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We propose a stochastic optimization model for the composition of emergency response teams. An emergency
intervention requires first an evaluation of the situation which results in the need of different skills. People
involved in the response team must therefore comply with the required skills, be available, with a past and
future workload respecting contractual compliance. In addition, we must also anticipate the possibility of
future interventions that will require rare skills. It is the uncertain future demand for these skills that introduces
stochasticities to the system. Since shifting agents between emergencies may be impossible or impractical,
we would like to ensure that rare skills are not wasted but assigned to the emergency that most needs them.
We model this with a mixed integer linear program implemented in AMPL and capable of being solved in

real-time on common solvers.

1 INTRODUCTION

The composition of emergency response teams is a
task which is often done manually by a team lead who
evaluates the nature and seriousness of the accident at
hand. The team lead has a list of people on standby
that she can choose from. She knows their availabil-
ity, qualifications and working hours constraints, and
must compose the team in real time taking care that
scarce resources in terms of rare skills might be re-
quired in future interventions. The success of the in-
tervention thus rests on the knowledge of the team
lead. Her absence, in the case of illness for example,
may hinder the fluent course of emergency response
operations. This highlights the importance of devel-
oping a decision support tool to aid the composition
of response teams and reduce the risk of disturbances
in the absence or replacement of the team lead. To our
knowledge, there is no existing tool for the real-time
composition of emergency response teams in optimal
or near-optimal way.

Emergencies are very often unpredictable. Their
critical nature, however, means that they must be eval-
uated and responded to very quickly. The key factor
in responding to emergency situations is not one of
monetary costs but of consistently meeting important
benchmarks of performance. Examples include inci-
dent response times, sufficient personnel with appro-
priate skills, efficient distribution and management of
the equipment, etc.
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Road safety, particularly after a traffic accident,
is a prime example of an emergency that requires an
immediate response. In addition to clearing the road
of vehicles and debris, which may require heavy ma-
chinery, a response team must close lanes, manage
traffic and sometimes investigate accident causes, par-
ticularly when criminal behavior is suspected. Road
safety therefore requires a near immediate response
to prevent danger but also the presence of appropriate
skill levels in terms of forensics, first aid, road main-
tenance, the operation of special machinery, etc. In
addition, the availability of agents, their contractual
working hours, overtime pay and resource utilization
must all be taken into account as they themselves have
an affect on what the optimal team composition is.

The stochastic nature of emergencies also affects
the optimal agent assignments, resource utilization,
etc. In the case of rare skills, for example, we would
have to consider future emergencies that occur while
the current emergency is being handled. Since shift-
ing agents between emergencies may be impossible
or impractical, we would like to ensure that rare skills
are not wasted but assigned to the emergency that
most needs them. This means that it could be opti-
mal for an agent to remain idle and wait for the next
emergency rather than being assigned now.

In this article we propose a mixed integer lin-
ear programming model whose objective function
and constraints accommaodate the stochastic aspect of
emergencies. The team composition in terms of agent

11

In Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems (ICORES-2013), pages 159-167

ISBN: 978-989-8565-40-2

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)



ICORES 2013 - International Conference on Operations Research and Enterprise Systems

assignments must take into account the possibility of
future emergencies that may require, among other fac-
tors, rare agent skills. Our model is implemented
in AMPL and solved to optimality with a common
solver. The model is tested on randomly generated
data instances of realistic size and solves to optimal-
ity in real time. Future practical extensions and im-
plementations of the model may necessitate the de-
velopment of appropriate heuristics.

This article is structured as follows. After this in-
troduction, section 2 offers a review of related liter-
ature from several domains that our research touches
on. Section 3 develops a base stochastic model for
emergency team composition and then offers several
extensions to it. Section 4 describes the results of the
experimental testing. Finally, section 5 concludes and
stresses on further developments and applications.

2 LITERATURE REVIEW

Scheduling and assignment problems are some of the
most studied and applied problems in combinatorial
optimization. They are encountered in almost all
businesses with multiple employees especially where
large and complex task structures need to be effi-
ciently executed. These problems are very often mod-
eled as integer or binary programs, which makes it rel-
atively easy to express the objectives and constraints.
On the other hand, they are very often NP-hard and
thus difficult to solve. (Cattrysse and Wassenhove,
1992) present a survey of algorithms to solve rea-
sonable instances of the generalized assignment prob-
lem (GAP) to optimality. Large instances, however,
may necessitate the use of heuristics. (Pentico, 2007)
presents the most useful variations of the assignment
problem since the publication of the seminal work of
(Kuhn, 1955) on the Hungarian method.

A host of authors have contributed to the de-
velopment of variations of the assignment problem,
whether in terms of modeling or solution techniques.
(Caron et al., 1999) and (Volgenant, 2004) look at
the assignment problem with seniority and task prior-
ity constraints. (Volgenant, 2004) offers an improve-
ment to the coefficient scaling approach of (Caron
etal., 1999) by successively re-optimizing assignment
problems of increasing size. The latter method has
the complexity of a standard linear assignment prob-
lem and can be successfully applied to a bottleneck
problem. (Felici and Mecoli, 2007) propose a version
of the GAP where agents exhibit join and split pref-
erences. The split preference problem can be formu-
lated as a minimum cost flow on a suitable graph. It is
a polynomial time algorithm and can be solved with a
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common solver in reasonable time. On the other hand,
the join preference problem is NP-hard and needs to
be solved by heuristics. (Gilberti and Righini, 2007)
design an integer programming model for the multi-
period allocation of duties in rapid intervention teams
with the objective of minimizing the maximum inter-
vention time. Moreover, the assignment has to be eq-
uitable so that the effort is evenly distributed among
the available teams.

Stochasticities in the assignment problem have
also been addressed in the literature. (Albareda-
Sambola and Fernandez, 2000) study the GAP with
independent and identically distributed demands for
agents following a Bernoulli distribution.  Their
model is based on probabilistic constraints and is
solved as a transportation problem. It proves to be
the best in terms of the value of the objective function
and in avoiding infeasibilities compared to the alter-
native approaches they consider. (Spoerl and Wood,
2004) model uncertainty in the elastic GAP when
the amount of resources used by the agents follow a
normal distribution. They penalize resource overuse
and find substantial value of the stochastic solution.
(Albareda-Sambola et al., 2006) study a two-stage
stochastic GAP where task availability is distributed
following a Bernoulli distribution. In the first stage,
initial assignments are made before task availability
is known with certainty. After task availability is re-
vealed, reassignments may be made at a cost. The
authors construct a convex approximation of the non-
convex objective function and solve the problem us-
ing exact algorithms.

(Toktas et al., 2004) study stochastic resource-
constrained GAPs where the resource capacities fol-
low an unknown probability distribution which can
be sampled. They develop exact and approxi-
mate solution techniques based on Lagrangian re-
laxation to solve the collectively capacitated GAP
(CCGAP)? with three alternative recourse functions.
The stochastic approaches perform significantly bet-
ter than those using expected values of the capacities
in a deterministic setting. In addition, approximate
stochastic programming techniques are as efficient as
deterministic techniques. (Toktas et al., 2006) review
alternative methodologies for dealing with capacity
constraints under uncertainty of the resource capaci-
ties when stochastic programming is infeasible or un-

IThe elastic generalized assignment problem (EGAP),
addressed by (Brown and Graves, 1981), is an extension of
the GAP that treats capacity constraints as soft constraints,
with capacity overuse penalized in the objective function.

2The collectively capacitated generalized assignment
problem is a version of the GAP with multiple resources
collectively capacitated for all agents, without the require-
ment for one-to-one matching between tasks and agents.
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desirable, for example when it is very difficult to de-
fine a recourse function.

The emergency team composition problem be-
longs to the vast array of literature on disaster and
emergency planning. (Green and Kolesar, 2004), (Al-
tay and Green, 2006), and (Simpson and Hancock,
2009) offer detailed discussions on the development
of OR methodologies in emergency planning and dis-
aster response. They describe the City of New York
though its fruitful cooperation with the RAND Cor-
poration as the principal arena for much of the early
research on police, fire and ambulance services allo-
cation and deployment. (Kolesar and Walker, 1974),
for example, develop a model and heuristic to deter-
mine the location of fire trucks in New York. OR ap-
plications began in the context of improving perfor-
mance in organized environments. Emergencies, on
the other hand, represent the disruption of such de-
signs and highlight the practical needs of many orga-
nizations.

One of the first influential papers outside the ur-
ban services group was (Brown and Vassiliou, 1993),
which presents a decision support system for the real-
time tactical allocation of response units in the con-
text of disaster relief following a major earthquake in
Greece. Similar research is carried out by other au-
thors as well. (Rolland et al., 2010) include work-
load and labor requirements, precedence constraints,
resource availability, and critical deadlines. Skills are
also considered by modeling them as team-task mis-
match costs in the objective function. (Barbarosoglu
and Arda, 2004), (Beraldi et al., 2004), (Yi and Ku-
mar, 2007), and (Mete and Zabinsky, 2010), among
others, apply stochastic programming techniques to
the management of disasters of various natures. These
studies, however, do not necessarily belong to the as-
signment problem realm.

Emergency response planning, as briefly de-
scribed above, generally has a space dimension and
involves routing problems. In terms of the manage-
ment of emergency teams, (Rolland et al., 2010), for
example, deal with the time-periodic scheduling of
assignments in the context of disaster response sit-
uations. Their contribution consists in proposing a
hybrid meta-heuristic which allows for the real-time
solution of the disaster recovery scheduling problem.
Unlike us, however, they work in a deterministic en-
vironment and view teams as already existing. Our
model on emergency team composition and manage-
ment therefore is a step forward in a new direction.
It allows us to both position ourselves in the area of
emergency response and develop our contribution of
a new approach in terms of team composition.

Even though optimal team composition is an area

of interest to OR, the focus has generally not been
on emergency response. (Boon and Sierksma, 2003),
for example, develop an assignment problem with
more than 20 additional constraints which is applied
to team composition in volleyball.

(Shipley and Johnson, 2009) treat the question
of choosing project team members who meet the
project’s goals for the preferred cognitive style. The
paper presents a fuzzy logic and an algorithm based
on belief in the fuzzy probability of a cognitive style
fitting a defined goal. Thus the paper addresses uncer-
tainty in decision making and facilitates the member
selection process. It illustrates how OR can adapt be-
havioral research techniques. (Woodruff, 2010) also
treats the problem of choosing optimal teams under
predefined policies. It treats the players in terms
of their specific skills rather than interactions and
demonstrates that if satisfaction of the policy is dif-
ficult then simply choosing a set of individually best
members will often not result in the best policy con-
formance. In other words, a team of the best will not
be the best team.

The model we propose in this article considers
workers with different skills. In this respect it touches
on a significant body of literature that treats the prob-
lem of cross-trained workers from various perspec-
tives. (Campbell and Diaby, 2002) develop heuris-
tics for the model of (Campbell, 1999) which assigns
cross-trained workers across different departments at
the beginning of a shift. The departmental utility
function is non-linear and the resulting model can
be viewed as a variant of the GAP. It models cross-
trainings by specifying an agent’s capability as a per-
centage of a fully qualified agent in that task. (Camp-
bell, 2011) takes the problem of scheduling and as-
signment of cross-trained workers to a stochastic en-
vironment with variable demands. The second-stage
is a recourse on realized demands.

(Sayin and Karabati, 2007) also build a framework
based on the non-linear nature of the departmental
objective function of (Campbell, 1999). They pro-
pose a two-stage model, where two objective func-
tions, departmental utility and skill improvement, are
considered in the assignment of cross-trained work-
ers. (Fowler et al., 2008) develop heuristics for the
model of (Wirojanagud et al., 2007) which determines
different staffing decisions, such as hiring, firing and
cross-training of workers, in order to minimize work-
force related costs over multiple periods. It is a multi-
period model where cross-training is done with the
purpose of satisfying labor requirements in each pe-
riod. In this article, we attempt to find the best assign-
ment of agents with multiple skills by taking into ac-
count the need for rare skills in the future. The train-
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ing of agents is not an objective of our model.

3 PROBLEM FORMULATION

The methodology we propose here is based on a two-
stage stochastic linear programming framework. In
such a framework, the first stage consists of a struc-
tural component which is fixed while the second stage
varies with uncertainty. In general, the second stage
is represented by a collection of distinct future scenar-
ios which are governed by stochastic parameters. In
other words, the stochastic parameters have a discrete
distribution or are represented by a finite sample from
a continuous distribution. A number of studies con-
cern the selection of scenarios in stochastic programs.
(Jenkins, 2000), for example, proposes a mathemat-
ical programming model for the selection of a lim-
ited set of scenarios that have the maximum similarity
with all potential scenarios.

The first-stage decision variables in a stochastic
program-represent decisions that must be made now,
before the future state is known. These are proactive
decisions often concerned with planning. They are
independent of the values of the stochastic parame-
ters in the second stage. This property is known as
non-anticipativity, i.e. our actions now cannot take
advantage of knowledge of the future. The second-
stage decision variables, commonly referred to as re-
course or reactive variables, represent the actions we
take after the values of the stochastic parameters are
revealed. For every scenario, there is a set of recourse
variables linked to the first-stage decision variables by
scenario-dependent constraints. Solving the stochas-
tic program thus yields an optimal first-stage decision
under all scenarios, i.e. all considered realizations of
the stochastic parameters.

In a team composition framework, let’s consider
an emergency that occurs now. This emergency is
composed of a set of tasks, each of which requires
a set of skills to be simultaneously present in every
agent assigned to it. In the simplest case, an emer-
gency may only consist of one task. Moreover, a task
may only require one skill. An agent, in turn, may
possess a number of skills. Each tasks requires a num-
ber of skilled agents to be assigned to it.

We consider a set of tasks | indexed by i, a set
of agents J indexed by j, a set of skills S indexed by
s, and a set of resources R indexed by r. Moreover,
we consider a set of future emergencies F indexed by
f that develop while the current emergency is being
handled. Any emergency, be it the current one or the
future ones, is composed of a subset of I. The number
of tasks and the number of needed agents in the fu-
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ture is not known a priori. It is stochastic and depends
on the particular emergency scenario that develops.
Therefore, we have to decide on the most appropriate
assignments so that the staffing requirements of both
the current and the future emergencies are satisfied
with agents possessing the necessary skills and at the
lowest possible cost. The assignment of agents with
rare skills becomes critical here. Assigning such an
agent to a trivial task in the current emergency means
that his rare skills will not be available if a future
emergency needs them.

The index f designates the types of scenarios or,
in other words, the types of emergencies that can
develop while still handling the current emergency.
In a generalized. framework, we assume that the
lapse between two consecutive emergencies of the
same type f follows an exponential distribution. The
probability of an occurrence during the handling of
the current emergency therefore does not depend
on the past due to the memoryless properties of the
exponential distribution. These probabilities can be
normalized to add up to one and used in the objective
function. Once a future emergency occurs, the system
is re-optimized taking care of any parameter changes
in terms of worked hours, availability, etc. Due to
the continuous nature of the exponential distribution
we can assume that two emergencies cannot occur at
the same time. The decision maker will thus need to
optimize with the occurrence of every emergency to
find out the most appropriate assignments. We in-
troduce the following notation in terms of parameters:

Cij  cost of assigning agent j to task i

qjs skill qualification of agent j (1 if skill s is
present, O otherwise)

eis  skill requirement of task i (1 if skill s is re-
quired, 0 otherwise)

n;  number of agents required for task i in the
current emergency

n¢ number of agents required for task i in fu-
ture emergency f

ujr  use of resource r per agent assigned to task
i

tr total available amount of resource r

a; availability of agent j

d duration of the current emergency

ds  duration of future emergency f

hj  number of already worked hours by agent j

H; contractual number of working hours of
agent j

ps  probability of occurrence of emergency f

All of these parameters are evaluated at the time
of every optimization (re-optimization). For exam-
ple, the available agents at any given optimization
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step will not include those that are out handling an
emergency. In a realistic environment, therefore, this
optimization algorithm will be part of a larger system
that tracks the status of all agents and updates their
relevant parameters. We should also mention that the
costs in the above notation should not necessarily be
understood as monetary costs. These could be utili-
ties, hierarchy levels, execution efficiencies, response
times (depending on where the agents are located) etc.

A more detailed discussion of ps is in order. We
can imagine that there is an indefinite number of dif-
ferent emergencies that can occur considering all the
different parameters that describe them. This is why
the model we describe below assumes that we have
already performed data mining on the historical data
we have and extracted several emergency types (in
terms of duration, tasks, etc.) that are closest to our
complete sample of emergencies. Looking at the fre-
quency of these emergencies, we can calculate the
probability that they develop while the current emer-
gency is being handled. Normalizing these probabili-
ties to add up to one, we obtain the parameters ps.

The decision variables in the current and future
emergencies are:

Xij  assignment of agent j to task i in the current
emergency (binary)

Xtij assignment of agent j to task i in future
emergency f (binary)

The stochastic optimization model thus takes the fol-
lowing form:

min CijXij+ P CijXfij @)
i21 j2J f2F  i2l j2J
s.t. (Xij +Xx5ij) 6 1; f2F;j2J 2
il
eisXij 6 qjs; 121;j2J;528S (3)
eisXfij 6 Qjs; F2F;i21;j27;52S (4)
Xjj = Nj; i21 (5)
j21
Xfij>nfi; f2F;i2| (6)
j21
(hj+d) xij+(hj+dr) xrij 6 Hj;
i2l il (7
f2F;j2J
(UirXij + UirXij) 6 tr;
i21 j2J (8)
f2F:r2R
xij6a,—; i2|;jZJ 9
xfij6aj; f2F;i2|;j2J (10)

Xij;xtij 20,19, f2F;i21;j2J (11)
Expression (1) designates the minimization of the

cost of all assignments, i.e. the costs of assigning
agents to the current emergency and all future emer-
gencies according to their probability. Constraints (2)
impose that an agent is assigned to at most one task ei-
ther in the current emergency or (any or all of) the fu-
ture emergencies (as we do not know which one will
occur first). As explained above, it may be optimal
for the agent to remain on standby and wait for the
next emergency. Constraints (3) ensure that an agent
is assigned to a task in the current emergency only
if he has all the necessary skills. Constraints (4) ex-
tend this to the future emergencies. Constraints (5)
and (6) require a minimum number of agents per task
in the current and future emergencies. Constraints (7)
establish that an agent can be assigned to the current
or future emergencies only if his contractual working
hours do not expire during the emergency to which
he is assigned. We have the usual assumption here
that working time only accrues during the handling
of an emergency. Standby is not considered as work-
ing time in our model. Moreover, we assume that the
agent should be present during the whole duration of
the emergency.

Constraints (8) impose a limit on resources. We
have multiple resources collectively capacitated for
all agents, an approach that appears as early as in
(Mazzola and Neebe, 1986). Given the fact that we
do not require a one-to-one matching between agents
and tasks, our model in its essence resembles the CC-
GAP proposed by (Toktas et al., 2004). In our model,
however, resource consumption is not agent specific.
It depends on the number of agents assigned but not
the specific agents that are assigned. Constraints (9)
and (10) specify agent availability and, finally, con-
straints (11) establish the variable domains.

The strict separation between the parameters re-
lating to the current emergency and those relating to
the future emergency types allows for a more flexi-
ble model. Thinking about the emergencies that may
develop, we think of the emergency types that we de-
fined above. Once an emergency develops, however,
it is no longer an emergency type but an actual emer-
gency. A quick assessment of it will allow us to at-
tribute the appropriate parameters in terms of what
tasks it is composed of, how many agents each task
needs and what the emergency’s duration is.

Tasks in the above model are in essence task
types. The set | describes all possible task types that
can occur®, such as road maintenance, forensics, etc.
Stochasticity in our model is manifested through the
types of emergency events in the scenarios. Based on
the event that occurs, some tasks will not exist (they

3The definition of | can be based on historical analysis
of the emergency data.
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do not need any agents) or may need a certain number
of agents. More precisely, therefore, stochasticity in
the model is governed by the values of the parameters
nsi. In addition to the base model presented above,
some of the constraints can be substituted or supple-
mented by the alternatives below. [task types]

Overtime: We can modify the working hours
constraints (7) to allow overtime. Agent overtime will
then be penalized in the objective function. The idea
is similar to that of (Brown and Graves, 1981), cited
in (Spoerl and Wood, 2004), where they penalize
agent capacity under- and over-use. Working time, in
this sense, is agent capacity. We define the following
parameters:

cJT cost of overtime of agent j

a;b  weighting parameters

The decision variables associated with this ap-
proach are:

y}“j overtime hours of agent j (linear)
Y under-time hours of agent j (linear)

Introducing the above notation, the model be-
comes:

min a(Objective 1)+b  pr ¢y (12)
f2F  j23

st (2);(3);(4);(5);(6)
hj+d  Xij+ds Xy Y?j +Y¢j = Hijs
21 il (13)
f2F;j2J
iy >0 f2F;j2] (14)
(8):(9);(10);(11)

In addition to minimizing assignment costs, the
objective function (12) also minimizes the penalty as-
sociated with the overtime hours in constraints (13).

Capacitated overtime: We can also add maximum
allowable overtime on constraint (13). In the model
below, hT stands for the maximum allowable over-
time hours for agent j. The capacitated overtime
model thus becomes:

min Objective 12
st (2):(3):(4):(5):(6); (13)
yf;6hi; f2F;j21 (15)
(8);(9);(10); (11); (14)
Shared resources: Constraints (8) model task-
based resource consumption per agent, i.e. adding
an additional agent to any task increases that task’s

resource consumption. We may call these individual
resources because they are allocated to each agent
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individually.  An example of such resources are
face masks. However, we may want to model an
alternative resource consumption pattern that is not
linked to every incremental agent. The model below
is appropriate for resources such as vehicles that drive
the agents to the emergency. One vehicle should be
dispatched for every “n” agents regardless of which
task of the emergency they are assigned to. We call
these shared resources. To model them, we only need
to supply one additional parameter and two decision
variables:

kr  number of agents per resource r

vy use (consumption) of resource r in the cur-
rent.emergency (integer)

Vir  use (consumption) of resource r in the fu-
ture emergency f (integer)

The alternative resource consumption model thus
becomes:

min  Objective 1

st (2);(3);(4);(5);(6); (D)

Xij 6 kevr; 2R (16)
i21 j2J

Xfij 6 kever; f2F;r2R - (17)
i21 j23

(9):(10); (11)

vr;Vvir 2 integer; f2F;r2R (19)

Constraints (16) and (17) increment the resource
consumption variables v, and v, based on how many
agents are assigned to each emergency*. Constraints
(18) then ensure that the resource availability is re-
spected. There could be different variations of this
constraint based on the specific circumstances or the
preferences of the decision maker.

Soft constraints: Depending on the policy of the
decision maker, some of the constraints above may be
softened. Whether two agents may be able to carry
out a task that requires three agents, whether these
agents will be able to execute the tasks if they are not
fully qualified or lack some of the necessary resources
are questions that should be analyzed by each of the
model’s users. A van intended to carry four people
may be able to carry five, but a fire cannot be put out
without a fire engine.

In the above model and its extensions, most con-
straints (apart from overtime) must be perfectly satis-

4The reason we sum over the agent assignment variables
(xij and xij) as opposed to the parameters specifying the
number of required agents (nj and ng;), is to preserve the
flexibility to soften constraints (5) and (6) as described be-
low.
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fied in order to find a feasible solution for the emer-
gency team composition problem. However, in many
practical applications the constraints do not need to be
perfectly satisfied. In the case of soft constraints, the
constraint my be violated and the solution is still ac-
ceptable, although not as “desirable”. A common way
to specify soft constraints is by adding penalty vari-
ables to each soft constraint. These variables take the
value of zero when the constraint is satisfied and then
increase with the degree of constraint violation. There
is a penalty parameter associated with each penalty
variable. The resulting penalty function is minimized
in the objective.

In the model above, some of the constraints that
can be softened include the number of agents per task
constraints (5, 6) and the qualification constraints (3,
4). In the first case, the step may be necessary if an in-
sufficient number of agents are available. The model
will include penalties on task under-staffing which
may vary depending on task criticality. In the second
case, the step may be necessary if the workforce is not
sufficiently qualified yet. Given a penalty on not satis-
fying the qualification constraints, the model will sat-
isfy the skill requirements of a subset of the tasks. For
the remaining tasks, under-qualified agents will be as-
signed. Softening both groups, it would make sense
to attach higher penalty to the number of agents con-
straint as assigning less than perfectly qualified agents
to a task is usually better than assigning no agents at
all.

Regarding the resource constraints (8, 18), in the
model above they are infeasibility constraints. They
are either satisfied or not and do not affect agent as-
signments. Our presumption is that a task consumes
the same amount of resource regardless of which par-
ticular agent is assigned to it. Therefore, being hard
our resource constraints serve two purposes. First,
they ensure that an assignment is feasible only if there
are enough available resources. Second, they allow
us to keep track of the used resources. Softening
the resource constraints will mean that agents may
be under-supplied with resources in some or all of
the scenarios. In particular, softening constraints (18)
may be sensible if we allow for “overcrowded” vehi-
cles, for example.

4 EXPERIMENTAL RESULTS

In order to test the performance of our model, we
carried numerical experiments on randomly gener-
ated instances of the stochastic model with capaci-
tated overtime constraints and two types of resources
— the individual resources modeled by constraints (8)

and the shared resources modeled by constraints (16)
through (19). That is, our model is composed of the
objective function (12) with a and b equal to 1, plus
constraints (2) - (6), (8) - (11), and (13) - (19). All of
our constraints except working hours remain as hard
constraints. Our idea was to generate problem in-
stances of realistic size as depicted in table 1 so as to
assess the model’s performance as if applied to a real-
istic setting. The tests were carried out on a 2.66 GHz
Intel Core 2 Quad PC with 8 Gb of memory running
a 64-bit Windows 7. The problem was modeled in
AMPL and we used an AMPL client associated with
the Gurobi 5.0 commercial solver.

Table 1: Random data. This table presents the key param-
eters used for the generation of random instances.

Parameters Size
Task types 15
Agents 300
Skills 10
Individual resources 10
Shared resources 4
Emergency scenarios 8

We generated a set of random instances involving
300 agents and 15 tasks. Each emergency consists of
a random subset of the tasks and each task requires a
random number of agents.

Most of the model’s parameters are based on uni-
form distributions, with rounding or flooring where
necessary. As an exception. the number of required
agents per task is modeled using an exponential distri-
bution with a rate of 0.3 and then floored to the nearest
integer. The choice of the exponential distribution al-
lows tasks involving no agent with a high frequency.
Such tasks do not belong to the associated emergency.
This choice of parameter also allows occasional large
numbers. There are a total of 10 skills that we con-
sider, of which seven are frequent skills, present in
almost every agent, while the three remaining skills
are rare.

There are 10 types of individual resources, i.e.
resources modeled according to constraints (8), and
four types shared resources — those modeled by con-
straints (16) through (19). Finally, we have eight
future emergency scenarios. In every generated in-
stance, the probability of an emergency of each type
occurring during the handling of the current emer-
gency is sampled from a predefined historical distri-
bution. These probabilities are then normalized to add
up to one. As explained above, in a realistic situation,
the model is run iteratively with every emergency oc-
currence taking into consideration the latest informa-
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tion on the model’s parameters.

As table 2 below shows, we generated 200 random
instances of the model. Since all of our constraints are
hard, seven of the instances (3.50%) turned out to be
infeasible.

Table 2: Instance statistics. This table presents various
characteristics of the randomly generated instances.

Before presolve Size
Number of instances 200
Feasible instances 193
Number of variables 45,336
Number of constraints 452,983
After presolve Mean St. Dev.
Number of variables 24,515.40 2,253.77

Number of constraints  4,803.12 38.24
Solution time (sec) 3.91 0.43

The table also shows that the original instances
have 45,336 variables and 452,983 constraints. After
AMPL’s presolve, however, the number of variables
is almost halved and the number of constraints is re-
duced by a factor of 90. The instances solve for an av-
erage of 3.91 seconds. Based on a t-distribution, the
95% confidence interval for the mean is from 3.85 to
3.97 seconds. Using the free CBC 2.7.5 solver on the
same instances, the solution times generally remain
below 20 sec.

In a second experiment, we doubled the value of
each parameter in table 1. The resulting instances
have 325,336 variables and 6,455,890 constraints.
After presolve, the number of variables is reduced ap-
proximately three times and the number of constraints
is reduced to around 19,000, i.e. less than 1% of the
original value. Using Gurobi 5.0, the solution times
are between 20 and 30 sec, which is still a compara-
tively low value for the size of the problem we have.

The results therefore suggest that instances of re-
alistic size can be solved in reasonably short time
on a commercial or free solver without the use of
any heuristics. Further developments of the model
through the addition of client-specific constraints or
the softening of some of the constraints will inevitably
make the model more cumbersome and therefore im-
pact the solution time. Future testing and possible
commercial applications will show whether heuristics
or meta-heuristics need to be developed.
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5 CONCLUSIONS

In this article, we proposed a stochastic optimization
model for the composition of emergency response
teams taking into account agent skills, availability,
contractual compliance and resource utilization. The
experimental results showed the viability of the model
as a first step of a multi-stage project. The next steps
will see our model enriched with alternative objec-
tive functions and more constraints, including client
specific ones in order to increase the marketability of
our prospective tool. Finally, our model is intended to
evolve into a web-based decision support application
with on-demand access.

The potential market of our tool includes enter-
prises in the areas of emergency response services and
call centers. Most of the medium and large IT enter-
prises, especially the ones working with the banking
sector, ensure very short response times and should
thus be able to compose expert teams in real time.

There is one more message we want to convey
with our work. The generalized assignment problem
is NP-hard. Being a variation and a stochastic exten-
sion of the GAP, our model can be viewed as “dif-
ficult” to solve. Researchers often tend to develop
heuristics when it comes to solving difficult problems,
even of modest size. Nevertheless, we have shown
that before developing heuristics, it makes sense to
model the problem in a mathematical programming
language and try an available commercial solver, or a
free solver such as those from the COIN-OR project
(www.coin-or.org).
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