
Basic and Hybrid Imperialist Competitive Algorithms for Solving the
n-Queens Problem

Ellips Masehian1, Nasrin Mohabbati-Kalejahi2 and Hossein Akbaripour1
1Industrial Engineering Department, Tarbiat Modares University, Tehran, Iran

2Faculty of Industrial Engineering, Amirkabir University of Technology, Garmsar, Iran

Keywords: n-Queens Problem, Imperialist Competitive Algorithm, Local Search, Effective Swap Operator.

Abstract: The n-queens problem is a classical combinatorial optimization problem which has been proved to be NP-
hard. The goal is to place n non-attacking queens on an n×n chessboard. In this paper, the Imperialist Com-
petitive Algorithm (ICA), which is a recent evolutionary metaheuristic method, has been applied for solving
the n-queens problem. As another variation, the ICA was combined with a local search method, resulting the
Hybrid ICA (HICA). Extensive experimental results showed that the proposed HICA outperformed the
basic ICA in terms of average runtimes and average number of fitness function evaluations. The developed
algorithms were also compared to the Cooperative PSO (CPSO) algorithm, which is currently the best algo-
rithm in the literature for finding the first valid solution to the n-queens problem, and the results showed that
the HICA dominates the CPSO by evaluating the fitness function fewer times.

1 INTRODUCTION

The n-queens problem is a classical combinatorial
optimization problem in Artificial Intelligence (Draa
et al., 2010). The objective of the problem is to place
n non-attacking queens on an n×n chessboard by
considering the chess rules. Although the problem
itself has an uncomplicated structure, it has been
broadly utilized to develop new intelligent problem
solving approaches. Despite the fact that the n-
queens problem is often studied as a ‘mathematical
recreation’, it has found several real-world applica-
tions such as practical task scheduling and assign-
ment, computer resource management (deadlock
prevention and register allocation), VLSI testing,
traffic control, communication system design, robot
placement for maximum sensor coverage, permuta-
tion problems, parallel memory storage schemes,
complete mapping problems, constraint satisfaction,
and other physics, computer science and industrial
applications (Erbas et al., 1992); (Sosic and Gu,
1994); (San Segundo, 2011). The variety of these
applications indicates the reason of the wide interest
on this well-known problem.

Probably the earliest form of the n-queens prob-
lem was the 8-queens variant, originally proposed in
1848 by the chess player Max Bezzel, published in

the German chess newspaper Berliner Schachzeitung
(Bezzel, 1848). It was republished in 1850 and at-
tracted the attention of the famous mathematician
Carl Friedrich Gauss for finding all possible solu-
tion, though he found only 72 of the 92 possible
answers. Nauck found all the 92 solutions in the
same year (Russel and Norvig, 1995), one of which
is shown in Figure 1, with the permutation presented
as [5, 1, 8, 4, 2, 7, 3, 6].

8 w

7 w

6 w

5 w

4 w

3 w

2 w

1 w

 1 2 3 4 5 6 7 8

Figure 1: A solution to the 8-queens problem.

The earliest paper on the general n-queens prob-
lem was presented by Lionnet (1869), and the first
proof of the possibility of placing n non-attacking
queens on an n×n chessboard is credited to E. Pauls

87Masehian E., Mohabbati-Kalejahi N. and Akbaripour H..
Basic and Hybrid Imperialist Competitive Algorithms for Solving the n-Queens Problem.
DOI: 10.5220/0004160900870095
In Proceedings of the 4th International Joint Conference on Computational Intelligence (ECTA-2012), pages 87-95
ISBN: 978-989-8565-33-4
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

(1874). A thorough review on the problem and its
applications is presented in (Bell and Stevens, 2009).
The n-queens problem belongs to the class of Con-
straint Satisfaction Problems (CSP), and is known as
an NP-hard problem (Jagota, 1993). A solution for
the 200-queens problem is illustrated in Figure 2.

36 43 170 24 95 140 81 166 146 119
84 107 68 154 111 129 46 106 191 121
133 171 20 88 199 176 50 26 87 178
100 149 49 109 16 159 33 165 136 143
31 44 37 168 45 90 115 74 56 61
114 71 22 3 193 116 162 130 6 98
78 161 96 63 52 192 188 147 183 180
200 174 97 17 131 103 113 62 29 142
157 12 4 155 189 66 60 8 138 190
13 58 41 153 145 7 51 144 34 105
148 196 118 67 91 83 21 169 134 25
195 48 40 179 15 156 197 82 32 172
163 10 19 167 69 11 101 194 89 187
70 35 30 75 141 2 128 151 94 77
186 160 1 112 198 117 123 38 27 14
5 47 39 184 23 139 158 76 110 9
55 42 185 65 135 18 152 126 173 127
181 79 182 57 164 92 53 150 85 125
104 177 28 137 93 124 80 120 99 72
54 132 64 59 86 175 102 122 108 73

Figure 2: A solution to the 200-queens problem.

There are three variants of the n-queens problem
(Abramson and Yung, 1989): (1) finding all solu-
tions of a given n×n chessboard, (2) generating one
or more, but not all solutions, and (3) finding only
one valid solution. In the first variant, finding all
solutions may be possible for small sizes, but the
number of feasible solutions increases exponentially
with the problem size, such that the largest instance
solved to date is for n = 26 with a total number of
2.23×1016 solutions, calculated within 271 days on
parallel supercomputers in 2009 (Sloane, 2012).
Table 1 shows the size of solution spaces and num-
bers of valid solutions of various n-queens problems.

According to the extensive bibliography of n-
queens problems in (Kosters, 2012), a wide range of
exact, heuristic and metaheuristic optimization
methods have been implemented by many research-
ers (Rivin and Zabih, 1992); (Martinjak and Golub,
2007); (Draa et al., 2005).

The main advantage of metaheuristics compared
to exact methods is their ability in handling large-
scale instances in a reasonable time (Yang, 2010),
but at the expense of losing a guarantee for achiev-
ing the optimal solution. Therefore, due to the NP-
hardness of the n-queens problem, metaheuristic
techniques are appropriate choices for solving it. In
fact, a number of papers have implemented me-
taheuristics for this problem, including Simulated
Annealing (SA) (Tambouratzis, 1997); (Dirakkhu-
nakon and Suansook, 2009), Tabu Search (TS)

(Martinjak and Golub, 2007), Genetic Algorithms
(GA) (Homaifar et al., 1992), Differential Evolution
Algorithm (DEA) (Draa et al., 2010), and Ant Colo-
ny Optimization (ACO) (Khan et al., 2009).

Table 1: Size of solution space and the number of solu-
tions for the n-queens problem solved to date.

n Size of solution space (n!) Number of solutions

1 1 1

2 2 0

3 6 0

4 24 2

5 120 10

6 720 4

7 5040 40

8 40320 92

9 362880 352

10 3628800 724

11 39916800 2680

12 479001600 14200

13 6227020800 73712

14 87178291200 365596

15 1307674368000 2279184

16 20922789888000 14772512

17 355687428096000 95815104

18 6402373705728000 666090624

19 121645100408832000 4968057848

20 2432902008176640000 39029188884

21 51090942171709440000 314666222712

22 1124000727777607680000 2691008701644

23 25852016738884976640000 24233937684440

24 620448401733239439360000 227514171973736

25 15511210043330985984000000 2207893435808352

26 403291461126605635584000000 22317699616364044

In this paper, the Imperialist Competitive Algo-
rithm (ICA) evolutionary method developed in 2007
is applied for the first time to solve the third variant
of the n-queens problem, that is, to find the first
encountered valid solution. Also, the ICA was com-
bined with a local search, resulting in the Hybrid
ICA (HICA) method, which outperformed the origi-
nal ICA in terms of average runtimes and average
number of fitness function evaluations.

The rest of the paper is organized as follows:
section 2 presents the basic ICA and its components
for solving n-queens problem, section 3 presents the
details of the HICA method, and section 4 provides
experimental results on the performance of the basic
and Hybrid ICA methods, and provides comparisons
with the Cooperative PSO method for various sizes
of the problem. Finally, conclusions are in section 5.

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

88

2 THE BASIC IMPERIALIST
COMPETITIVE ALGORITHM

The Imperialist Competitive Algorithm (ICA) was
first introduced by Atashpaz-Gargari and Lucas
(2007) as an Evolutionary Computation method
based on a social-political evolution. The ICA be-
gins with generating an initial population of ‘coun-
tries’ (counterparts of chromosomes in GAs or parti-
cles in PSO). Then, according to a fitness function
value, some of the best countries are determined as
‘imperialists’, and remaining ones as the ‘colonies’
of these imperialists, which altogether form some
‘empires’.

Assimilation and Revolution are the two main
operators of this algorithm: the colonies of each
empire get closer to its imperialist by the assimila-
tion operator (a concept akin to the recombination
operator in other evolutionary algorithms), and ran-
dom changes happen to the colonies according to the
Revolution operator (a concept akin to the mutation
operator in other evolutionary algorithms) which
may modify the position of colonies in the search
space. These operators may improve the solutions of
the problem and increase the power of the colonies
to take the control of the entire empire. If so, they
swap their positions with their imperialists.

Imperialistic competition among these empires is
another part of the ICA algorithm, which forms the
basis of this evolutionary algorithm. During this
competition, powerful empires survive and take
possession of the colonies of weaker empires. This
procedure eliminates all the imperialists except for
one, which yields the final solution. The flowchart
of the ICA is illustrated in Figure 3, and details of
the algorithm’s steps tailored for the n-queens prob-
lem are described below.

2.1 Generating Initial Empires

In the n-queens problem, each country is represented
by a solution encoded in the form of a permutation
[π(1), π(2), ..., π(n)], in which the value of π(i) indi-
cates the row number and i specifies the column
number of a queen on the chessboard (see Figures 1
and 2). Through this scheme, we can easily generate
initial solutions with no two queens on the same row
or column, letting the conflicts occur merely along
the diagonals of the chessboard.

The algorithm starts by producing a population
of countries, which for the sake of improving the
quality of initial solutions, a large number of them
are created and then sorted in order of their objective
function values to form the initial population with a

desired size. From this new list, a number (say N) of
them with the highest qualities are considered as
imperialists, and the remaining solutions are sequen-
tially assigned to the imperialists as their colonies. In
our problem the value of a solution is equal to the
number of queen attacks (conflicts) and so lower
values mean higher quality.

Figure 3: Flowchart of the Imperialist Competition Algo-
rithm.

As an example, assuming that the sorted initial
population of size 16 with N = 3 imperialists is:

No

No

No

Yes

Output

Yes

Compute the total cost of all empires

Pick the weakest colony from the weakest
empire and give it to the empire that has the

most likelihood to possess it

Yes

Exchange the positions of that
colony and the imperialist

Move the colonies to their
relevant imperialist

Initialize the empires

Begin

Is there a colony in an empire
which has higher power than

that of its imperialist?

Is there an empire
with no colonies?

Eliminate this empire

Stopping condition
satisfied?

Unite similar empires

Basic�and�Hybrid�Imperialist�Competitive�Algorithms�for�Solving�the�n-Queens�Problem

89

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
the resulting three empires with their imperialists
shown in bold will be {[1, 4, 7, 10, 13, 16]; [2, 5, 8,
11, 14]; [3, 6, 9, 12, 15]}.

2.2 Assimilation within an Empire

In the real political world, imperialists try to pro-
mote the life standards of their colonies by assimilat-
ing and absorbing them. In the ICA, this fact is sim-
ulated by moving each colony toward its respective
imperialist. For the assimilation phase, we have
utilized the Partially Matched Crossover (PMX)
operator.

In this binary operator, in general, two genotypes
(solution encodings) are selected as parents, and two
crossover positions are picked randomly along the
solutions. Then, all chromosomes of Parent A lying
between these two points are exchanged with the
chromosomes of Parent B at the same positions, and
vice versa.

For example, for the 8-queens strings in Figure 4,
taking the Parents A and B, the two crossover limits
are fixed at 4th and 6th positions, and the dark area
indicates the pairs which must undergo exchange.
As a result, in both parents, the following swaps take
place: 7↔4, 3↔1, and 8↔2, which create two new
children.

Now in our method, the first parent is perma-
nently assumed to be the imperialist solution, and
the second parent rotates among all colonies. Thus,
the generated offspring will somewhat inherit the
nature and power of their imperialist parent, which
can be interpreted as a kind of assimilation. The next
generation will be selected from the best solutions of
the pool, with the size of the population maintained.

Figure 4: An example of parents and children in the Par-
tially Matched Crossover (PMX).

2.3 Revolution within an Empire

The Revolution operator brings about radical chang-
es in a colony in hope for a better fitness value and
also diversifying the population. This unary operator
is applied to colonies with a constant rate (Revolu-
tion Rate, RR) and acts like the mutation operator in
GAs.

In our method the Revolution operator is imple-
mented by randomly swapping the values of chro-
mosomes at one or two positions. The colony is
updated if a better fitness value is obtained. Figure 5
shows an example of this operator for the 8-queens
problem.

Figure 5: An example of the Revolution operator.

2.4 Power Struggle

While moving toward the imperialist, a colony may
achieve a position with lower cost (or equivalently,
higher power) than its imperialist. In such a case, the
imperialist will be toppled and superseded by that
colony. The colony becomes the new imperialist
starting from the next iteration. This act is similar to
shifting the best global experience (gbest) in the
swarm from a particle to another particle in the PSO
method.

2.5 Imperialistic Competition

Through the imperialistic competition step, weaker
empires lose their power further by losing their col-
onies, and powerful empires become more powerful
by owning new colonies.

The total power of an empire is calculated by
adding the power (i.e., fitness function value) of the
imperialist country to a percentage of the mean
power of its colonies. Mathematically,

1

() () ()
i

j

i i i

ji

n

P E P I P C
n





   , (1)

in which P(Ei) is the power of Empire i, P(Ii) is the
power of the Imperialist country of Empire i, P(C j

i)
is the power of the j-th colony of Empire i, ni is the
number of colonies in Empire i, and 0 < ξ < 1 is a
constant determining the importance and impact of
the colonies in each empire. We found ξ = 0.1 a
proper valueas suggested by Nazari-Shirkouhi et al.
(2010).

For a minimization problem, the normalized total
power of Empire i is obtained by subtracting the
lowest power among all empires from its power, as
in (2). Note that a high power corresponds to a low
cost.

 () () min ()
ii i

i
NP E P E P E  (2)

Colony (state 0) 8 7 2 5 1 4 6 3
Colony (state 1): 8 7 3 5 1 4 6 2

Parent A: 2 4 6 7 3 8 5 1
Parent B: 8 5 3 4 1 2 7 6

Child 1: 8 7 6 4 1 2 5 3
Child 2: 2 5 1 7 3 8 4 6

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

90

Thus, the normalized total power of the weakest
empire will be zero, and for others, a positive value.

The Possession Probability (PP) of each Empire
is based on its total power and should be calculated
at the start of the imperialistic competition step,
according to (3), in which N is the total number of
empires:

1

()

()

i

j

i N

j

NP E
PP

NP E






(3)

The Possession Probability is used to update the
distribution of the colonies among the empires. For
each empire i, by subtracting a uniform random
number randiU(0, 1) from its PPi, a new vector is
formed, defined as:

D = [PP1− rand1, PP2− rand2, ..., PPN−
randN]

(4)

In the vector D, the empire that has the least value
among others loses its weakest colony, which is
reassigned to the most powerful empire.

The Assimilation, Revolution, and Imperialistic
Competition steps are repeated until the weakest
empire loses all of its colonies, in which case it is
discarded and its imperialist becomes a colony of the
most powerful empire. See Figure 1 for a review of
the algorithm. In our n-queens problem, the stopping
criterion is satisfied when there are no conflicts
(attacks) among the queens.

3 THE HYBRID ICA

As described earlier, the ICA utilizes random num-
bers in almost all of its steps: initial population crea-
tion, assimilation, revolution, and imperialistic com-
petition. This randomness can be quite effective in
diversifying the solutions and adequately exploring
the search space. However, we noticed that this fact
weakens the algorithm’s ability to intensify its
search around a good solution, which leads to a slow
convergence to a suboptimal solution.

As a result, we decided to add a local search
component to the ICA and reinforce its intensifica-
tion ability. This local search is applied on a solution
to improve it as much as possible (i.e., until reaching
a local optimum) through a neighborhood generation
and selection procedure.

A common method for generating neighbors of a
given solution is Random Swap, which exchanges
the places of two randomly-selected queens. This

action may or may not decrease the number of con-
flicts among queens. So, to make the neighborhood
generation more goal-directed, we propose a new
variant of the swap operator, called Effective Swap,
which acts more intelligently than the random swap
since it selects the exchange rows by also consider-
ing the number of attacks rather than just choosing
them randomly. The following details illustrate the
function of this new operator.

The Effective Swap operator starts with counting
the number of conflicts on the main diagonal of the
chessboard. If this number is nonzero, it marks that
diagonal for further operations. Otherwise, it pro-
ceeds with the subdiagonals immediately above and
below the main diagonal. Conflict counting is re-
peated for these diagonals too, and if no conflicts are
found, it proceeds with farther subdiagonals parallel
to the main diagonal. In case that still no conflicts
are identified, the above procedure is repeated for
the secondary diagonal and its parallel subdiagonals
until a conflicting diagonal is found and marked for
further operations.

Next, suppose that the marked diagonal has m
conflicts. Then the operator performs m − 1 random
swaps, such that in each swap, one of the queens is
selected from the conflicting queens, and the other is
a randomly-selected queen not causing any conflict
in the marked diagonal. It is worthy to note that
performing an Effective Swap does not guarantee an
improvement in the fitness function; however, as
indicated by our extensive experiments it reduces the
number of conflicts far better than the random swap
operator.

As an example of Effective Swap, consider a
configuration of 8 queens displayed in Figure 6(a),
where there are m = 2 conflicting queens on the
marked main diagonal, namely π(1) and π(8), of
which one queen is selected randomly, e.g., π(8).
Now another queen which does not cause conflicts
in this diagonal is randomly selected, e.g., π(7), and
the selected rows are swapped by π(7) ↔ π(8),
shown in Figure 6(b).

After applying an Effective Swap, a neighbor so-
lution is generated, and we check whether any im-
provement has occurred in the fitness function or
not. If yes, then this neighbor solution is kept; oth-
erwise, a new one is generated. This procedure iter-
ates until a stopping criterion is satisfied. The stop-
ping criterion contains a parameter T to control the
depth of the local search, set by:

T = k · n (5)

Basic�and�Hybrid�Imperialist�Competitive�Algorithms�for�Solving�the�n-Queens�Problem

91

8 w

7 w

6 w

5 w

4 w

3 w

2 w

1 w

 1 2 3 4 5 6 7 8

(a)

8 w

7 w

6 w

5 w

4 w

3 w

2 w

1 w

 1 2 3 4 5 6 7 8

(b)

Figure 6: (a) Before, and (b) after applying the Effective
Swap on the chessboard.

where k is a constant and n is the size of the prob-
lem. After each iteration of the local search, the
value of T is updated by:

T = 0.99 · T (6)

The local search procedure iterates until T reaches a
lower bound like Tmin. On the other hand, the n-
queens problem has multiple optimal solutions (with
a fitness function value of zero, meaning no con-
flicts), and the number of these solutions increases
exponentially as n grows (Table 1). Therefore, if the
local search is given more time to transform an initial
solution, it can converge to an optimal solution much
faster. For this purpose, whenever the newly generat-
ed neighbor causes an improvement in the fitness
function value, a rewarding mechanism is enforced to
update the T by:

T = 1.01 · T (7)

Note that the 1.01 coefficient delays the conver-
gence and causes the search to deeply exploit seem-
ingly good solutions. As a result, such a dynamic
definition of T causes an effective search of the
space, as the algorithm spends more time on explor-
ing an appropriate solution, and less time on non-
promising ones.

We name the ICA with the abovementioned local
search procedure as “Hybrid Imperialist Competitive
Algorithm (HICA)”.

The HICA has another advantage over the basic
ICA: as noticed in equation (4), the empire having
the largest value in the vector D will possess the
weakest colony of the weakest empire. On the other
hand, we know that the most powerful empire (e.g.,
E*) has the largest PP index calculated in (3). But
since the vector D is obtained by subtracting random
numbers from the PPi indices, there is no guarantee
that the E* will still be selected for accommodating
the weakest colony.

Although we used the equation (4) for our basic
ICA to keep the authenticity of the algorithm pre-
sented by Atashpaz-Gargari and Lucas (2007), we
discarded the random number subtraction in (4) in
the HICA and used the following vector D instead:

D = [PP1, PP2, ..., PPN] (8)

4 EXPERIMENTAL RESULTS

We conducted a number of experiments to assess the
efficiency and effectiveness of the developed algo-
rithms. The parameters of the algorithms were set as
follows: Initial population size = 100, k = 1 (in (5))
and Revolution Rate (RR) = 0.4. The algorithms
were coded in Matlab and run on an Intel® Core i7
2.00 GHz CPU with 4.00 GB of RAM.

Tables 2 and 3 show the experimental results of
solving the n-queens problem at different sizes. Con-
sidering the randomness of the methods, each instance
was run 10 times, and the mean and the standard
deviation (S.D.) of runtimes and two other perfor-
mance criteria, the FFE and NCCA, are reported.

Table 2: Average results of 10 runs of the ICA for various
sizes of the n-queens problem.

n
FFE

NCCA
Runtime (s)

Min Max Avg. Avg. S.D.

8 17 330 159 0.36 0.05 0.06

10 150 2315 785 2.17 0.14 0.13

25 1550 10880 6500 5.40 2.15 1.06

50 12215 116150 4402 10.95 26.48 17.43

100 105870 542720 280014 22.28 348.51 162.39

200 1022990 1882564 1558751 50.15 3284.22 303.54

300 2754111 4258966 3859979 143.51 21650.58 573.81

The FFE criterion measures the total number of
Fitness Function Evaluations during the whole

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

92

search, and NCCA stands for Normalized Conver-
gence Curve Area.

Table 3: Average results of 10 runs of the HICA for vari-
ous sizes of the n-queens problem.

n
FFE

NCCA
Runtime (s)

Min Max Avg. Avg. S.D.

8 0 445 96.3 2.20 0.05 0.05

10 21 940 408.3 11.33 0.14 0.11

30 184 5038 1657.6 13.74 0.67 0.62

50 323 5882 2327.6 11.61 1.20 1.03

75 525 5708 2265.2 11.21 1.28 0.88

100 1374 7006 2932.7 8.81 1.98 1.29

200 6060 9405 8893.6 13.70 9.38 1.10

300 10805 14624 12302.6 12.79 19.60 2.74

500 13717 24906 20962.4 16.47 148.74 29.82

750 23279 42164 33767.5 13.65 616.17 254.26

1000 31701 74877 43272.4 15.80 984.13 301.12

2000 79984 101571 89827.1 21.93 7023.87 545.54

The convergence curve plots the best-found fit-
ness function value at each iteration, until the final
solution is reached. In the n-queens problem, this
curve shows how the algorithm reduces the number
of conflicts during its execution till it becomes zero.
Figure 7 shows convergence curves of the ICA for
various sizes of the problem: n = 50, 100, 200 and
300. The number of conflicts and iterations are dis-
played along the vertical and horizontal axes, re-
spectively. As can be seen, initial numbers of con-
flicts were about half the sizes of the problems, and
larger problems took much more iterations to con-
verge than smaller instances.

Figure 7: Convergence curves for the ICA run on n = 50,
100, 200, and 300 queens.

Inspired by the behavior of the convergence
curve, we designed a new performance criterion to
compare the basic and hybrid ICA methods: the
Normalized Convergence Curve Area, which is cal-
culated as per (9), in which Nc

i is the number of con-
flicts during i-th evaluation of the fitness function:

1

FFE

i

i
cNCCA N



  (9)

In fact, by calculating the area under a convergence
cure we can infer how fast a method reduces the
number of conflicts. A relatively small area implies
that the algorithm succeeded in reducing the number
of conflicts at its early iterations. The NCCA
measures the area under the convergence curve with
the number of conflicts plotted along the vertical axis
and the number of FFE along the horizontal axis; but
since for large problem sizes the area becomes too
large, we divided it to a factor of n2 and eliminated the
impact of problem size, obtaining a normalized value.

Table 2 shows that the ICA spent about 6 hours
of computation averagely for the 300-queens prob-
lem, and so we stopped solving larger instances. On
the other hand, the HICA performed surprisingly
well and could find a solution to the 2000-queens
problem in less than 2 hours. The number of FFE in
the HICA method was also significantly less than
that of the basic ICA method. For the NCCA criteri-
on the behaviors are a bit different: for small sizes
the ICA converges to a low number of conflicts
faster than the powerful HICA method, but then for
n>100 the HICA regains its superiority (with smaller
NCCA index). This fact is due to the impact of the
implemented local search on the algorithm’s speed.

Figure 8 illustrates the superimposed conver-
gences of the two algorithms.

Figure 8: A comparison of convergence curves for basic
and hybrid ICAs on n = 100 queens.

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

Number of iterations

N
um

be
r

of
 c

on
fli

ct
s

n=50

n=100
n=200

n=300

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

50

Number of Fitness Function Evaluations (FFE)

N
um

be
r

of
 c

on
fli

ct
s

HICA (NCCA=0.86)

ICA (NCCA=1.12)

Basic�and�Hybrid�Imperialist�Competitive�Algorithms�for�Solving�the�n-Queens�Problem

93

The curves in Figure 8 are plotted for n = 100 by
considering the best run in terms of convergence
speed out of 10 runs. Note that here the horizontal
axis shows the number of FFE’s (and not iterations)
since the local search component in the HICA exe-
cutes some additional iterations which should not be
compared to the main iterations of ICA.

4.1 Comparisons

In order to evaluate the efficiency of the presented
HICA method, we compared it with an algorithm
that had produced the best known results in finding
the first solution to the n-queens problem. This
method is called Cooperative PSO (CPSO) and is
introduced in (Amooshahi et al., 2011) for solving
permutation problems, including the n-queens prob-
lem. Compared to the standard PSO method (Ken-
nedy and Eberhart, 1995), the CPSO uses parallel
searching to reduce calculation time.

For solving the n-queens problem by using the
CPSO, an initial random population of particles is
generated, where each particle has initial infor-
mation about the locations of n queens on an n×n
chessboard. Each particle of the population is divid-
ed into n equal sub-swarms, and then each sub-
swarm is changed into one sub-particle. Sub-
particles use the standard PSO to update their veloci-
ties and positions according to the best local experi-
ence of each sub-particle and the best position for
each particle among all particles.

Table 4: Average number of FFEs for HICA and CPSO.

n HICA CPSO Improvement (%)

8 96.3 225.8 57.4
10 408.3 540.5 24.5
30 1657.6 2020.5 18.0
50 2327.6 2764.2 15.8
75 2265.2 3661.6 38.1

100 2932.7 5063.6 42.1
200 8893.6 9184.5 3.2
300 12302.6 14559.6 15.5
500 20962.4 23799.6 11.9
750 33767.5 34765.2 2.9

1000 43272.4 47299.8 8.5
2000 89827.1 95235.9 5.7

Through a number of experiments, Amooshahi et
al. (2011) compared the CPSO with implementations
of standard PSO, SA, TS and GA algorithms (re-
ported in Martinjak and Golub, (2007)) and outper-
formed all those metaheuristics in terms of the num-
ber of fitness function evaluations.

Figure 9: Comparison of the number of fitness function
evaluations (FFE) versus the problem size for the HICA
and CPSO methods.

The results of average FFE values obtained by
our proposed HICA and the CPSO algorithms are
reported in Table 4 and plotted in Figure 9. It was
observed that the HICA always evaluated the fitness
function fewer times than the CPSO.

We should note here that Minton et al. (1990)
presented a two-phase method for producing a solu-
tion to the n-queens problem in a very short time. In
the first phase an initial assignment is created via a
greedy approach which iterates through the rows and
places a queen on a column with minimal conflicts
with previously placed queens (ties are broken ran-
domly). In the second phase the assignment is re-
paired by moving a conflicting queen to a different
column in the same row where it conflicts with the
least number of queens (ties are broken randomly)
until all conflicts are resolved. The reason for not
comparing our algorithm with Minton’s method was
that in their method the number of conflicts after
running the assignment phase is dramatically low
(averagely about 12.8 conflicts in one million
queens!) so that the repairing phase must resolve
very few conflicts, while the initial number of con-
flicts in the ICA or HICA is about half the size of
the problem (e.g. 500000 in the one million queen
problem). As a result, there was no fair basis for
comparing the strength of both methods in reducing
the number of conflicts.

5 CONCLUSIONS

In this paper the Imperialist Competitive Algorithm
(ICA), which is a recent evolutionary method, is used
for finding the first encountered solution to the n-
queens problem. For improving the performance of
the algorithm a local search is incorporated into the
algorithm, which we call Hybrid ICA (HICA). Exper-
imental result showed that the HICA is able to find

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

8 10 30 50 75 100 200 300 500 750 1000 2000

HICA CPSO

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

94

the solution for a given number of queens faster than
the basic ICA and can solve large instances through
smaller numbers of fitness function evaluations. The
HICA was also compared to the best algorithm in the
literature for solving this specific problem (i.e., Coop-
erative PSO), and outperformed it in terms of the
number of fitness function evaluations.

As a future work, the Revolution Rate can be con-
sidered as an adaptive parameter such that in initial
iterations it takes a relatively large value and decreas-
es as the search proceeds.The decreasing rate would
be dynamic and would depend on some information
obtained from the course of the search. As a result,
more diversification of solutions in the earlier itera-
tions can be expected, which may lead to faster con-
vergence. Another enhancement could be performing
a landscape analysis for the n-queens problem, which
probably can explain the reason of the significant
improvement caused by hybridizing the ICA with a
simple local search compared to the basic ICA.

REFERENCES

Abramson, B., and Yung, M., (1989). Divide and conquer
under global constraints: A solution to the n-queens
problem. Journal of Parallel and Distributed Compu-
ting, 6(3), 649-662.

Amooshahi, A., Joudaki, M., Imani, M., and N. Mazhari.,
(2011). Presenting a new method based on cooperative
PSO to solve permutation problems: A case study of n-
queen problem. 3rd Int. Conference on Electronics
Computer Technology (ICECT), 4, 218-222.

Atashpaz-Gargari, E. and Lucas, C., (2007). Imperialist
competitive algorithm: An algorithm for optimization
inspired by imperialistic competition. IEEE congress
on evolutionary computation, 4661-4667.

Bell, J. and Stevens, B., (2009).A survey of known results
and research areas for n-queens. Discrete Mathemat-
ics, 309, 1-31.

Bezzel, M., (1848).Proposal of 8-queens problem, Berlin-
er Schachzeitung, 3, 363.

Campos, V., Laguna, M. and Mart, R., (2005). Context-
independent scatter search and tabu search for permuta-
tion problems. INFORMS J. Computing, 17, 111-122.

Dirakkhunakon, S. and Suansook, Y., (2009). Simulated
Annealing with iterative improvement. International
Conference on Signal Processing Systems, 302-306.

Draa, A., Meshoul, S., Talbi, H., and Batouche, M.,
(2010).A Quantum-Inspired Differential Evolution
Algorithm for Solving the n-Queens Problem. The In-
ternational Arab Journal of Information Technology,
7(1), 21-27.

Draa, A., Talbi H., and Batouche, M., (2005). A Quantum
Inspired Genetic Algorithm for Solving the N-Queens
Problem, Proceedings of the 7th International Sympo-
sium on Programming and Systems, 145-152.

Erbas, C., Sarkeshik, S. and Tanik, M. M., (1992). Differ-
ent perspectives of the n-queens problem. Proceedings
of the 1992 ACM Annual Conference on Communica-
tions, ACM Press, 99-108.

Homaifar, A., Turner, J., and Ali, S., (1992). The n-
Queens Problem and Genetic Algorithms. Proceedings
IEEE Southeast Conference, 1, 262-267.

Jagota, A., (1993). Optimization by reduction to maximum
clique. IEEE International Conference on Neural
Networks, 3, 1526-1531.

Kennedy, J. and Eberhart, R. C., (1995). Particle swarm
optimization. Proceedings of IEEE Int’l. Conf. on
Neural Networks, IV, 1942–1948.

Khan, S., Bilal, M., Sharif, M., Sajid, M. and Baig, R.,
(2009). Solution of n-Queen Problem Using
ACO.IEEE 13th International Multi-Topic Confer-
ence, 1-5.

Kilani, Y., (2010). Comparing the performance of the genet-
ic and local search algorithms for solving the satisfiabil-
ity problems. Applied Soft Computing, 10, 198-207.

Kosters, W., (2012). n-Queens Bibliography. Retrieved
May 4, 2012, from http://www.liacs.nl/~kosters/
nqueens/.

Lionnet, F. J. E., (1869). Question 963, Nouvelles Annales
de Mathématiques, 28, 560.

Martinjak, I. and Golub, M., (2007). Comparison of Heu-
ristic Algorithms for the N-Queen Problem. Proceed-
ings of the ITI 2007 29th International. Conference on
Information Technology Interfaces, 25-28.

Minton, S., M. D. Johnston, A. Philips and P. Laird, (1990).
Solving Large-Scale Constraint-Satisfaction and Sched-
uling Problems Using a Heuristic Repair Method. Pro-
ceedings of 8th National Conference on Artificial Intelli-
gence, Boston, Massachusetts, AIAA Press.

Nazari-Shirkouhi, S., Eivazy, H., Ghodsi, R., Rezaie, K.
and Atashpaz-Gargari, E., (2010). Solving the inte-
grated product mix-outsourcing problem using the Im-
perialist Competitive Algorithm. Expert Systems with
Applications, 37, 7615-7626.

Pauls, E., (1874). Das Maximalproblem der Damen auf
dem Schachbrete, II, Deutsche Schachzeitung.Organ
fur das Gesammte Schachleben, 29(9), 257-267.

Rivin, I. and Zabih, R., (1992). A Dynamic Programming
Solution to the n-Queens Problem. Information Pro-
cessing Letters, 41, 253-256.

Russell, S. J. and Norvig, P., (1995).Artificial Intelligence
A Modern Approach. Prentice-Hall Inc., NJ.

San Segundo, P., (2011). New decision rules for exact
search in n-Queens. Journal of Global Optimization,
51, 497-514.

Sloane, N. J. A., (2012). The online encyclopedia of inte-
ger sequences.retrieved from http://oeis.org/A000170.

Sosic, R. and Gu, J., (1994). Efficient local search with
conflict minimization.IEEE Transactions on
Knowledge and Data Engineering, (6E), 661-668.

Tambouratzis, T., (1997). A Simulated Annealing Artifi-
cial Neural Network Implementation of the n-Queens
Problem. Int. J. of Intelligent Systems, 12, 739-752.

Yang, X-S., (2010). Nature-inspired metaheuristic algo-
rithms: Luniver Press.

Basic�and�Hybrid�Imperialist�Competitive�Algorithms�for�Solving�the�n-Queens�Problem

95

