Learning and Classification of Car Trajectories in Road Video by String Kernels

Luc Brun¹, Alessia Saggese² and Mario Vento²

¹GREYC UMR CNRS 6072 ENSICAEN - Université de Caen Basse-Normandie, 14050 Caen, France
²Dipartimento di Ingegneria Elettronica e Ingegneria Informatica, University of Salerno, I -84084 Fisciano (SA), Italy

Keywords: Abnormal Trajectories Recognition, Abnormal Behaviors Recognition, String Kernel.

Abstract: An abnormal behavior of a moving vehicle or a moving person is characterized by an unusual or not expected trajectory. The definition of expected trajectories refers to supervised learning, where an human operator should define expected behaviors. Conversely, definition of usual trajectories, requires to learn automatically the dynamic of a scene in order to extract its typical trajectories. We propose, in this paper, a method able to identify abnormal behaviors based on a new unsupervised learning algorithm. The original contributions of the paper lies in the following aspects: first, the evaluation of similarities between trajectories is based on string kernels. Such kernels allow us to define a kernel-based clustering algorithm in order to obtain groups of similar trajectories. Finally, identification of abnormal trajectories is performed according to the typical trajectories characterized during the clustering step. The experimentation, conducted over a real dataset, confirms the efficiency of the proposed method.

1 INTRODUCTION

In the last decades the significant increase in the number of available cameras has lead the scientific community to investigate on control systems able to automatically generate alarms. Most of researches recently conducted in the field of behavior analysis has focused on the recognition of simple activities (i.e. running, waving, jumping) in high resolution videos, by exploiting the details of human body (Aggarwal and Ryoo, 2011). The main problem in such an approach lies in the fact that in a lot of real applications detailed information related, for instance, to the pose or to the clothing colors of people are not available, since objects are in a far-field or video has a low-resolution: the only information that a video analytic system is reliably able to extract is a noisy trajectory. For these reasons, the moving objects’ trajectories need to be stored (d’Acierno et al., 2012a) (d’Acierno et al., 2012b) and analyzed, in order to understand objects’ behaviors, identifying abnormal ones (Acampora et al., 2012).

The architecture of a system for behavior understanding is usually based on the following steps: learning phase and operating phase. The learning phase aims at extracting prototypes of normal trajectories; it can be performed by following one of these two models: (Chandola et al., 2009): supervised and unsupervised. Techniques trained in supervised mode (Zhou et al., 2007) assume the availability of a training data set with labeled instances of normal as well as abnormal trajectories. However, such an approach has a significant drawback: abnormal instances are usually far fewer compared to normal ones in the training set, so implying that the prototypes extracted for abnormal trajectories are not accurate and representative. Techniques operating in unsupervised mode (Morris and Trivedi, 2011) do not require labeled data since they make the implicit assumption that normal instances are far more frequent than abnormal ones. An unsupervised learning phase makes the control system context-independent and can be easily applied in different real environments, since it does not use human knowledge. This is a very important and not negligible feature, since it allows the system to autonomously understand dynamics within a scene.

In this paper, we propose an unsupervised approach: an abnormal trajectory refers to something that the control system has never (or rarely) seen. However, a system that raises an alarm for each trajectory which has not been seen before risks to generate too many false alarms: the system needs to identify a normal trajectory as one enough similar to one or more trajectories that the system already knows. For
this purpose, we propose a learning phase based on the following steps, as depicted in Figure 1(a):

Trajectory Extraction: the tracking algorithm detailed in (Di Lascio et al., 2012) is applied in order to extract moving objects’ trajectories from a video for a long time period.

Trajectories Representation: the scene is partitioned into zones according to the distribution of trajectories; starting from this, each trajectory is represented as a sequence of symbols, according to the zones crossed in the scene.

Trajectories Similarity Computation: similarity between two trajectories is evaluated by using a kernel-based method. The main advantage in this choice lies in the fact that we may combine these kernels with a large class of clustering and machine learning algorithms, which can be expressed using only scalar product between input data.

Clustering: Given the kernel, a novel clustering algorithm is applied in order to extract clusters of trajectories inside the scene. Each cluster encodes a type of normal trajectories, dynamically extracted from the scene.

Once extracted the prototypes of normal trajectories, the control system can start the operating phase, depicted in Figure 1(b): for each detected abnormal trajectory, it raises an alarm. In particular we propose to subdivide the operating phase in the following steps:

Trajectory Extraction: the trajectory is extracted from a video by using the tracking algorithm detailed in (Di Lascio et al., 2012).

Trajectory Representation: the extracted trajectory is represented as a sequence of symbols.

Classification: the trajectory is compared with the prototypes of each cluster and a similarity value is obtained for each comparison.

Decision: the computed similarity values are processed; if such similarities are sufficiently high the trajectory is considered normal (√), otherwise it is considered abnormal (×). This way, the proposed system is able to identify both rare and atypical trajectories: the former refer to something that does not appear in the training set (or only rarely appears); the latter consider all those trajectories differing in a slightly but significant way from a group of normal trajectories.

In this paper we focus on the classification phase. A brief description of the learning phase will be provided in Section 2; more details can be found in (Brun et al., 2012); furthermore, Section 3 shows the approach used to verify if a novel trajectory is normal or abnormal. Experimental results, which confirm the efficiency of the proposed method, are finally presented in Section 4.

2 LEARNING PHASE

A trajectory \(t \) can be seen as a sequence of \(k \) spatio-temporal points \(p^t = [p^t_1, p^t_2, p^t_k] ; t = \langle p^1, p^2, ..., p^k > \). This representation has two main drawbacks: first, a trajectory results in a very large amount of data to be managed; second, row data are more sensible to noise and tracking errors, and thus a filtering of each trajectory is needed before use. Furthermore, if a system considers the similarity between row data, it can introduce non relevant differences between trajectories. For example, many trajectories on a garden path may be considered as similar independently of the exact position of people on the path.

For this reason, a common representation of a trajectory consists in a reduced sequence of symbols, namely a string, aiming to preserve only the discriminant information and to reduce the space required to store trajectories.

The discriminant information to be preserved is
strongly influenced by the aim of the system: as a matter of fact, in order to verify, for instance, if a person is moving in the opposite direction of a crowd or if a vehicle is driving on the emergence line on the highway, the most discriminant feature is the sequence of zones crossed by the moving object. Such scenarios can be labeled as constrained: the moving objects are expected to follow given paths within the scene.

Scene Partitioning: first, we need to partition the scene into a set of zones, hence associating a single symbol to a sequence of points and eliminating non discriminant information. A common very simple strategy is to partition the space using a fixed-size uniform grid. The main drawback in such an approach lies in the fact that each zone has an uneven statistics, causing only a suboptimal statistical segmentation of trajectories. Furthermore, it is evident that the distribution of trajectories in the scene highlights regions of interests, in which the major parts of trajectories lie and for which we need an higher level of detail. In order to overcome these limitations, we consider the adaptive method that we recently proposed in (Brun et al., 2012), aimed at minimizing the mean error made when assimilating a trajectory to its zone. The main idea behind our algorithm is to exploit the distribution of the training set by taking into account the density, as in the clustering algorithm proposed in (Brun and Trémeau, 2002). As a consequence of this partitioning criterion, areas in the scene in which most of trajectories lie are represented with a higher number of zones. A detailed description of the algorithm can be found in (Brun et al., 2012).

Trajectory Representation: once partitioned the scene into zones, a trajectory is segmented into \(I \) segments, being the \(j \)-th segment \(s_j \) the sequence of points lying in the same zone. By means of the operator \(\alpha(*) \), each segment is mapped into a symbol of our alphabet, each symbol identifying the passing through a zone. Furthermore, information about the speed and the shape of each segment is evaluated by the \(\theta(*) \) operator, thanks to the Bernstein Polynomial Approximation. Thanks to this representation, each trajectory can be seen as \(t = \{ < \alpha(x_1),...,\alpha(x_l) >, < \theta(x_1),...,\theta(x_l) > \} \).

Trajectories Similarity: the complexity and the different typology of information to take into account to represent a trajectory result in a complex strategy to verify the similarity between trajectories. In fact, we need to manage a string for the position and a sequence of numerical values for the speed and the shape, respectively obtained by means of the \(\alpha(*) \) and the \(\theta(*) \) operators.

In the last years, a lot of different methods based on dynamic programming have been proposed in order to evaluate the similarity between two sequences, ranging from the Smith Waterman algorithm (Saigo et al., 2004) to the edit-distance (Neuhaus and Bunke, 2006). The main problem lies in the fact that, although these methods are able to compute a similarity value, they do not define a metric. In order to solve these problems, we propose a novel similarity metric based on kernels: the main advantage is that the problem can then be formulated in an implicit vector space on which statistical methods for pattern analysis can be applied. Furthermore, thanks to this choice, it is possible to evaluate the similarity between sequences of symbol with different length, so avoiding to force the representation of trajectories to a vector of features with a fixed dimension.

In particular, we construct our kernel starting from the Fast Global Alignment Kernel (FGAK) proposed in (Cuturi, 2011). The main idea of all global alignment kernels is to measure the similarity between two sequences by summing up scores obtained from local alignments with gaps of the sequences. An alignment between two sequences \(x = \{x_1,...,x_n\} \) and \(y = \{y_1,...,y_m\} \) of length \(n \) and \(m \) respectively is a pair of increasing integral vectors \((\pi_1,\pi_2) \) of length \(p = n + m \), such that \(1 = \pi_1(1) \leq ... \leq \pi_1(p) = n \) and \(1 = \pi_2(1) \leq ... \leq \pi_2(p) = m \), with unary increments and no simultaneous repetitions. Let \(A(n,m) \) be the set of all the possible alignments between the two time series of lengths \(n \) and \(m \). The global alignment kernel (GAK) is defined as:

\[
k_{GA}(x,y) = \sum_{A(n,m) \in W} |\prod_{i=1}^{n} k(x_{\pi_1(i)}, y_{\pi_2(i)})|.
\]

Starting from the representation of our trajectories, we need to define the kernel \(k(\cdot,\cdot) \) in equation 1 which combines the different features related to a trajectory. In particular, we defined the following kernels.

In order to speed up the computation of the kernel, we use the triangular kernel for integers, also known as Toeplitz kernel, to compare the symbols \(x_i \) and \(y_j \):

\[
w(i,j) = \left(1 - \frac{|i-j|}{T} \right),
\]

where \(T \) is the order of the kernel. The main advantage in the use of the triangular kernel is that it allows to only consider a smaller subset of alignments.

Furthermore, in order to evaluate the similarity between two strings \(\alpha(x) \) and \(\alpha(y) \) encoding the sequences of zones respectively traversed by trajectories \(x \) and \(y \), we use a dirac kernel \(\delta(\alpha(x_i),\alpha(y_i)) \), defined as:

\[
\delta(\alpha(x_i),\alpha(y_i)) = \begin{cases}
0 & \text{if } \alpha(x_i) \neq \alpha(y_i) \\
1 & \text{if } \alpha(x_i) = \alpha(y_i)
\end{cases}
\]
The Dirac Kernel is combined with the Toeplitz Kernel so obtaining:

\[k_Z(x_i, y_j, i, j) = w(i, j) \cdot \delta(\alpha(x_i), \alpha(y_j)). \]

(4)

The main lack of this similarity evaluation lies in the fact that the proximity of two zones is not considered. In order to overcome this limitation by taking into account adjacency relationships between zones, a weighted dirac kernel is also exploited:

\[k_{WZ}(x_i, y_j, i, j) = w(i, j) \cdot \delta_n(\alpha(x_i), \alpha(y_j)). \]

(5)

Zones are mapped into a non-oriented weighted graph \(G = (V, E, w) \), whose vertices \(V = \{V_1, ..., V_N\} \) identify zones and whose edges \(E = \{E_1, ..., E_L\} \) identify proximity of two zones. Each edge is associated to a weight \(e_{v_i,v_j} \), identifying the number of pixels separating two zones.

\[\delta_n(\alpha(x_i), \alpha(y_j)) = \begin{cases} 0 & \text{if } \alpha(x_i) \neq \alpha(y_j) \\ e_{(x_i), (y_j)} & \text{if } \alpha(x_i), \alpha(y_j) \notin E \\ 1 & \text{if } \alpha(x_i), \alpha(y_j) \in E \end{cases} \]

(6)

where \(e_{(x_i), (y_j)} \) is a normalized version of \(e_{(x_i), (y_j)} \), obtained by dividing \(e_{(x_i), (y_j)} \) by two times the length of the longest zone’s border.

Finally, the evaluation of the similarity related to the velocity and to the shape is based on the following speed and shape kernel, used instead of the Gaussian one in order to guarantee the p.d. of \(k_{GA} \) (Cuturi, 2011):

\[k_{SS}(\theta(x_i), \theta(y_j)) = e^{-\phi_\alpha(\theta(x_i), \theta(y_j))}, \]

(7)

where

\[\phi_\alpha(\theta(x_i), \theta(y_j)) = \frac{1}{2\sigma^2} \left(||\theta(x_i) - \theta(y_j)||^2 + \log \left(2 - e^{-\frac{|\theta(x_i) - \theta(y_j)|^2}{2\sigma^2}} \right) \right). \]

(8)

The combination of these two last kernels is defined as:

\[k_{WZSS}(x_i, y_j, i, j) = k_{WZ}(\alpha(x_i), \alpha(y_j)) \cdot k_{SS}(\theta(x_i), \theta(y_j)). \]

(9)

Starting from Equation 1, the products of any of the 4 kernels \(k_Z, k_{WZ}, k_{WZSS} \) and \(k_{WZSS} \) can be considered to obtain the final kernel \(k_{GA} \). Finally, a normalization of the kernel is performed in order to normalize kernel’s values in the interval \([0, 1]\). Therefore, the final normalized kernel \(k^N_{GA} \) is:

\[k^N_{GA}(x_i, y_j, i, j) = \frac{k_{GA}(x_i, y_j, i, j)}{\sqrt{k_{GA}(x_i, x_i, i, i) \cdot k_{GA}(y_j, y_j, j, j)}}. \]

(10)

Clustering: from a general point of view, the goal of a clustering algorithm is to find a fixed number \(N_C \) of groups that are both homogeneous and well separated, that is, trajectories within the same group should be similar and entities in different groups dissimilar. In our context, we aim at exploiting a clustering algorithm in order to obtain a set of prototypes of normal trajectories. In the last decades, a lot of graph-based clustering algorithms (Schaeffer, 2007) (Foggia et al., 2008) have been exploited. Although these techniques seem to provide good results, they do not allow to readily verify if a novel trajectory belongs to a cluster, that is our main objective. In order to overcome these limitations, we consider the novel and efficient kernelized clustering algorithm that we recently proposed in (Brun et al., 2012) and that we briefly summarize in the following: the cluster with the maximum squared-error is selected and then split into two different clusters along the major axis, computed by means of a Kernel PCA (Schölkopf et al., 1998). Since in our context the number of clusters can not be fixed a priori, we choose to use as stop condition a lower bound on the mean squared error made when assimilating one trajectory to its cluster. In this way, the system does not need knowledge of the human operator about the environment, but is able to determine the optimum number of clusters starting from the distribution of trajectories.

3 OPERATING PHASE

The operating phase aims at identifying abnormal behaviors according to the set of typical trajectories determined during the learning phase (Section 2). In particular, our algorithm evaluates the distance between a trajectory \(t_s \) and all cluster’s centers \(C_1, ..., C_N \), obtained during the learning phase. The cluster with the closest mean from \(t_s \) is selected as the potential typical trajectory followed by \(t_s \). An additional test should then be performed in order to determine if \(t_s \) belongs to this closest cluster. According to this last test \(t_s \) is classified as normal (it belongs to one cluster encoding typical trajectories) or an alert is raised and \(t_s \) is classified as an abnormal behavior.

Classification. Let \(s \) denote the string associated to \(t_s \) and \(\Psi_s \) the projection of \(s \) into the Hilbert space encoded by one of our kernel. The squared distance between \(\Psi_s \) and the mean \(\mu_s \) of a cluster \(C_t \) is defined by:

\[d^2(t_s, \Psi_s) = \langle \mu_s, t_s \rangle + \langle \Psi_s, \Psi_s \rangle - 2 \langle \mu_s, \Psi_s \rangle = 1 + 1 - 2 < \mu_s, \Psi_s > = 2 \left(1 - \frac{1}{|Cl|} \sum_{s_i \in Cl} k(s, s_i) \right). \]

(11)
Decision. Let \(C^*_t \) denote the cluster with the closest center (\(\mu^*_t \)) determined according to equation 11. Since our clustering algorithm always split clusters according to their axis of greatest variance, we consider that the covariance matrix of each cluster is approximately diagonal. In this case, a threshold on the Gaussian probability that string \(t \) belongs to \(C^*_t \) is approximated by comparing the squared distance \(d^2(\mu^*_t, \Psi_s) \) with a multiple of the squared error of \(C^*_t \):

\[
d^2(\mu^*_t, \Psi_s) \leq \alpha \times \text{MSE}(C^*_t).
\]

Conversely to the parameter \(\nu \) of one class SVM (Cortes and Vapnik, 1995), a high value of \(\alpha \) provides a better generalization but may increases the number of false positive in the test determining the classification to \(C^*_t \).

4 EXPERIMENTAL RESULTS

The proposed method has been validated on the MIT trajectories dataset (Wang et al., 2011), a standard and freely available dataset composed by 40,453 trajectories obtained from a parking lot scene within five days. The experiments have been conducted on a MacBook Pro equipped with Intel Core 2 Duo running at 2.4 GHz. Starting from the entire dataset \(D \), a subset \(D^* \) of trajectories belonging to vehicles (10,335) has been manually extracted by an expert and the proposed system has been evaluated.

The dataset \(D^* \) has been divided into three folds and one of these has been used for the learning phase. The remaining two folds have been mixed with the remaining trajectories \((D \setminus D^*) \) and are used to test the system. The tests have been performed by computing the similarity between trajectories by using the Dirac Kernel and the Weighted Dirac Kernel. The obtained confusion matrix is reported in Table 1. The results, for a fixed value of \(\alpha (\alpha = 2) \), show that the Weighted Dirac Kernel provides a better generalization than the Dirac Kernel, without paying in terms of false positive errors.

In any case, starting from the obtained results, which are sufficiently good for most practical applications, we can enforce the effectiveness of the method by drawing some considerations about the nature of the errors; as we will show in the following, most of the errors can be considered fake, being strongly related to ambiguous interpretations of the trajectories during the manual labeling phase. An example is shown in Figure 2(a): the trajectory in red is labeled as abnormal in the ground truth, since it refers to a vehicle’s trajectory partially located in the grass (or to an error of the tracking phase as well); our method, as well as any other kinds of methods based for their nature on shape and position similarities, has no chance to give a correct answer and classifies such a trajectory as normal, since it is very similar to those normal which avoid the grass just for a few centimeters. This error cannot be avoided by any system based on similarity measure, because only the introduction of areas boundaries could make the system able to provide a correct answer by boundary cross detection. Similar situation occurs in Figure 2(b), where the vehicle tries to park, but because of place lack, leaves out after a complete turn. In this case, the description of the trajectory follows a regular and normal path, except for a very limited stretch, reproducing the same typology of error occurring in the previous case.

Opposite kinds of error occur in Figures 2(c) and 2(d). In this case, the two trajectories are manually labeled as normal with respect to their semantic, but
can also refer to tracking errors because of their very short lengths. The system in such a situations has not sufficient information and then is not able to reliably associate the two trajectories to any cluster containing normal trajectories.

In conclusion the performance, yet acceptable for many practical application, can be considered even better at the light of the above considerations. However, we could think, as future work, the introduction of a mixed solution based both on clustering and boundary-constraints so as to catch the advantages of both these approaches, even at the cost of introducing a little more heavy a priory knowledge about the scene to be processed.

5 CONCLUSIONS

We have proposed a system able to identify abnormal trajectories without the explicit definition of the rules by a human operator. It has been achieved by introducing an unsupervised method able to deduce properties of a scene from a set of trajectories. Starting from a set of normal trajectories acquired by a video analytics system, our method represents each trajectory by a sequence of symbols associated to relevant features of trajectories (crossed zones, shape and speed in each zone). This quantization is obtained by partitioning the scene into a fixed number of adaptive zones. Similarity between trajectories is evaluated by means of a fast alignment global kernel. Trajectories are then grouped into homogenous clusters encoding normal trajectories. The classification into (ab)normal trajectories is performed by taking advantage on the statistical properties of the clusters. Experiments have been performed on a real dataset and the obtained results, compared with other state of the art methods, confirm the efficiency of the proposed approach.

ACKNOWLEDGEMENTS

This research has been partially supported by A.I.Tech s.r.l. (a spin-off company of the University of Salerno, www.aitech-solutions.eu).

REFERENCES

