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Abstract: MicroRNAs are small RNA sequences of 18-24 nucleotides in length, which serve as templates to drive post 
transcriptional gene silencing. The canonical microRNA pathway starts with transcription from DNA and is 
followed by processing by the Microprocessor complex, yielding a hairpin structure. This is then exported 
into the cytosol where it is processed by Dicer and next incorporated into the RNA induced silencing 
complex. All of these biogenesis steps add to the overall specificity of miRNA production and effect. 
Unfortunately, experimental detection of miRNAs is cumbersome and therefore computational tools are 
necessary. Homology-based miRNA prediction tools are limited by fast miRNA evolution and by the fact 
that they are template driven. Ab initio miRNA prediction methods have been proposed but they have not 
been analyzed competitively so that their relative performance is largely unknown. Here we implement the 
features proposed in four miRNA ab initio studies and evaluate them on two data sets. Using the features 
described in Bentwich 2008 leads to the highest accuracy but still does not provide enough confidence into 
the results to warrant experimental validation of all predictions in a larger genome like the human genome. 

1 INTRODUCTION 

MicroRNAs (miRNAs) are a group of small 
noncoding RNAs, discovered in the early 90s by 
Ambrost and colleagues (Lee et al., 1993), which 
convey posttranscriptional regulation. In most cases 
miRNAs lead to down regulation of their target 
mRNAs but translational activation has also been 
observed (Ørom et al., 2008). It has been estimated 
that 60% of all human genes are regulated by 
miRNAs (Friedman et al., 2009). Another estimate 
is that there are more than 1000 miRNAs in the 
human genome (Berezikov et al., 2005). MiRNAs 
can come from introns (Morlando et al., 2008), 
coding regions (Rodriguez et al., 2004), or 
intergenic miRNA gene clusters (Altuvia et al., 
2005). It has been suggested that a miRNA may 
regulate hundreds of targets (Enright et al., 2003). 
MiRNAs can, therefore, form complex regulatory 
networks. Not surprisingly, miRNAs are implicated 
in diseases such as cardiovascular disease (Elton et 
al., 2011) and cancer (Suzuki and Miyazono, 2011). 
The biogenesis of miRNAs follows largely the 
canonical pathway. Initially, DNA is transcribed into 
RNA by either RNA polymerase II (Lee et al., 2004) 
or III (Borchert et al., 2006) and then the 
microprocessor complex (Han et al., 2006) cleaves 

hairpin structures from the transcript. These hairpins 
are exported into the cytosol by Exportin 5 (Lund et 
al., 2004; Zeng and Cullen, 2004; Okada et al., 
2009) where they are cleaved by Dicer (Cifuentes et 
al., 2010) and then loaded onto the RNA induced 
silencing complex  

Despite the great effort that has been put into the 
elucidation of the miRNA pathway, not much is 
known which would facilitate computational 
modeling that is based on clear processing facts 
instead of data mining approaches. Two approaches 
are available for miRNA prediction, one based on 
homology and the other free of any references 
named ab initio. 

While homology-based methods seem straight 
forward, they only retrieve results similar to already 
known miRNAs and rarely allow the detection of 
novel miRNAs (Bentwich et al., 2005). Furthermore, 
miRNA evolution progresses at a high rate (Liang 
and Li, 2009); (Lu et al., 2008), which limits the 
applicability of homology-based methods. 

Ab initio prediction methods (Ng and Mishra, 
2007); (Lai et al., 2003); (Bentwich, 2008); (Ding et 
al., 2010); (Jiang et al., 2007); (Pfeffer et al., 2005); 
(Xue et al., 2005); (Yousef et al., 2006); (Grundhoff, 
2011); (Burgt et al., 2012); (Cakir and Allmer, 
2010); (Ritchie et al., 2012) try to extract parameters 
which describe hairpin structures, an element which 
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is deemed important in the miRNA genesis process, 
and uses these features for machine learning to 
detect miRNAs. Although many of the ab inito 
algorithms that have been proposed report their 
accuracy, they cannot be easily compared as they are 
run on different data sets. Furthermore, most of the 
algorithms cannot be obtained. Therefore, we 
implemented all features described in Ding et al., 
Jiang et al, Ng and Mishra, and Bentwich (Ng and 
Mishra, 2007); (Bentwich, 2008); (Ding et al., 
2010); (Jiang et al., 2007) and compared them on the 
same data set to investigate relative algorithm 
performance. Ding et al. performed best on the data 
sets which we prepared but the maximum achieved 
accuracy of 0.996 would produce too many false 
positives so that experimental validation of all 
predictions would not be cost and time effective. 
Furthermore, this high accuracy seems to be an 
outlier and in all other cases that we tested Bentwich 
2008 outperforms Ding et al. 2010 with a maximum 
accuracy of 0.986 that is closely reproduced among 
data sets. Therefore, we advise the use of the 
features described in Bentwich 2008 when 
attempting ab initio hairpin prediction. 

2 MATERIALS AND METHODS 

The four tools which we wanted to compare are not 
available as software so we implemented all features 
that were proposed in the papers in Java™ and used 
our code to calculate the values from the negative 
and positive data sets.  

2.1 Features 

The features that are used to discriminate between a 
true miRNA hairpin and a pseudo one are different 
among studies, but sometimes the feature is the same 
and just the naming differs. In the following we list 
the features that were used in the studies compared 
here and add the acronym that we gave to the feature 
in parentheses. Features are also summarized in 
Table 1 for ease of reference. 

2.1.1 Features Used in Ng and Mishra 2007 

Sequence based features; 16 dinucleotide 
frequencies %NN (%AA, %AC, %AG, %AU, %CA, 
%CC, %CG, %CU, %GA, %GC, %GG, %GU, 
%UA, %UC, %UG, %UU) and 1 aggregate 
dinucleotide frequency %G+C (%G++%C). 

Probability based features derived from 
dinucleotide shuffling (dns); adjusted base pairing 

propensity dP (dns_p(bpp), dns_p(bpp/hpl)), 
adjusted Minimum Free Energy of folding (MFE) 
dG (dns_p(hpmfe_rf), dns_p(hpmfe_rf/hpl)), MFE 
index 1 MFEI1 (hpmfe_rf_I1), adjusted base pair 
distance dD (dns_p(bpd), dns_p(bpd/hpl)), adjusted 
shannon entropy dQ (dns_p(Q), dns_p(Q/hpl)),MFE 
index 2 MFEI2 (hpmfe_rf/ns), degree of 
compactness dF (dc) and normalized variants of dP, 
dG, dQ, dD and dF (dns_z(bpp), dns_z(bpp/hpl), 
dns_z(hpmfe_rf), dns_z(hpmfe_rf/hpl), dns_z(Q), 
dns_z(bpd/hpl), dns_z(bpd), dns_z(Q/hpl)). 

2.1.2 Features Used in Jiang et al., 2007 

Structural features; 32 triplet elements i.e. U(((’, 
‘A((.’, etc. [*U(((, *U..., *U.((, *U(.., *U(.(, *U..(, 
*U..., *U.(., *C(((, *C(.(, *C..(, *C((., *C.(., *C(.., 
*C.((, *C..., *A(((, *A..., *A(.., *A(.(, *A.(., *A..(, 
*A.((, *A((., *G(((, *G(.(, *G((., *G(.., *G.((, *G.(., 
*G..(, *G...)], mfe (hpmfe_rf/ns) and P-value 
(dns_p(hpmfe_rf)). 

2.1.3 Features Used in Bentwich, 2008 

Structural features; hairpin length (hpl), loop length 
(hll), free energy per nucleotide (hpmfe_rf/hpl), 
matching base pairs (bpp) and maximal bulge size 
(mbs). 

Sequence based features; abundance of any 
dinucleotide, AA, AT, etc. (#AA, #AC, #AG, #AU, 
#CA, #CC, #CG, #CU, #GA, #GC, #GG, #GU, 
#UA, #UC, #UG, #UU), regular internal repeat (dr), 
inverted internal repeat (ir), free energy (hpmfe_rf) 
and GC content (%GC). 

2.1.4 Features Used in Ding et al., 2010 

Structural features; triplet elements A(((, A…, U(((, 
U(.(, U…, G(((, C(((, C(.(, [*A(((, *A…, *U(((, 
*U(.(, *U…, *G(((, *C(((, *C(.(]. 

Sequence based features; base pairing propensity 
dP (bpp), dP/n_loops (bpp/nl), Avg_bp_stem 
(bpp/sl), diversity (bpd), |A-U|/L (%AU), |G-C|/L 
(%GC), %(A-U)/n_loops (st(A-U)/ns), %(G-
C)/n_loops (st(G-C)/ns).  

Thermodynamics based features; ensemble free 
energy NEFE (efe), minimum free energy index 1-4 
MFEI1 (hpmfe_rf_I1), MFEI2 (hpmfe_rf/ns), 
MFEI3 (hpmfe_rf/ns/hpl), MFEI4 (hpmfe_rf/hpl), 
dG (dG), Diff (dme), ensemble frequency Freq (efq), 
melting temperature Tm (Tm), enthalpy divided by 
length dH/L (dH/hpl), entropy divided by length 
dS/L (dS/hpl), Tm/L (Tm/hpl), p-value_MFE 
(dns_p(hpmfe_rf)), p-value_EFE (dns_p(efe)), z-
core_MFE (dns_z(hpmfe_rf)), z-score_EFE 
(dns_z(efe)). 
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Table 1: Features that were proposed in the selected studies are presented in the first row of the respective study and the 
acronyms we chose for those features are presented in the following row. 

Studies Sequence-Based Probability-Based Structural Thermodynamic-Based 

Ng and 
Mishra 
2007 

16 dfs %NN and 1 
aggregate df %G+C 
ratio 

dP, dG, MFEI1, dD, dQ, MFEI2, 
dF, normalized variants of dP, 
dG, dQ, dD and dF 

  

%AA-%UU, 
%G+C 

dns_p(bpp, bpp/hpl, hpmfe_rf, 
hpmfe_rf/hpl, bpd, bpd/hpl, Q, 
Q/hpl), dns_z(bpp, bpp/hpl, 
hpmfe_rf, hpmfe_rf/hpl, bpd, 
bpd/hpl, Q, Q/hpl), hpmfe_rf_I1, 
hpmfe_rf/ns, dc 

  

Jiang et 
al. 2007 

  
32 triplet elements, mfe, P-
value 

 

  
*A… - *U(((, 
(hpmfe_rf/ns), 
dns_p(hpmfe_rf) 

 

Bentwich 
2008 

Dinucleotide 
abundance, regular 
internal repeats, 
inverted internal 
repeats, mfe, GC 
content 

 

hairpin length, loop length, 
free energy per nucleotide, 
matching base pairs, 
maximal bulge size 

 

#AA - #UU, dr, ir, 
(hpmfe_rf), %GC 

 
hpl, hll, (hpmfe_rf/hpl), 
bpp, mbs 
 

 

Ding et 
al. 2010 

base pairing 
propensity (dP), 
Avg_bp_stem, 
diversity, |A-U|/L, 
|G-C|/L, %(A-
U)/n_loops, %(G-
C)/n_loops  

 triplet elements 

NEFE, MFEI1, MFEI2, 
MFEI3, MFEI4, dG, 
Freq, Tm, dH/L, dS/L, 
Tm/L, p-value_MFE, p-
value_EFE, z-
score_MFE, z-
score_EFE  

bpp, (bpp/nl), 
(bpp/sl), bpd, 
%AU, %GC, (st(A-
U)/ns), (st(G-C)/ns) 

 
*A(((, *A…, *U(((, *U(.(, 
*U…, *G(((, *C(((, *C(.( 

efe, hpmfe_rf_I1, 
hpmfe_rf/ns, 
hpmfe_rf/ns/hpl, dG, 
dme, efq, Tm, dH/hpl, 
dS/hpl, Tm/hpl, 
dns_p(hpmfe_rf, efe), 
dns_z(hpmfe_rf, efe) 

 

2.2 Data Sets 

2.2.1 Positive Data Set 

MirBase is the de facto standard repository for 
miRNAs (Griffiths-Jones et al., 2008). It contains 
about 1500 entries for human counting both guide 
and passenger strands. We downloaded all human 
miRNAs as positive data. From the entries we 
removed the ones that contain more than one hairpin 
when folded by RNAFold (Hofacker, 2003) or 
RNAShapes (Steffen et al., 2006). If no proper link 
to Ensemble could be established, the entries were 
removed as well. From the remaining, about 1000, 

miRNA examples we created five random subsets 
containing 500 positive examples each. 

2.2.2 Negative Data Sets 

Negative data sets are especially difficult to establish 
for miRNAs, experimentally or computationally 
(Ding et al., 2010); (Ritchie et al., 2012); (Wu et al., 
2011); (Yousef et al., 2008). Since most machine 
learning approaches that have been proposed for ab 
initio miRNA prediction are built on two class 
classification we designed one data set which 
consists of random sequences of the same length as 
the selected miRNAs in the positive data set. We 
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consider this data set to be easy to solve. Another 
data set, the pseudo miRNA data set, was taken from 
the Ng and Mishra study and we consider it to be 
more difficult (Ng and Mishra, 2007). 

2.3 Machine Learning 

We created five combined data sets consisting of 
60% training and 40% test data from the overall data 
set. These data sets were used to train and test SVM 
classification using default settings in Orange 
Canvas (http://orange.biolab.si/). For performance 
evaluation test on ‘test data’ was used. This 
approach was used since fivefold cross validation 
could not be used with multiple studies at the same 
time; but had to be repeated individually, thus 
leading to different data sets and therefore to a 
potentially unfair comparison.  

3 RESULTS AND DISCUSSION 

In our opinion, the two datasets that were used (see 
Data Sets) are of different difficulty with the random 
dataset being easier to solve than the pseudo miRNA 
data set. This can also be deduced from the best 
results reported in Tables 2 and 3. The results for the 
random miRNAs in Table 2 lead to higher accuracy 
than the data in Table 3 which is achieved with 
pseudo miRNAs. For both tables the best and the 
average accuracy are provided along with the 
standard deviation, calculated from fivefold cross 
validation. Using the features described in the study 
by Bentwich 2008 leads to the highest accuracy 
without any standard deviation. Judging from these 
results it seems trivial to discriminate between true 
and false hairpins when using properly selected 
features. 

Table 2: Accuracy measurements for human miRNAs 
(positive dataset) and random miRNAs (negative dataset). 

Studies 
Accuracy Values 

Best Average Standard Deviation 
Ng and Mishra 2007 0.919 0.894 0.183 

Bentwich 2008 1.000 1.000 0 
Ding et al. 2010 1.000 0.676 0.217 
Jiang et al. 2007 0.954 0.952 0.003 
 

We did not expect such a perfect result as 
achieved by Bentwich 2008 features in Table 2 for 
the pseudo miRNAs and Table 3 displays no such 
success. For the pseudo miRNA dataset, the features 
used in Ding et al. 2010 achieve the highest 
accuracy although with a high standard deviation 
over the cross validation. 

Table 3: Accuracy measurements for human miRNAs 
(positive dataset) and pseudo miRNAs (negative dataset).  

Studies 
Accuracy Values 

Best Average Standard Deviation
Ng and Mishra 2007 0.930 0.895 0.060 

Bentwich 2008 0.986 0.983 0.002 
Ding et al. 2010 0.996 0.599 0.198 
Jiang et al. 2007 0.910 0.877 0.018 

 

 

Figure 1: Accuracy measurements for human miRNAs 
(positive dataset) and random miRNAs (negative dataset). 
All cross validation results are shown individually. 

The best accuracy of 0.996, achieved by the 
features described in the study by Ding et al. 2010, 
when used for a million putative hairpins in human 
would lead to 4000 false positive identifications. 
Unfortunately, the number of putative hairpins in 
human is large and the accuracy calculated here does 
not fully reflect the true accuracy. 

This is due to the fact that it is not entirely 
known what differentiates a true from a false 
hairpin. A much higher false positive rate must 
therefore be expected for real data and thus the 
number of false positives may not allow costly 
experimental validation of all predicted miRNAs.  

Figures 1 and 2 further support this point by 
showing that the accuracy strongly depends on the 
data set used for training and testing. This can be 
deduced from the variation among the accuracies for 
the 5 data sets used in the fivefold cross validation.  

For the random miRNAs, the variation among 
datasets is large for most studies. However, 
Bentwich 2008 always achieves perfect separation 
and Jiang et al. 2007 achieves a low variation and an 
overall good result (Figure 1). 

With the pseudo miRNAs the variation is even 
more important to be analysed. Although Ding et al. 
2010 achieves the highest accuracy in one case, it 
fails in all other cases which shows a strong 
dependence on the training and test data set and a 
poor generalization for the features from that study 
(Figure 2). Bentwich 2008 does not have such 
generalization problems and outperforms all other 
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studies on the remaining four data sets.  
 

 

Figure 2: Accuracy measurements for human miRNAs 
(positive dataset) and pseudo miRNAs (negative dataset). 
All cross validation results are shown individually. 

4 CONCLUSIONS 

Although many algorithms have been proposed for 
ab initio miRNA gene prediction, they have not been 
compared for their relative performance. We 
compared four of twelve available ab initio 
algorithms in this study and found that Bentwich 
2008 achieves the highest accuracy on the random 
data set and the second best accuracy on the pseudo 
hairpin data set but with a very low variation. 
Unfortunately, the achieved accuracy of 0.986 
would lead to many false positives which would turn 
any attempt at experimental validation of all 
predicted miRNAs into a futile endeavor. 

In the future, we plan to expand this assessment 
of available algorithms to all currently available 
ones. We believe it is necessary to establish the 
accuracy of existing algorithms not independently 
but transparently and comparable. To the best of our 
knowledge, this is the first independent assessment 
of multiple ab initio miRNA prediction methods.  

As negative data sets are hard to come by, we 
will try to establish another set of negative data and 
further try one-class classification with the proposed 
parameters in follow-up studies.  

Currently, we advise the use of the features used 
in the Bentwich 2008 study when trying ab initio 
prediction of hairpins. 
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