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Abstract: In this paper, we propose a distributionally robust model for a (0-1) stochastic quadratic bi-level programming
problem. To this purpose, we first transform the stochastic bi-level problem into an equivalent deterministic
formulation. Then, we use this formulation to derive a bi-level distributionally robust model (Liao, 2011).
The latter is accomplished while taking into account the set of all possible distributions for the input random
parameters. Finally, we transform both, the deterministic and the distributionally robust models into single
level optimization problems (Audet et al., 1997). This allows comparing the optimal solutions of the proposed

models. Our preliminary numerical results indicate that slight conservative solutions can be obtained when the

number of binary variables in the upper level problem is larger than the number of variables in the follower.

1 INTRODUCTION and Pardalos, 2001). It has been shown that bi-level
problems are strongly NP-Hard, even for the simplest
Bi-level programming (BP) is a hierarchical optimiza- case where all the involved functions are affine (Au-
tion framework. It consists in optimizing an objective det et al., 1997).
function subject to a constrained set where another As far as we know, robust optimization ap-
optimization problemis embedded. The first level op- proaches have not yet been reported in the literature
timization problem is referred to as the leader prob- for bi-level programming. Some preliminary works
lem while the lower level, as the follower problem. concerning pure stochastic programming approaches

Formally, a BP problem can be written as follows can be found, for instance, in (Audestad et al., 2006;
min F(xy) Ozaltin et al., 2010; Carrion et al., 2009; Kalashnikov
{xeX.y} ’ et al., 2010; Wynter, 2009). In (Carrion et al., 2009),
st G(x,y) <0 an application for retailer futures market trading is
= considered whereas a natural gas cash-out problem is
minf(x.y) studied in (Kalashnikov et al., 2010).
st gxy) <0 Stochastic programming (SP) as well as robust op-

timization (RO) are well known optimization tech-
wherexe R, ye R2, F:R" xR2 - Rand f : nigues to deal with mathematical problems involving
R™ x R — R are the decision variables and the ob- uncertainty in the input parameters. In SP, itis usually
jective functions for the upper and lower level prob- assumed that the probability distributions are discrete
lems, respectively. The functiofs: R x R — R™ and known or that they can be estimated (Shapiro
andg: R x R — R™ denote upper and lower level et al., 2009). There are two well known scenario ap-
constraints. The goal is to find an optimal point such proachesin SP, threcourse modednd theprobabilis-
that the leader and the follower minimizes their re- tic constrained approachSee for instance (Schultz
spective objective functions subject to their respec- et al., 1996; Birge and Louveaux, 1997). Different
tive linking constraints (Audet et al., 1997). Ap- from the SP approach, the RO framework assumes
plications of BP include transportation, network de- that the input random parameters lie within a convex
sign, management and planning among others. Foruncertainty set and that the robust solutions must re-
more application domains, see for instance (Floudasmain feasible for all possible realizations of the in-
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put parameters. Thus, the optimization is performed wherex € {0,1}™ andy € [0,1]" are the leader and

over the worst case realization of the input param-

eters.

the follower decision variables respectively.

In,Q

In compensation, we obtain robust solutions (1)-(3) correspond to the leader problem while (4)-

which are protected from undesired fluctuations in the (6) represent the follower problem. The tei§-}
input parameters. In this case, the objective function denotes mathematical expectation whilg} repre-
provides more conservative solutions. We refer the sents a probability imposed on the upper level knap-
reader to (Bertsimas and Sim, 2004) and (Bertsimassack constraint. This probability should be satisfied
etal., 2010) for a more general understanding on RO. at least for(1 — a)% of the cases wherm € (0,0.5

In this paper, we propose a distributionally RO
model for a (0-1) stochastic quadratic bi-level prob-
lem with expectation in the objective and probabilis-

represents the risk. The matridesF, G and vectors
a,b,d, h,care input nonnegative real matrices/vectors
defined accordingly. We assume that the matrix

tic knapsack constraints in the leader. To this pur- D = D(g), vectorsa = a(),b = b(§) andc = c(¢)
pose, we first transform the stochastic probleminto an are random variables distributed according to a dis-

equivalent deterministic problem (Gaivoronski et al.,

crete probability distributiorQ. As such, one may

2011). Subsequently, we apply a novel and simple suppose tha&;(§), b;(§) andc(§) are concentrated

distributionally robust approach proposed by (Liao,
2011) to derive a distributionally robust formulation
for our stochastic bi-level problem. The latter allows
optimizing the objective function over the set of all

possible distributions in the input random parameters.

Finally, we compute optimal solutions by transform-

ing both problems, the deterministic as well as the

distributionally models into single level optimization
problems (Audet et al., 1997). Preliminary numeri-

cal comparisons are given. The paper is organized
as follows. Section 2, presents the stochastic model
under study and the equivalent deterministic formula-

tion. In section 3, we derive the distributionally robust
formulation. In section 4, we transform the determin-
istic and robust models into single level optimization
problems. Then, in section 5, we provide preliminary

on a finite set of scenarios a§(§) = {aJ, ,aK},

bj(€) = {bj,..,b} and ¢(§) = {c',..,c"} respec-
tively, with probability vectorg™ = (qy,..,qx) such
thatzEzlqk =1 andgx > 0. In (Gaivoronski et al.,
2011), the authors propose a deterministic equivalent
formulation for ( by replacing the probabilistic con-
straint (2) with the following deterministic constraints

Z aJxJ + Z beJ <Mz, z e {0,1}vk
1=

2 G < O ™)

where Mk is defined for eactk = 1 : K by My =
ak+ 32, bk —ck. The variablez for eachk is

X
numerical comparisons. Finally, section 6 concludes anmary variable used to decide whether a particular

the paper.

2 PROBLEM FORMULATION

We consider the following (0-1) stochastic quadratic
bi-level problem we denote hereby @s follows

np M
max E Di i (&)XiXi 1
na {i: J_Zl i.j (&) J} 1)
ny
s.t. P aj(&)xj+ S bj(§)y; <c() >
{lej j Z i (8)yj }
(1-a) 2
xje{0,1}, j=1:m 3)
ny
y € arg ma>{ Z djyi} (4)
s.t. ZE,XJ+ZG.JyJ<h,, i=1:m(5)
0<y;<1, j=1:im (6)

constraint is discarded. This is handled by taking the
risk o in constraint (7).

Analogously, the random variablBs ; (§) are dis-
cretely distributed, i.eD; j(§) = (D,lj, {fj),Vi,j
such thatzE:l pk = 1 andpg > 0 wherep is the prob-
ability vector. Thus, the expectation in the objective
function (1) can be written as

max

K np Np K
a3 o (iz > .,,x.xj>

This yields the following deterministic equivalent
problem we denote by Qas follows

K ng N
L (ZE ot
s.t. Z ajxJ + Z beJ <Mz, VK
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wheref,y € [0,0). Now, letd = Tk — pk, then the

Z Okz < d inner max problem in (8) can be written as
np M
z. € {0,1}vk . max Y (8t pi) le —D¥xixj
xje{0,1}, j=1:m {8} k:
X < 4 ) < 13
y € argma iVi s.t. — < 10
ne JZlJJ k;m_ﬁ (10)
ny n ) K
s.t. Z':"J'XjJFZG‘JyJ'Sh" i=1:mp Zékzo (11)
=1 =1 =1
O<yj<l j=1:n2 o > —pk, k=1:K (12)

This model is a deterministic equivalent formulation The associated dual problem is
for Qp provided the assumption on the discrete prob-

bilit eQ hold mom
ability spac olds. {Wﬂlln\ﬂ} 2 pk(ZZ D"Jx.x,>
3 THEDISTRIBUTIONALLY Z Pt + Bt

ROBUST FORMULATION k=1

ng Np
1 1l K vy,
In this section, we derive a distributionally RO model St 7= v/« (V + W — le Di,jXIXJ> vk
for Qp. For this, we assume that the probability dis- &34

tribution of the random vectors’ = (py,..,pk ) and M

q" = (a1, ..,0x) are not known and that they can be ¢! > — /P | V' wi ZZ Difjxix; | vk
estimated by some statistical mean from some avail-

able historical data. Thus, we consider the maximum wi >0, vk

likelihood estimator of the probability vectopd and

and ¢*,vi,w! are Lagrangian multipliers for con-
q' to be the observed frequency vectors.

straints (10)-(12), respectively. Similarly, we obtain

3.0.1 The Distributionally Robust Model a dual formulation for (9) as follows
K K
- 2
In order to formulate a robust model fopQwe write e, kZleZk + ZleWﬁ +vé

its objective function as follows

K _— st 2> O (V+WE + ),k

min max —DK XX 8 2

{} {mehg} k . (le i, % J) (8) 0% > — /O (VP +WE + %) , VK
and the left hand side of constraint (7) as the maxi- Wﬁ >0, vk
mization problem where $2,v2,w? are Lagrangian multipliers associ-

K ated with its primal constraints. Now, replacing these
{g;ax} > Pz 9) dual problems in @ gives rise to the following distri-
Y k=1

] ) butionally robust formulation we denote by§Q
where the setblg andHy are defined respectively as

N Ny
< DX xix
HB:{HKZO’V": > =1, L X (Ziz o J)

k=1
< |Tfk—pk|<B} *ZPkW%*BdJl
=~ k=
k=1 Vpk ; ng m
and stdp’ > /P v1+W%fZZ DI jxxj | , vk
) i=1]=1 7

n N

.k:1 1
o> — \/_<v + Wik DI x.x)
K Pk — Gk <y} ZZ Nk

Wi >0, VK (13)
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ny n2
Za'j‘xj+2b'j‘yj§ck+Mkzk, k=1:K
=1 =1

2€{0,1} k=1:K

K K

> G+ Y g +ypZ < a

= =

0% > /Ok(Z+ V2 + W),
0% > —/O(Z+ V2 + W),
W >0, Vk
Xj € {0,1},

vk
vk
(14)
j=1:m

ny
y € argma diyi
X 3 divi)

ny ny

s.t. ZE’jXJ+ZGi’jyj§hi’ i=1:mp
= =1

0<yj<1l, j=1im

In the next section we transform both modelg; &hd
QR into single level optimization problems. More
precisely, we obtain Mixed Integer Linear program-
ming problems (MILP) (Audet et al., 1997).

4 EQUIVALENT MILP
FORMULATIONS

Since the follower problem is the same for both Q
and @, we derive equivalent MILPs by replacing the
follower problem with its primal, dual and comple-
mentarity slackness conditions. These conditions can
be written as

ny ny

D Rixj+ Y Gijyj<hi, i=1:mp(15)
=1 =1
0<y;j<1, j=1m (16)
nh .
Zl}\iGi,jJFHjZdja j=1mm (17)
=
Ai>0 i=1:m (18)
Mj=>0, j=1:n (19)
nq Ny
Ai <hi D> Rixi—3 Gi,jyj> =0,
=1 =1
i=1:mp (20)
Mj(l-y)=0, j=1:m (21)
mp
NGiLj+1—dj |y =0,
iZil ij TR —dj|Yj
i—1:n 22)

where (15)-(16) and (17)-(19) are the primal and dual
follower constraints, respectively. Note that con-
straints (20)-(22) are quadratic constraints. In (Audet
et al., 1997), the authors propose a splitting scheme
to linearize these complementarity constraints. The
approach introduces binary variables as follows

ZF'JXJ

ZG.Jy,Jrv L<L,

= 1.mz (23)
N<ViL, i=1:mp (24)
vte{0,1}, i=1:m (25)
1-yj+ViL<L, j=1:m (26)
W<V j=1:m (27)
vie{0,1}, j=1:m (28)
zAiGi,j"i-Hj —dj+viL<L,

i=

i=1:np (29)
yi<viL, L j=1:n, (30)
\)J3 €{0,1}, j=1:n (31)

where constraints (23)-(25), (26)-(28) and (29)-(31)
replace the single constraints (20), (21) and (22), re-
spectively. The parametéris a large positive num-
ber.

Finally, lety; j = xiX;j be a linearization variable
for each quadratic term ingand @ (Fortet, 1960).
Thus, a MILP formulation for @ can be written as

)

ng N

ZJZlDik,jUJi,J

{Xy.ZWA, u,vl V23 e Z P <i -

st Zall'(XjJerlj(ngckJFMka, vk
=1 =1
K
Y Gz < o
k=1
zc € {0,1}Vk
Wij<x, i,j=1:m (32)
Wij<xj, i,j=1:m (33)
Wij>x+x—1, i,j=1:n (34)
Wij€{0,1}, i,j=1:m (35)
xj€{0,1}, j=1:n
ny ny
> FiXi+ Y Gijyj<hi, i=1:m
=1 =1
0<y;j<1, j=1:m
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m
ANGij+y >dj, j=1:m
i;' ] ] J

Ai>0, i=1:m
u]>07 j:]--nZ

ZF'JXJ ZGlij+vL<L,
|_1.mz
N <ViL, i=1:mp
vte{0,1}, i=1:mp
1-yj+ViL<L, j=1:m
W<ViL, j=1:m
vjze{o,l}, j=1:mp

m,
Zl)\iGi,j +Hj—dj+viL <L,
i=

j=1:n
ijV?L7 j=1:iny
vie{01}, j=1in

where constraints (32)-(35) are Fortet linearization
constraints. We denote this model by MIP Con-
sequently, a MILP distributionally robust model for

QR can be written as follows

K N N
D Wi j
max k;pk <i;1; .,ﬁh)
K
=5 pwi— o’
k=1

N N

st¢l>\/_<v + W

n N

¢l Z \/p_k<vl+wi Z Z le,Jqu,J
i=1j=1

w >0, vk

ng K no K

_Zlajxj + Zlbjyj < ok + Mz,
i= =

K K

Y G+ Y ang+vh? < a
k=1 k=1

z€{0,1} k=1:K

02> /Ok(z+ V2 +w), Wk
02> — oz + VP +uE), VK

wZ >0, Vk
Pij<x, i,j=1:m
Pij <xj, Lj=1:m
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ZZD Wi,

j) ,Vk
),Vk

Pij>x+x—1, i,j=1:m
Pije{0,1}, i,j=1:m
xj€{0,1}, j=1:m

ny no

> Fixi+ Y Gijyj<hi, i=1:m
=1 =1

0<y;<1 j=1:m

mp
ANGij+y>dj, j=1:m
i;I ] ] J

Ai>0, i=1:m
uj>0 j:l'n2

ZHJXJ ZGlij+vL<L
|:1.mz
A<V, i=1:mp
vie{01}, i=1:m
I-yj+VviL<L, j=1:m
W<ViL, L j=1:m
vie{01}, j=1:m

m,
ZlNGi,j +—dj+ VL <L,
i=

j=1:ny
yj<viL, j=1:m
V?G{O,l}, j=1:mp

WhereY = {Wl) ¢17V17Wz7 ¢2)V2) X7 y7 Z7 llJ) )\) u’)vl)vzl
v3}. We denote this model by M

In the next section, we provide numerical com-
parisons between MfPand MIPS. This allows mea-
suring the conservatism level of MPwith respect
to MIPp. The conservatism level can be measured by
the loss in optimality in exchange for a robust solution
which is more protected against uncertainty (Bertsi-
mas and Sim, 2004). This means, the less conser-
vative the robust solutions are, the better the RO ap-
proach.

5 NUMERICAL RESULTS

In this section, we present preliminary numerical re-
sults. A Matlab program is developed using Cplex
12.3 for solving MIR and MIFS. The numerical ex-
periments have been carried out on a Pentium 1V, 1.9
GHz with 2 GB of RAM under windows XP. The in-
put data is generated as follows. The probability vec-
tors p andq are uniformly distributed irf0,1] such
that the sums are equal to one. The parametir



set to 0.1. Matrice§, G and vectorsak, b¥, vk are
uniformly distributed in[0, 1]. The symmetric matri-
cesDX, vk and vectord are uniformly distributed in
[0,10]. The scalargX, vk and the vectoh are gener-
ated respectively as

k 1(& k & Kk
C :E JZlaJ+JZ]_bJ R Yk

and
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for each row in table 1 while varying onfg andy.
These results are shown in tables, 2, 3, 4, 5 and 6,
respectively. All columns in these tables provide the
same information for each instance. In columns 1-2,
we give the values o andy. Columns 3-4 give the
optimal solutions for MIB and MIFR, respectively.
Finally, in column 5, we give the gap we compute

R
asMFl)vD”’P% -100%. In table 2, we observe that

Table 2: Instance # Iny = np =10,m, = 5,K = 10.

1(& &2 ,
hi=Z( 2 Fi+)Gij), Vi=l:m
=1 =1

Robustness

Optimal Solutions

In table 1, columns 1-4 give the size of the instances. B y MIPp MIPS Gak
Columns 5-6 provide the average optimal solutions 0 0 328.37 0%
over 25 different sample instances. Finally, column 7 0 30 328.37 0%
gives the avergge gaps we compute for each instance | 0O 60 328.37 0%
(MIPp,—MIPF) 0 90 328.37 0%
asw -100%. These results are calculated 30 0 20118 | 8.28%
for different values of andy. From table 1, we 30| 30 311.27 | 5.21%
30| 60 315.48 | 3.93%
Table 1: Average comparisons over 25 instances. 30| 90 31548 | 3.93%
Instance size Avg. Opt. Sol. Avg. Ga 60 0 85 290.70 | 11.47%
n[n ] K[m| MPp | MIPE Y 60| 30 291.79 | 11.14%
B =50 andy=50 60| 60 311.04 | 5.28%
10| 10| 10| 5 | 300.09 | 267.31| 10.85% 60 90 311.04 | 5.28 %
10[10| 30| 5 283.95 | 229.39| 21.88% 90 0 30253 | 7.87%
10| 10| 10| 10 | 322.94 | 284.46| 11.98%
20 10| 10| 5 | 985.82| 917.55| 6.95% gg 28 gggg; g'gng’
10| 20| 10| 5 | 152.09 | 115.25| 22.12% : O 70
90| 90 290.54 | 11.52 %
3 =100 andy=50
10 10| 10| 5 313.29 | 258.47| 17.74% .
10110130 5 | 272.49 | 212.071 22.05% whenf = 0, then augmenting the valuesydoes not
10/ 10| 10! 10| 320.94 | 290.30| 9.29% affect the optimal solutions. This is not the case when
20 (10| 10| 5 | 990.99 | 931.64| 5.93% y=0andp > 0. Next, when bot > 0 andy > 0,
10|20 10| 5 | 138.99 | 100.97| 27.53% the optimal solutions are affected. In particular, we
B =50 andy = 100 observe that the paramefgaffects more the optimal
101101 10| 5 | 290.98 | 255.61| 12.06 % solutions tharydoes. For example, whgihgoes from
18 18 fg 150 gﬁgi %g;-gg %8626;/0 30 to 60, we observe an increment of 5.93% while
. . . (] ; 0
20/ 10| 10| s | dotaarlesesn| 5235 |t e e Inthis parti.
10 20| 10| 5 169.78 | 89.12 | 47.33% '

ular case, we observe a decrement of 1.28% in each

mainly observe that the solutions tend to be more con- case. The increase pEeems to produce the opposite

servative when a) the number of scenakois larger
thanny,n, andnp and b) when the number of vari-
ables of the follower problenm; is larger tham;, K

effect than incrementin@. For example, we notice
that whenf3 = 30,60,90 andy goes from 0 to 30, 60
or 90, the gaps are decremented except in the worst

andmy. On the opposite, we see slight conservative case when bott =y = 90.

solutions when the number of binary variables:is
larger thamy, K andny,. The variations off andy do

Similar observations are obtained for instances 3
and 5 in tables 4 and 6, respectively. Instances 2 and

not seem to affect these trends. However, they seem to4 in tables 3 and 5 respectively, provide additional in-
affect the conservatism level in each case. For exam-formation. Table 3 corresponds to the case where the

ple, the average increases significantly up t338%
whenf < yandn;y is large. Same remarks whé&his
large.

In order to see how the parametgFsandy af-

number of scenarioK is larger compared toy,ny
andmp. In this case, increasingwhenf3 = 0 af-
fects the optimal solutions. In particular, wh@er= 0
andy goes from 60 to 90, we have a large increase of

fect the conservatism levels, we solve one instance 31.04% in the conservatism level. This is repeated for
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Table 3: Instance # 2y = np = 10,m; =5, K = 30. Table 5: Instance # 4, = 20,n, = 10,mp, = 5,K = 10.

Robustness Optimal Solutions Gal Robustness Optimal Solutions Ga

BT vy | MP, | MIPR R BT vy | MP, | MIPR R
0 0 181.14 0% 0 0 982.24 0%

0 30 181.03 | 0.06 % 0 30 965.06 | 1.75%
0 60 179.85 | 0.71% 0 60 973.95 | 0.84 %
0 90 123.63 | 31.75% 0 90 982.24 0%
30 0 178.82 | 1.28% 30 0 923.13 | 6.02%
30 30 17712 | 2.22% 30 30 934.96 | 4.81 %
30 60 177.12 | 2.22% 30 60 940.78 | 4.22%
30 90 123.67 | 31.73 % 30 90 940.78 | 4.22%
60| o |84 17663 | 2.49% 60| 0 |98224| 94038 | 4.26%
60 30 176.63 | 2.49% 60 30 943.63 | 3.93%
60 60 175.07 | 3.35% 60 60 931.84 | 5.13%
60 90 123.08 | 32.05 % 60 90 902.04 | 8.16 %
90 0 174.60 | 3.61% 90 0 936.32 | 4.67 %
90 30 173.15 | 441 % 90 30 926.40 | 5.68 %
90 60 173.15 | 441 % 90 60 929.28 | 5.39 %
90 90 121.96 | 32.67 % 90 90 895.58 | 8.82 %

Table 4: Instance # 311 = np = 10,mp = 10,K = 10. Table 6: Instance # 511 = 10,n; = 20,m; = 5,K = 10.

Robustnesg Optimal Solutions Robustnesg Optimal Solutions

B1 y | MiPy | MIPR | C2R BT y | MP, | MIPR | Cak

0 0 331.48 0% 0 0 257.00 0%

0 30 331.48 0% 0 30 257.00 0%

0 60 331.48 0% 0 60 257.00 0%

0 90 331.48 0% 0 90 257.00 0%
30| 0 316.51 | 4.52 % 30| O 241.17 | 6.16 %
30 30 316.51 | 4.52 % 30 30 241.17 | 6.16 %
30 60 316.51 | 4.52% 30 60 241.17 | 6.16 %
30 90 311.11 | 6.15% 30 90 241.17 | 6.16 %
60| 0 |33 30665 | 7.49% 60| o |2°700) 53059 | 1039%
60 30 306.65 | 7.49 % 60 30 230.29 | 10.39 %
60 60 306.65 | 7.49 % 60 60 230.29 | 10.39 %
60 90 309.91 | 6.51% 60 90 230.29 | 10.39 %
90 0 308.84 | 6.83 % 90 0 223.45 | 13.06 %
90 30 308.84 | 6.83 % 90 30 223.45 | 13.06 %
90 60 308.84 | 6.83 % 90 60 223.45 | 13.06 %
90 90 308.84 | 6.83 % 90 90 223.45 | 13.06 %

each value op = 0,30,60,90 wheny goes from60to  gramming problem. To this end, we transformed the
90. The worst gap occurs whén=y = 90. stochastic bi-level problem into an equivalent deter-

Finally, in table 5 we observe weak conservatism Ministic model. Afterward, we derived a bi-level dis-
levels in all cases. In fact, they are lower than 10%. tributionally robust model using the deterministic for-
This instance corresponds to the case when the binarymulation. In particular, we applied a distributionally
variables of the leader problem, im. are largerwhen ~ robust approach proposed in (Liao, 2011). This al-

compared tan,m, andK. Notice that wher = 0 lows optimizing the problem when taking into ac-
andy grows, then the opt|ma| solutions are S||ght|y count the set of all pOSSib|e distributions of the in-
affected. put random parameters. Thus, we derived Mixed In-

teger Linear Programming formulations using Fortet
linearization method (Fortet, 1960) and the approach
proposed by (Audet et al., 1997). Finally, we com-
6 CONCLUSIONS pared the optimal solutions of this model to measure
the conservatism level of the proposed robust model.
In this paper, we proposed a distributionally robust Our preliminary numerical results show that slight
model for a (0-1) stochastic quadratic bi-level pro- conservative solutions are obtained for the case when
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the number of binary variables in the upper level prob-
lem is larger than the number of variables in the fol-
lower problem.
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