness compared to depth peeling. Still, 
despite being an approximation, it works very well 
for typical building models. As the use of 
transparency and color for windows and glazed 
structures is usually coherent within a building, the 
technique produces plausible results. Even in 
situations when many transparent layers are visible, 
the difference between the correct and the 
approximate method is hard to detect, as seen in 
Figure 5.  

In the proposed method, both instanced and non-
instanced semi-transparent geometry are rendered in 
a final stage each frame. For the implementation and 
tests the weighted average transparency technique 
has been primarily used. However, in the results 
section, the findings in terms of performance for the 
depth peeling approach are also reported. 

6 RESULTS 

The proposed method has been tested on four 
different Building Information Models. The models 
were created in Autodesk Revit 2012, and all four 
represents planned or existing buildings (see Table 2 
and 3 for detailed information). For all of the tests an 
Intel Core i7 3.07 GHz CPU and an Nvidia GeForce 
570 GTX graphics card was used. The CHC++ 
occlusion culling algorithm was used together with a 
bounding volume hierarchy built according to the 
surface area heuristics (Macdonald, 1990), and the 
screen resolution was set to 1280 x 720. Unless 

otherwise stated, the following parameters were 
used: maximum triangle count for instancing 
Tmax=3000, assumed visible frames Nav=20, 
minimum number of instances NImin=3. The 
weighted average technique (WA) was used for 
rendering semi-transparent geometry when hardware 
instancing (HI) was activated. Without instancing 
activated semi-transparent geometry was rendered 
using a conventional sort-by-object approach 
(SORT). However, for the Hotel model the 
performance numbers with depth peeling (DP) is 
also presented. 

Table 1: Frame times (in ms) for view-frustum culling 
(VFC) and occlusion culling (CHC++) for one exterior 
and one interior viewpoint for each of the four test models. 

Scene 
INTERIOR EXTERIOR 

VFC CHC++ VFC CHC++ 
Library 13.1 1.9 17.2 7.5 

Hospital 26.6 1.1 37.8 18.8 

Student 
Housing 

40.1 1.2 68.2 11.3 

Hotel 56.3 1.4 130.2 47.8 

The CHC++ algorithm has previously been 
found to perform very well compared to only using 
view frustum culling for typical BIMs. These 
findings were confirmed for all of the test-models. 
Table 1 presents a comparison of frame times for 
one interior (highly occluded) and one exterior 
(same as seen in the screenshots in Table 2 and 3) 
viewpoint for each of the four models. As can be 
seen, the CHC++ algorithm provides a significant 
speedup, especially for the interior viewpoints. 
Given this, subsequent tests were focused on the 
worst case scenarios provided by the test models - 
viewpoints when many objects are visible. In such 
situations the sheer number of objects that has to be 
rendered becomes the limiting factor in terms of 
performance. For all test models these scenarios 
were found in exterior viewpoints and a set of 
camera paths were constructed accordingly. These 
walkthroughs represents the worst case scenarios in 
terms of rendering performance when only occlusion 
culling was enabled. Table 2 (left) presents the  
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Table 2: Statistics for three of the test models and frame times for the proposed approach with occlusion culling (CHC++), 
hardware instancing (HI) and weighted average transparency (WA) compared to occlusion culling (CHC++) and 
conventional sort-by-object transparency (SORT) for the predefined walkthroughs. 

LIBRARY HOSPITAL STUDENT HOUSING 

 

3,291,869 triangles 1,561,972 triangles 10,857,175 triangles 

7,312 objects 18,530 objects 17,666 objects 

11,195 geometry batches 22,265 geometry batches 33,455 geometry batches 

 

 
frame times with and without hardware instancing 
enabled for the Library model. This model features a 
large glazing façade and consequently, many interior 
objects are visible at the same time when viewed 
from the outside. Here, the camera path provides an 
orbital camera movement from one side of the 
building to the other, while facing the center of the 
building. Compared to only using occlusion culling, 
the proposed method provides an average speed-up 
of 1.7x during this walkthrough. For the Hotel 
model the results are similar (Table 3). However, in 
this case the number of visible objects is mainly a 
result of a vast façade composed by many replicated 
windows, curtain wall elements and façade stones. 
The walkthrough sequence is similar as for the 
Library model, however, in the end interior, more 
occluded regions of the building are also visited. 
During these viewpoints the number of visible 
instanceable objects is low and, hence, few or none 
of them are rendered using hardware instancing. 
Still, in such viewpoints the occlusion culling 
system alone is able to deliver high performance and 
the important thing to note is that the proposed 
method only introduces a slight overhead, noticeable 
only in terms of relative numbers. For the non-
interior parts of the walkthrough sequence an 
average speed-up of 1.7x was achieved with 
hardware instancing.  

Table 3 also presents the performance results 
with depth peeling (DP). This approach guarantees a 
correct results but the performance penalty is higher 
compared to the weighted average technique. 
Nevertheless, compared to conventional sorting 
(SORT) a 1.5x speed-up was still achieved with 
instancing. On the other hand, when depth peeling 
was used in both cases (instanced and non-
instanced) the average speed-up was almost 2x.  

Figure 6 presents the number of draw calls with 
and without hardware instancing enabled for the 
Hotel model. This plot reveals the source of the 
performance gain. As can be seen, the numbers of 
draw calls are greatly reduced and, as a 
consequence, the performance is increased. 

Table 2 also presents the performance numbers 
for the Hospital (middle) and Student Housing 
model (right). For the Hospital model an average 
speed-up of 1.6x is achieved with instancing. For the 
Student Housing model the performance gain of the 
proposed method is more moderate. Although an 
average speed-up of 1.25x is achieved, it is less than 
expected considering the model still has a fairly 
large amount of replicated components. However, 
compared to the other models, the animation 
sequence for the Student Housing model does not 
feature viewpoints equally beneficial in terms of 
instancing. First, the relative amount of visible 
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replicated geometry is not as high and, second, the 
number of different geometry references is higher. 

7 CONCLUSIONS 

This paper has presented a simple, yet efficient 
approach for integrating occlusion culling and 
hardware instancing. Compared to only using 
occlusion culling, average speed-ups of 1.25x – 1.7x 
were achieved for all test models in viewpoints 
where many objects are visible. Without dynamic 
hardware instancing activated, these viewpoints 
represents the worst case scenarios in terms of 
rendering performance. 

Table 3: Statistics for the Hotel model and frame times for 
the proposed approach with occlusion culling (CHC++), 
hardware instancing (HI) and weighted average 
transparency (WA) compared to occlusion culling 
(CHC++) and conventional sort-by-object transparency 
(SORT) for the predefined walkthrough. In addition, the 
frame times for depth peeling (DP) are presented. 

HOTEL 

6,176,072 triangles 

41,899 objects 

62,624 geometry batches 

The only aspect to consider a limitation is the 
requirement of an order-independent transparency 
rendering technique for semi-transparent geometry. 
A simple solution to remove this restriction would 
be to skip the use of hardware instancing for 
transparent geometry. Still, such geometry often 
possesses characteristics suitable for hardware 
instancing, which makes them tempting to include. 
For the tested models the weighted average 
technique was found to provide plausible results 
with high performance. In addition, depth peeling 
was shown to provide a viable option if a fully 
correct result is important. 

For future work it would be interesting to test the 
proposed method together with other occlusion 
culling algorithms. The CHC++, although efficient, 
tightly integrates visibility determination and actual 
rendering of geometry. This puts restrictions on 
when collection, upload and rendering of instanced 
geometry can be performed. If these restrictions 
were relaxed, it is possible that a more efficient 
implementation of hardware instancing could be 
achieved. 

Another area of further investigations would be 
the parameters NImin (minimum number of 
instances per geometry reference) and Tmax 
(maximum number of triangles for instanced 
geometries) for different scenes and hardware 
setups. Although the results show that uniform 
values for these parameters works in practice, it is 
likely that the performance could be further 
enhanced by letting NImin depend on triangle count 
(i.e. demanding a higher instance count for 
geometries with many triangles). 

 

 

Figure 6: Number of draw calls with and without hardware 
instancing for the Hotel model. 

 

0

10

20

30

40

50

60

70

80

1 201 401 601 801 1001

TIME (ms)

FRAMES

CHC++ | DP
CHC++ | SORT
CHC++ | HI | DP
CHC++ | HI | WA

0

5000

10000

15000

20000

25000

1 201 401 601 801 1001

CHC++ | SORT

CHC++ | HI | WA

FRAMES

NUM. DRAW CALLS

Integrating�Occlusion�Culling�and�Hardware�Instancing�for�Efficient�Real-time�Rendering�of�Building�Information�Models

205



 

REFERENCES 

Akenine-Möller, T., Haines, E., Hoffman, N. (2008). Real-
Time Rendering 3rd Edition. A. K. Peters, Ltd., 
Natick, MA, USA. 

Bao, G., Li, H., Zhang, X., Dong, W. (2012). Large-scale 
forest rendering: Real-time, realistic, and progressive. 
Computers & Graphics, Vol. 36, Issue 3, Pages 140-
151. 

Bavoil, L., Myers, K. (2008). Order Independent 
Transparency with Dual Depth Peeling. Tech. rep., 
NVIDIA Corporation. 

Bittner, J., Wimmer, M., Piringer, H., Purgathofer, 
W.(2004). Coherent Hierarchical Culling: Hardware 
Occlusion Queries Made Useful. Computer Graphics 
Forum 23, 3, pages 615–624. 

Bittner, J., Wonka, P. (2003). Visibility in Computer 
Graphics. Environment and Planning B: Planning and 
Design 30, 5, pages 729–756. 

Buchholz, H., Döllner, J. (2005). View-Dependent 
Rendering of Multiresolution Texture-Atlases. 
Proceedings of the IEEE Visualization 2005, 
Minneapolis, USA. 

Cohen-Or, D., Chrysanthou, Y. L., Silva, C. T., Durand F. 
(2003). A Survey of Visibility for Walkthrough 
Applications. In IEEE Transactions on Visualization 
and Computer Graphics 09, 3, pages 412–431. 

Dudash, B. (2007). Animated crowd rendering. In GPU 
Gems 3. Addison-Wesley, pages 39–52. 

Eastman, C., Teicholz, P., Sacks, R., Liston, K. (2011) 
BIM Handbook (2nd Edition) A guide to building 
information modeling for owners, managers, 
designers, engineers and contractors, John Wiley & 
Sons, New Jersey. 

Everitt, C. (2001). Interactive Order-Independent 
Transparency. Tech. rep., NVIDIA Corporation. 

Greene, N., Kass, M., Miller, G. (1993). Hierarchical 
ZBuffer Visibility. In SIGGRAPH ’93, pages 231–238. 

Guthe, M., Balazs, A., Klein, R. (2006). Near Optimal 
Hierarchical Culling: Performance Driven Use of 
Hardware Occlusion Queries. In Eurographics 
Symposium on Rendering 2006. 

Hill, S., Collin, D. (2011). Practical, Dynamic Visibility 
for Games. In Gpu Pro 2. 

Johansson, M., Roupé, M. (2012). Real-Time Rendering 
of large Building Information Models. In proceedings 
of CAADRIA 2012 - Beyond Codes & Pixels, pages 
647-656. 

Macdonald, J. D., Booth, K. S. (1990). Heuristics for ray 
tracing using space subdivision. Visual Computer 6, 6, 
pages 153–65. 

Mattausch, O., Bittner, J., Wimmer, M. (2008). CHC++: 
Coherent Hierarchical Culling Revisited. Computer 
Graphics Forum (Proceedings Eurographics 2008) 
27, 2, pages 221–230. 

Park, H., Han, J. (2009). Fast Rendering of Large Crowds 
Using GPU. In Entertainment Computing - ICEC 2008 
(Lecture Notes in Computer Science, 5309), pages 
197-202. 

Ramos, F., Ripolles, O., Chover, M. (2012). Continuous 

Level of Detail for Large Scale Rendering of 3D 
Animated Polygonal Models. In Articulated Motion 
and Deformable Objects (Lecture Notes in Computer 
Science, 7378), pages 194-203. 

Sacks, R., Eastman, C. M., Lee, G. (2004). Parametric 3D 
modeling in building construction with examples from 
precast concrete. In Automation in Construction 13, 
pages 291– 312. 

Steel, J., Drogemuller, R., Toth, B. (2012). Model 
interoperability in building information modelling. In 
Software and Systems Modeling, 11, 1, pages 99-109. 

Wloka, M. (2003). Batch, Batch, Batch: What Does It 
Really Mean? Presentation at Game Developers 
Conference 2003. 

GRAPP�2013�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

206


