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Abstract: The n-queens problem is a classical combinatorial optimization problem which has been proved to be NP-
hard. The goal is to place n non-attacking queens on an n×n chessboard. In this paper, the Imperialist Com-
petitive Algorithm (ICA), which is a recent evolutionary metaheuristic method, has been applied for solving 
the n-queens problem. As another variation, the ICA was combined with a local search method, resulting the 
Hybrid ICA (HICA). Extensive experimental results showed that the proposed HICA outperformed the 
basic ICA in terms of average runtimes and average number of fitness function evaluations. The developed 
algorithms were also compared to the Cooperative PSO (CPSO) algorithm, which is currently the best algo-
rithm in the literature for finding the first valid solution to the n-queens problem, and the results showed that 
the HICA dominates the CPSO by evaluating the fitness function fewer times. 

1 INTRODUCTION 

The n-queens problem is a classical combinatorial 
optimization problem in Artificial Intelligence (Draa 
et al., 2010). The objective of the problem is to place 
n non-attacking queens on an n×n chessboard by 
considering the chess rules. Although the problem 
itself has an uncomplicated structure, it has been 
broadly utilized to develop new intelligent problem 
solving approaches. Despite the fact that the n-
queens problem is often studied as a ‘mathematical 
recreation’, it has found several real-world applica-
tions such as practical task scheduling and assign-
ment, computer resource management (deadlock 
prevention and register allocation), VLSI testing, 
traffic control, communication system design, robot 
placement for maximum sensor coverage, permuta-
tion problems, parallel memory storage schemes, 
complete mapping problems, constraint satisfaction, 
and other physics, computer science and industrial 
applications (Erbas et al., 1992); (Sosic and Gu, 
1994); (San Segundo, 2011). The variety of these 
applications indicates the reason of the wide interest 
on this well-known problem. 

Probably the earliest form of the n-queens prob-
lem was the 8-queens variant, originally proposed in 
1848 by the chess player Max Bezzel, published in 

the German chess newspaper Berliner Schachzeitung 
(Bezzel, 1848). It was republished in 1850 and at-
tracted the attention of the famous mathematician 
Carl Friedrich Gauss for finding all possible solu-
tion, though he found only 72 of the 92 possible 
answers. Nauck found all the 92 solutions in the 
same year (Russel and Norvig, 1995), one of which 
is shown in Figure 1, with the permutation presented 
as [5, 1, 8, 4, 2, 7, 3, 6]. 
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Figure 1: A solution to the 8-queens problem. 

The earliest paper on the general n-queens prob-
lem was presented by Lionnet (1869), and the first 
proof of the possibility of placing n non-attacking 
queens on an n×n chessboard is credited to E. Pauls 
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(1874). A thorough review on the problem and its 
applications is presented in (Bell and Stevens, 2009). 
The n-queens problem belongs to the class of Con-
straint Satisfaction Problems (CSP), and is known as 
an NP-hard problem (Jagota, 1993). A solution for 
the 200-queens problem is illustrated in Figure 2. 
 
36 43 170 24 95 140 81 166 146 119 
84 107 68 154 111 129 46 106 191 121 
133 171 20 88 199 176 50 26 87 178 
100 149 49 109 16 159 33 165 136 143 
31 44 37 168 45 90 115 74 56 61 
114 71 22 3 193 116 162 130 6 98 
78 161 96 63 52 192 188 147 183 180 
200 174 97 17 131 103 113 62 29 142 
157 12 4 155 189 66 60 8 138 190 
13 58 41 153 145 7 51 144 34 105 
148 196 118 67 91 83 21 169 134 25 
195 48 40 179 15 156 197 82 32 172 
163 10 19 167 69 11 101 194 89 187 
70 35 30 75 141 2 128 151 94 77 
186 160 1 112 198 117 123 38 27 14 
5 47 39 184 23 139 158 76 110 9 
55 42 185 65 135 18 152 126 173 127 
181 79 182 57 164 92 53 150 85 125 
104 177 28 137 93 124 80 120 99 72 
54 132 64 59 86 175 102 122 108 73 

Figure 2: A solution to the 200-queens problem. 

There are three variants of the n-queens problem 
(Abramson and Yung, 1989): (1) finding all solu-
tions of a given n×n chessboard, (2) generating one 
or more, but not all solutions, and (3) finding only 
one valid solution. In the first variant, finding all 
solutions may be possible for small sizes, but the 
number of feasible solutions increases exponentially 
with the problem size, such that the largest instance 
solved to date is for n = 26 with a total number of 
2.23×1016 solutions, calculated within 271 days on 
parallel supercomputers in 2009 (Sloane, 2012). 
Table 1 shows the size of solution spaces and num-
bers of valid solutions of various n-queens problems. 

According to the extensive bibliography of n-
queens problems in (Kosters, 2012), a wide range of 
exact, heuristic and metaheuristic optimization 
methods have been implemented by many research-
ers (Rivin and Zabih, 1992); (Martinjak and Golub, 
2007); (Draa et al., 2005). 

The main advantage of metaheuristics compared 
to exact methods is their ability in handling large-
scale instances in a reasonable time (Yang, 2010), 
but at the expense of losing a guarantee for achiev-
ing the optimal solution. Therefore, due to the NP-
hardness of the n-queens problem, metaheuristic 
techniques are appropriate choices for solving it. In 
fact, a number of papers have implemented me-
taheuristics for this problem, including Simulated 
Annealing (SA) (Tambouratzis, 1997); (Dirakkhu-
nakon and Suansook, 2009), Tabu Search (TS) 

(Martinjak and Golub, 2007), Genetic Algorithms 
(GA) (Homaifar et al., 1992), Differential Evolution 
Algorithm (DEA) (Draa et al., 2010), and Ant Colo-
ny Optimization (ACO) (Khan et al., 2009). 

Table 1: Size of solution space and the number of solu-
tions for the n-queens problem solved to date. 

n Size of solution space (n!) Number of solutions 

1 1 1 

2 2 0 

3 6 0 

4 24 2 

5 120 10 

6 720 4 

7 5040 40 

8 40320 92 

9 362880 352 

10 3628800 724 

11 39916800 2680 

12 479001600 14200 

13 6227020800 73712 

14 87178291200 365596 

15 1307674368000 2279184 

16 20922789888000 14772512 

17 355687428096000 95815104 

18 6402373705728000 666090624 

19 121645100408832000 4968057848 

20 2432902008176640000 39029188884 

21 51090942171709440000 314666222712 

22 1124000727777607680000 2691008701644 

23 25852016738884976640000 24233937684440 

24 620448401733239439360000 227514171973736 

25 15511210043330985984000000 2207893435808352 

26 403291461126605635584000000 22317699616364044 

 

In this paper, the Imperialist Competitive Algo-
rithm (ICA) evolutionary method developed in 2007 
is applied for the first time to solve the third variant 
of the n-queens problem, that is, to find the first 
encountered valid solution. Also, the ICA was com-
bined with a local search, resulting in the Hybrid 
ICA (HICA) method, which outperformed the origi-
nal ICA in terms of average runtimes and average 
number of fitness function evaluations. 

The rest of the paper is organized as follows: 
section 2 presents the basic ICA and its components 
for solving n-queens problem, section 3 presents the 
details of the HICA method, and section 4 provides 
experimental results on the performance of the basic 
and Hybrid ICA methods, and provides comparisons 
with the Cooperative PSO method for various sizes 
of the problem. Finally, conclusions are in section 5. 
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2 THE BASIC IMPERIALIST 
COMPETITIVE ALGORITHM 

The Imperialist Competitive Algorithm (ICA) was 
first introduced by Atashpaz-Gargari and Lucas 
(2007) as an Evolutionary Computation method 
based on a social-political evolution. The ICA be-
gins with generating an initial population of ‘coun-
tries’ (counterparts of chromosomes in GAs or parti-
cles in PSO). Then, according to a fitness function 
value, some of the best countries are determined as 
‘imperialists’, and remaining ones as the ‘colonies’ 
of these imperialists, which altogether form some 
‘empires’. 

Assimilation and Revolution are the two main 
operators of this algorithm: the colonies of each 
empire get closer to its imperialist by the assimila-
tion operator (a concept akin to the recombination 
operator in other evolutionary algorithms), and ran-
dom changes happen to the colonies according to the 
Revolution operator (a concept akin to the mutation 
operator in other evolutionary algorithms) which 
may modify the position of colonies in the search 
space. These operators may improve the solutions of 
the problem and increase the power of the colonies 
to take the control of the entire empire. If so, they 
swap their positions with their imperialists.  

Imperialistic competition among these empires is 
another part of the ICA algorithm, which forms the 
basis of this evolutionary algorithm. During this 
competition, powerful empires survive and take 
possession of the colonies of weaker empires. This 
procedure eliminates all the imperialists except for 
one, which yields the final solution. The flowchart 
of the ICA is illustrated in Figure 3, and details of 
the algorithm’s steps tailored for the n-queens prob-
lem are described below. 

2.1 Generating Initial Empires 

In the n-queens problem, each country is represented 
by a solution encoded in the form of a permutation 
[π(1), π(2), ..., π(n)], in which the value of π(i) indi-
cates the row number and i specifies the column 
number of a queen on the chessboard (see Figures 1 
and 2). Through this scheme, we can easily generate 
initial solutions with no two queens on the same row 
or column, letting the conflicts occur merely along 
the diagonals of the chessboard. 

The algorithm starts by producing a population 
of countries, which for the sake of improving the 
quality of initial solutions, a large number of them 
are created and then sorted in order of their objective 
function values to form the initial population with a 

desired size. From this new list, a number (say N) of 
them with the highest qualities are considered as 
imperialists, and the remaining solutions are sequen-
tially assigned to the imperialists as their colonies. In 
our problem the value of a solution is equal to the 
number of queen attacks (conflicts) and so lower 
values mean higher quality. 
 

 

Figure 3: Flowchart of the Imperialist Competition Algo-
rithm. 

As an example, assuming that the sorted initial 
population of size 16 with N = 3 imperialists is: 

No 

No

No 

Yes

Output 

Yes

Compute the total cost of all empires 

Pick the weakest colony from the weakest 
empire and give it to the empire that has the 

most likelihood to possess it 

Yes

Exchange the positions of that 
colony and the imperialist  

Move the colonies to their 
relevant imperialist 

Initialize the empires 

Begin 

Is there a colony in an empire 
which has higher power than 

that of its imperialist? 

Is there an empire 
with no colonies? 

Eliminate this empire 

Stopping condition 
satisfied?

Unite similar empires 
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[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], 
the resulting three empires with their imperialists 
shown in bold will be {[1, 4, 7, 10, 13, 16]; [2, 5, 8, 
11, 14]; [3, 6, 9, 12, 15]}. 

2.2 Assimilation within an Empire 

In the real political world, imperialists try to pro-
mote the life standards of their colonies by assimilat-
ing and absorbing them. In the ICA, this fact is sim-
ulated by moving each colony toward its respective 
imperialist. For the assimilation phase, we have 
utilized the Partially Matched Crossover (PMX) 
operator. 

In this binary operator, in general, two genotypes 
(solution encodings) are selected as parents, and two 
crossover positions are picked randomly along the 
solutions. Then, all chromosomes of Parent A lying 
between these two points are exchanged with the 
chromosomes of Parent B at the same positions, and 
vice versa. 

For example, for the 8-queens strings in Figure 4, 
taking the Parents A and B, the two crossover limits 
are fixed at 4th and 6th positions, and the dark area 
indicates the pairs which must undergo exchange. 
As a result, in both parents, the following swaps take 
place: 7↔4, 3↔1, and 8↔2, which create two new 
children. 

Now in our method, the first parent is perma-
nently assumed to be the imperialist solution, and 
the second parent rotates among all colonies. Thus, 
the generated offspring will somewhat inherit the 
nature and power of their imperialist parent, which 
can be interpreted as a kind of assimilation. The next 
generation will be selected from the best solutions of 
the pool, with the size of the population maintained. 

 

 

Figure 4: An example of parents and children in the Par-
tially Matched Crossover (PMX). 

2.3 Revolution within an Empire 

The Revolution operator brings about radical chang-
es in a colony in hope for a better fitness value and 
also diversifying the population. This unary operator 
is applied to colonies with a constant rate (Revolu-
tion Rate, RR) and acts like the mutation operator in 
GAs. 

In our method the Revolution operator is imple-
mented by randomly swapping the values of chro-
mosomes at one or two positions. The colony is 
updated if a better fitness value is obtained. Figure 5 
shows an example of this operator for the 8-queens 
problem. 

 

 

Figure 5: An example of the Revolution operator. 

2.4 Power Struggle 

While moving toward the imperialist, a colony may 
achieve a position with lower cost (or equivalently, 
higher power) than its imperialist. In such a case, the 
imperialist will be toppled and superseded by that 
colony. The colony becomes the new imperialist 
starting from the next iteration. This act is similar to 
shifting the best global experience (gbest) in the 
swarm from a particle to another particle in the PSO 
method. 

2.5 Imperialistic Competition 

Through the imperialistic competition step, weaker 
empires lose their power further by losing their col-
onies, and powerful empires become more powerful 
by owning new colonies. 

The total power of an empire is calculated by 
adding the power (i.e., fitness function value) of the 
imperialist country to a percentage of the mean 
power of its colonies. Mathematically, 
 

1

( ) ( ) ( )
i

j

i i i

ji

n

P E P I P C
n





   , (1)

 

in which P(Ei) is the power of Empire i, P(Ii) is the 
power of the Imperialist country of Empire i, P(C j

i) 
is the power of the j-th colony of Empire i, ni is the 
number of colonies in Empire i, and 0 < ξ < 1 is a 
constant determining the importance and impact of 
the colonies in each empire. We found ξ = 0.1 a 
proper valueas suggested by Nazari-Shirkouhi et al. 
(2010). 

For a minimization problem, the normalized total 
power of Empire i is obtained by subtracting the 
lowest power among all empires from its power, as 
in (2). Note that a high power corresponds to a low 
cost. 

 ( ) ( ) min ( )
ii i

i
NP E P E P E   (2)

 

Colony (state 0) 8 7 2 5 1 4 6 3 
Colony (state 1): 8 7 3 5 1 4 6 2 

Parent A: 2 4 6 7 3 8 5 1 
Parent B: 8 5 3 4 1 2 7 6 

 
Child 1: 8 7 6 4 1 2 5 3 
Child 2: 2 5 1 7 3 8 4 6 
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Thus, the normalized total power of the weakest 
empire will be zero, and for others, a positive value. 

The Possession Probability (PP) of each Empire 
is based on its total power and should be calculated 
at the start of the imperialistic competition step, 
according to (3), in which N is the total number of 
empires: 

 

1

( )

( )

i

j

i N

j

NP E
PP

NP E





 

(3)

 

The Possession Probability is used to update the 
distribution of the colonies among the empires. For 
each empire i, by subtracting a uniform random 
number randiU(0, 1) from its PPi, a new vector is 
formed, defined as: 
 

D = [PP1− rand1, PP2− rand2, ..., PPN− 
randN] 

(4)
 

In the vector D, the empire that has the least value 
among others loses its weakest colony, which is 
reassigned to the most powerful empire. 

The Assimilation, Revolution, and Imperialistic 
Competition steps are repeated until the weakest 
empire loses all of its colonies, in which case it is 
discarded and its imperialist becomes a colony of the 
most powerful empire. See Figure 1 for a review of 
the algorithm. In our n-queens problem, the stopping 
criterion is satisfied when there are no conflicts 
(attacks) among the queens. 

3 THE HYBRID ICA 

As described earlier, the ICA utilizes random num-
bers in almost all of its steps: initial population crea-
tion, assimilation, revolution, and imperialistic com-
petition. This randomness can be quite effective in 
diversifying the solutions and adequately exploring 
the search space. However, we noticed that this fact 
weakens the algorithm’s ability to intensify its 
search around a good solution, which leads to a slow 
convergence to a suboptimal solution. 

As a result, we decided to add a local search 
component to the ICA and reinforce its intensifica-
tion ability. This local search is applied on a solution 
to improve it as much as possible (i.e., until reaching 
a local optimum) through a neighborhood generation 
and selection procedure. 

A common method for generating neighbors of a 
given solution is Random Swap, which exchanges 
the places of two randomly-selected queens. This 

action may or may not decrease the number of con-
flicts among queens. So, to make the neighborhood 
generation more goal-directed, we propose a new 
variant of the swap operator, called Effective Swap, 
which acts more intelligently than the random swap 
since it selects the exchange rows by also consider-
ing the number of attacks rather than just choosing 
them randomly. The following details illustrate the 
function of this new operator. 

The Effective Swap operator starts with counting 
the number of conflicts on the main diagonal of the 
chessboard. If this number is nonzero, it marks that 
diagonal for further operations. Otherwise, it pro-
ceeds with the subdiagonals immediately above and 
below the main diagonal. Conflict counting is re-
peated for these diagonals too, and if no conflicts are 
found, it proceeds with farther subdiagonals parallel 
to the main diagonal. In case that still no conflicts 
are identified, the above procedure is repeated for 
the secondary diagonal and its parallel subdiagonals 
until a conflicting diagonal is found and marked for 
further operations. 

Next, suppose that the marked diagonal has m 
conflicts. Then the operator performs m − 1 random 
swaps, such that in each swap, one of the queens is 
selected from the conflicting queens, and the other is 
a randomly-selected queen not causing any conflict 
in the marked diagonal. It is worthy to note that 
performing an Effective Swap does not guarantee an 
improvement in the fitness function; however, as 
indicated by our extensive experiments it reduces the 
number of conflicts far better than the random swap 
operator. 

As an example of Effective Swap, consider a 
configuration of 8 queens displayed in Figure 6(a), 
where there are m = 2 conflicting queens on the 
marked main diagonal, namely π(1) and π(8), of 
which one queen is selected randomly, e.g., π(8). 
Now another queen which does not cause conflicts 
in this diagonal is randomly selected, e.g., π(7), and 
the selected rows are swapped by π(7) ↔ π(8), 
shown in Figure 6(b). 

After applying an Effective Swap, a neighbor so-
lution is generated, and we check whether any im-
provement has occurred in the fitness function or 
not. If yes, then this neighbor solution is kept; oth-
erwise, a new one is generated. This procedure iter-
ates until a stopping criterion is satisfied. The stop-
ping criterion contains a parameter T to control the 
depth of the local search, set by: 
 

T = k · n (5)
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Figure 6: (a) Before, and (b) after applying the Effective 
Swap on the chessboard. 

where k is a constant and n is the size of the prob-
lem. After each iteration of the local search, the 
value of T is updated by: 
 

T = 0.99 · T (6)
 

The local search procedure iterates until T reaches a 
lower bound like Tmin. On the other hand, the n-
queens problem has multiple optimal solutions (with 
a fitness function value of zero, meaning no con-
flicts), and the number of these solutions increases 
exponentially as n grows (Table 1). Therefore, if the 
local search is given more time to transform an initial 
solution, it can converge to an optimal solution much 
faster. For this purpose, whenever the newly generat-
ed neighbor causes an improvement in the fitness 
function value, a rewarding mechanism is enforced to 
update the T by: 
 

T = 1.01 · T (7)
 

Note that the 1.01 coefficient delays the conver-
gence and causes the search to deeply exploit seem-
ingly good solutions. As a result, such a dynamic 
definition of T causes an effective search of the 
space, as the algorithm spends more time on explor-
ing an appropriate solution, and less time on non-
promising ones. 

We name the ICA with the abovementioned local 
search procedure as “Hybrid Imperialist Competitive 
Algorithm (HICA)”. 

The HICA has another advantage over the basic 
ICA: as noticed in equation (4), the empire having 
the largest value in the vector D will possess the 
weakest colony of the weakest empire. On the other 
hand, we know that the most powerful empire (e.g., 
E*) has the largest PP index calculated in (3). But 
since the vector D is obtained by subtracting random 
numbers from the PPi indices, there is no guarantee 
that the E* will still be selected for accommodating 
the weakest colony. 

Although we used the equation (4) for our basic 
ICA to keep the authenticity of the algorithm pre-
sented by Atashpaz-Gargari and Lucas (2007), we 
discarded the random number subtraction in (4) in 
the HICA and used the following vector D instead: 

 

D = [PP1, PP2, ..., PPN] (8)

4 EXPERIMENTAL RESULTS 

We conducted a number of experiments to assess the 
efficiency and effectiveness of the developed algo-
rithms. The parameters of the algorithms were set as 
follows: Initial population size = 100, k = 1 (in (5)) 
and Revolution Rate (RR) = 0.4. The algorithms 
were coded in Matlab and run on an Intel® Core i7 
2.00 GHz CPU with 4.00 GB of RAM. 

Tables 2 and 3 show the experimental results of 
solving the n-queens problem at different sizes. Con-
sidering the randomness of the methods, each instance 
was run 10 times, and the mean and the standard 
deviation (S.D.) of runtimes and two other perfor-
mance criteria, the FFE and NCCA, are reported. 

Table 2: Average results of 10 runs of the ICA for various 
sizes of the n-queens problem. 

n 
FFE 

NCCA 
Runtime (s) 

Min Max Avg. Avg. S.D. 

8 17 330 159 0.36 0.05 0.06

10 150 2315 785 2.17 0.14 0.13

25 1550 10880 6500 5.40 2.15 1.06

50 12215 116150 4402 10.95 26.48 17.43

100 105870 542720 280014 22.28 348.51 162.39

200 1022990 1882564 1558751 50.15 3284.22 303.54

300 2754111 4258966 3859979 143.51 21650.58 573.81

The FFE criterion measures the total number of 
Fitness Function Evaluations during the whole 
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search, and NCCA stands for Normalized Conver-
gence Curve Area. 

Table 3: Average results of 10 runs of the HICA for vari-
ous sizes of the n-queens problem. 

n 
FFE 

NCCA 
Runtime (s) 

Min Max Avg. Avg. S.D. 

8 0 445 96.3 2.20 0.05 0.05 

10 21 940 408.3 11.33 0.14 0.11 

30 184 5038 1657.6 13.74 0.67 0.62 

50 323 5882 2327.6 11.61 1.20 1.03 

75 525 5708 2265.2 11.21 1.28 0.88 

100 1374 7006 2932.7 8.81 1.98 1.29 

200 6060 9405 8893.6 13.70 9.38 1.10 

300 10805 14624 12302.6 12.79 19.60 2.74 

500 13717 24906 20962.4 16.47 148.74 29.82 

750 23279 42164 33767.5 13.65 616.17 254.26 

1000 31701 74877 43272.4 15.80 984.13 301.12 

2000 79984 101571 89827.1 21.93 7023.87 545.54 

 

The convergence curve plots the best-found fit-
ness function value at each iteration, until the final 
solution is reached. In the n-queens problem, this 
curve shows how the algorithm reduces the number 
of conflicts during its execution till it becomes zero. 
Figure 7 shows convergence curves of the ICA for 
various sizes of the problem: n = 50, 100, 200 and 
300. The number of conflicts and iterations are dis-
played along the vertical and horizontal axes, re-
spectively. As can be seen, initial numbers of con-
flicts were about half the sizes of the problems, and 
larger problems took much more iterations to con-
verge than smaller instances. 

 

 

Figure 7: Convergence curves for the ICA run on n = 50, 
100, 200, and 300 queens. 

Inspired by the behavior of the convergence 
curve, we designed a new performance criterion to 
compare the basic and hybrid ICA methods: the 
Normalized Convergence Curve Area, which is cal-
culated as per (9), in which Nc

i is the number of con-
flicts during i-th evaluation of the fitness function: 

1

FFE

i

i
cNCCA N



   (9)

 

In fact, by calculating the area under a convergence 
cure we can infer how fast a method reduces the 
number of conflicts. A relatively small area implies 
that the algorithm succeeded in reducing the number 
of conflicts at its early iterations. The NCCA 
measures the area under the convergence curve with 
the number of conflicts plotted along the vertical axis 
and the number of FFE along the horizontal axis; but 
since for large problem sizes the area becomes too 
large, we divided it to a factor of n2 and eliminated the 
impact of problem size, obtaining a normalized value. 

Table 2 shows that the ICA spent about 6 hours 
of computation averagely for the 300-queens prob-
lem, and so we stopped solving larger instances. On 
the other hand, the HICA performed surprisingly 
well and could find a solution to the 2000-queens 
problem in less than 2 hours. The number of FFE in 
the HICA method was also significantly less than 
that of the basic ICA method. For the NCCA criteri-
on the behaviors are a bit different: for small sizes 
the ICA converges to a low number of conflicts 
faster than the powerful HICA method, but then for 
n>100 the HICA regains its superiority (with smaller 
NCCA index). This fact is due to the impact of the 
implemented local search on the algorithm’s speed. 

Figure 8 illustrates the superimposed conver-
gences of the two algorithms. 

 

 

Figure 8: A comparison of convergence curves for basic 
and hybrid ICAs on n = 100 queens. 

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

Number of iterations

N
um

be
r 

of
 c

on
fli

ct
s

 

 

n=50

n=100
n=200

n=300

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

50

Number of Fitness Function Evaluations (FFE)

N
um

be
r 

of
 c

on
fli

ct
s

 

HICA (NCCA=0.86)

ICA   (NCCA=1.12)

Basic�and�Hybrid�Imperialist�Competitive�Algorithms�for�Solving�the�n-Queens�Problem

93



 

The curves in Figure 8 are plotted for n = 100 by 
considering the best run in terms of convergence 
speed out of 10 runs. Note that here the horizontal 
axis shows the number of FFE’s (and not iterations) 
since the local search component in the HICA exe-
cutes some additional iterations which should not be 
compared to the main iterations of ICA. 

4.1 Comparisons 

In order to evaluate the efficiency of the presented 
HICA method, we compared it with an algorithm 
that had produced the best known results in finding 
the first solution to the n-queens problem. This 
method is called Cooperative PSO (CPSO) and is 
introduced in (Amooshahi et al., 2011) for solving 
permutation problems, including the n-queens prob-
lem. Compared to the standard PSO method (Ken-
nedy and Eberhart, 1995), the CPSO uses parallel 
searching to reduce calculation time. 

For solving the n-queens problem by using the 
CPSO, an initial random population of particles is 
generated, where each particle has initial infor-
mation about the locations of n queens on an n×n 
chessboard. Each particle of the population is divid-
ed into n equal sub-swarms, and then each sub-
swarm is changed into one sub-particle. Sub-
particles use the standard PSO to update their veloci-
ties and positions according to the best local experi-
ence of each sub-particle and the best position for 
each particle among all particles. 

Table 4: Average number of FFEs for HICA and CPSO. 

n HICA CPSO Improvement (%) 

8 96.3 225.8 57.4 
10 408.3 540.5 24.5 
30 1657.6 2020.5 18.0 
50 2327.6 2764.2 15.8 
75 2265.2 3661.6 38.1 

100 2932.7 5063.6 42.1 
200 8893.6 9184.5 3.2 
300 12302.6 14559.6 15.5 
500 20962.4 23799.6 11.9 
750 33767.5 34765.2 2.9 

1000 43272.4 47299.8 8.5 
2000 89827.1 95235.9 5.7 

 

Through a number of experiments, Amooshahi et 
al. (2011) compared the CPSO with implementations 
of standard PSO, SA, TS and GA algorithms (re-
ported in Martinjak and Golub, (2007)) and outper-
formed all those metaheuristics in terms of the num-
ber of fitness function evaluations. 

 

Figure 9: Comparison of the number of fitness function 
evaluations (FFE) versus the problem size for the HICA 
and CPSO methods. 

The results of average FFE values obtained by 
our proposed HICA and the CPSO algorithms are 
reported in Table 4 and plotted in Figure 9. It was 
observed that the HICA always evaluated the fitness 
function fewer times than the CPSO. 

We should note here that Minton et al. (1990) 
presented a two-phase method for producing a solu-
tion to the n-queens problem in a very short time. In 
the first phase an initial assignment is created via a 
greedy approach which iterates through the rows and 
places a queen on a column with minimal conflicts 
with previously placed queens (ties are broken ran-
domly). In the second phase the assignment is re-
paired by moving a conflicting queen to a different 
column in the same row where it conflicts with the 
least number of queens (ties are broken randomly) 
until all conflicts are resolved. The reason for not 
comparing our algorithm with Minton’s method was 
that in their method the number of conflicts after 
running the assignment phase is dramatically low 
(averagely about 12.8 conflicts in one million 
queens!) so that the repairing phase must resolve 
very few conflicts, while the initial number of con-
flicts in the ICA or HICA is about half the size of 
the problem (e.g. 500000 in the one million queen 
problem). As a result, there was no fair basis for 
comparing the strength of both methods in reducing 
the number of conflicts. 

5 CONCLUSIONS 

In this paper the Imperialist Competitive Algorithm 
(ICA), which is a recent evolutionary method, is used 
for finding the first encountered solution to the n-
queens problem. For improving the performance of 
the algorithm a local search is incorporated into the 
algorithm, which we call Hybrid ICA (HICA). Exper-
imental result showed that the HICA is able to find 
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the solution for a given number of queens faster than 
the basic ICA and can solve large instances through 
smaller numbers of fitness function evaluations. The 
HICA was also compared to the best algorithm in the 
literature for solving this specific problem (i.e., Coop-
erative PSO), and outperformed it in terms of the 
number of fitness function evaluations. 

As a future work, the Revolution Rate can be con-
sidered as an adaptive parameter such that in initial 
iterations it takes a relatively large value and decreas-
es as the search proceeds.The decreasing rate would 
be dynamic and would depend on some information 
obtained from the course of the search. As a result, 
more diversification of solutions in the earlier itera-
tions can be expected, which may lead to faster con-
vergence. Another enhancement could be performing 
a landscape analysis for the n-queens problem, which 
probably can explain the reason of the significant 
improvement caused by hybridizing the ICA with a 
simple local search compared to the basic ICA. 
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