
A Metamodel for Functional Dependencies
Towards a Functional Dependency Model Transformation

Manuel Enciso, Carlos Rossi and Antonio Guevara
Dpto. Lenguajes y CC de la Computación, Universidad de Málaga, Málaga, Spain

Keywords: Model Driven Engineering, Metamodel, Model Transformation, Functional Dependencies, Logic.

Abstract: Model driven engineering has been shown to be a useful framework to enrich the quality of software. Meta-
modeling and model transformation have opened the door to specifying data models and manage it in a formal
and solid way. These favourable features are particularly welcome in collaborative development, where we
need a data model suitable for specifying information from different sources, and which can also facilitate
the integration of this heterogeneous information to a global data model. In this paper we introduce a meta-
model based on the notion of functional dependencies and we propose to use model driven engineering for the
development of model transformation based on the SLFD logic.

1 INTRODUCTION

Our work aims to improve the quality of real-world
software projects. More specifically, we optimize
models using formal techniques, but decreasing the
development cost by means of automatization. In this
sense, we also reduce the usual rejection that soft-
ware developers have to these techniques due to their
complexity and high development time and cost. We
achieve these advantages by applying Model Driven
Engineering (MDE). Within this overall objective,
this paper focuses on the optimization of data mod-
els.

The Unified Modeling Language (UML) (OMG,
2001) provides a standard for expressing data models.
It has been used in databases to specify the two main
approaches in data modeling (conceptual and logical
modeling): the entity/relationship model (Gogolla,
2005) and the relational model (Akehurst et al., 2002),
(Laleau and Polack, 2001). Nevertheless, the intro-
duction of model driven engineering and the use of
metamodels and model transformations has opened
the door to the incorporation of several languages and
techniques to software engineering. Particularly we
are interested in the use of logic as a framework which
provides formal specification and solid inference.

In this work we propose to incorporate the good
result provided by the Simplification Logic for Func-
tional Dependencies (SLFD Logic (Cordero et al.,
2002)) and use this logic as the basis for model trans-
formation. SLFD enables building specifications usi-

ng the functional dependency concept as its main ele-
ment. As usual, we consider a table as a subset of the
cartesian product of a set of attributes. The functional
dependencyX →Y is defined between two sets of at-
tributes (X andY) and it is fulfilled in a relation if for
every two tuples, if they agree inX, they also agree in
Y.

Functional dependency is a main issue in the def-
inition of the relational model. It is the basis for the
Primary Key and Unique Constraint definitions. The
functional dependency also allows the specification of
a dependency relationship among attributes of a rela-
tional schema. This dependency information is used
to optimize relational database models using the nor-
malization theory.

Normalization was introduced to depurate rela-
tional schemas (Garcia-Molina et al., 2008). We will
focus on the normalization based on functional depen-
dencies. It provides a set of normal form definitions
(second, third and Boyce-Codd normal form) and
their corresponding decomposition processes. Each
normal form is defined to avoid some update anoma-
lies and its decomposition splits the table to two new
tables preserving the functional dependencies. There
is in the literature a great number of works which fo-
cus on the automatization of the normalization pro-
cess and, more specifically, there are some propos-
als in the framework of the model-driven engineer-
ing (Akehurst et al., 2002). In these papers, the au-
thors define a metamodel for the relational model
which incorporates functional dependencies specifi-

291Enciso M., Rossi C. and Guevara A..
A Metamodel for Functional Dependencies - Towards a Functional Dependency Model Transformation.
DOI: 10.5220/0004129002910296
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 291-296
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



cation. The authors use the Object Constraint Lan-
guage (OCL) (OMG, 2001) to express functional de-
pendencies between attributes and the normal form
definitions given above on classes at a metalevel.

In this work we propose the use of a metamodel
which incorporates functional dependencies consid-
ered among the whole set of attributes, even if they
appear in different relational tables. This feature al-
lows us to use the metamodel as a framework for inte-
gration. Our main goal, as we will describe presently,
is the incorporation of this metamodel into the col-
laborative tool CBD1 (Cordero et al., 2010), in the
context of a general redesign of CBD guided by the
principles of MDE. The functional dependency meta-
model and its model transformations will be a pow-
erful tool to manage the heterogeneous information
provided by the collaborative use of CBD.

For the implementation of the metamodel and
model transformations we use well-known frame-
works and languages such as EMF (Steinberg et al.,
2009) and ATL (Jouault and Kurtev, 2006).

Therefore, the results of this work provides the
following usage context: the user intuitively designs
with CBD the forms he needs.Then CBD generates
models that conform to a metamodel including the
concept of functional dependency. By means of
model transformations (based on logic SLFD) CBD
obtains optimized data models and generates the
scripts of the database of the final application. This
usage context is depicted in figure 1.

This paper is organized as follows: first we present
the background about CBD and the SLFD Logic. In
Section 3 we present the metamodel for functional
dependencies. The model transformation induced by
the functional dependency algorithms based on SLFD
will be presented in Section 4, where we will provide
a specification of the main inference rule of SLFD us-
ing ATL (Jouault and Kurtev, 2006). The paper ends
with a conclusion and future work section.

2 BACKGROUND

In this section we present some results that may be
considered as preliminaries for the development we
present in this paper. We introduce CBD (Cordero
et al., 2010) and the Simplificaction Logic for Func-
tional Dependencies (Cordero et al., 2002).

2.1 SLFD Logic

The use of logic to manage functional dependencies is
not new. Since the introduction of the so called Arm-

1Spanish acronym for Cooperation in Databases.

strong’s Axioms (Armstrong, 1974) in the mid 70’s,
there has been a lot of works which have followed
this logic approach (see (Cordero et al., 2002) for fur-
ther details). Nevertheless, none of this work has been
incorporated to software engineering tools. As pre-
sented in (Enciso et al., 2011), the use of functional
dependencies is only a matter of research and no com-
mercial development tool or DBMS make much use
of them. As the authors cited in that paper “Classi-
cal FDs logics, based on Armstrong’s axioms (Arm-
strong, 1974) provide a good formal basis but it can-
not be considered a real approach, because it does
not have an executable orientation”.

This situation has induced the use of indirect
methods to solve the main problems related with func-
tional dependencies. Thus, there is in the literature
a lot of work which introducedad hoc algorithms
focussed on different functional dependencies prob-
lems. We would like to address these problems in an
uniform framework, without sacrificing a good per-
formance.

SLFD logic provides a formal basis to deal with
functional dependencies with an extra benefit in the
efficiency. As (Mora et al., 2012) shows, algorithms
based on SLFD operators are even faster than those
proposed in previous work in the literature. The rea-
son is that the inference system of the SLFD logic is
not based on the transitivity rule (as is the other clas-
sical functional dependencies logic). The intrinsic be-
havior of transitivity avoids its use in real problems,
but it is the core of all these logics. SLFD provides
a new simplification rule as the kernel of its novel in-
ference system (Cordero et al., 2002).

The core of the classical axiomatic system is the
transitivity rule:

⌊Trans⌋
X →Y Y→ Z

X → Z

SLFD avoids this rule and it is substituted by a
new simplification rule:

⌊Simp⌋
X →Y, U →V,X ⊆U
(U −Y)→ (V −Y)

⌊Simp⌋ allows the use of logic to manage func-
tional dependencies. It does not consider two func-
tional dependencies and produces a new one (like
⌊Trans⌋ does). It reduces an existing functional de-
pendency (U → V) by simplifying some of their re-
dundant attributes. Thus, the axiomatic system works
by reducing the original problem to a simpler one with
no redundancy. This new orientation has a direct im-
pact in the efficiency of the methods designed on the
new logic.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

292



CBD
Prototype

Requirements

elicitation

pila de páginas

MODELS

pila de páginas

OPTIMIZED

MODELS
MODEL 

TRANSFORMATION

Application

developer

Software 

Engineer

Users

SLF
D 

ope
rato

rs 

(AT
L)

Figure 1: FD-based model driven architecture of CBD.

2.2 CBD

CBD was created to provide an improvement in one
of the critical points in software development: user re-
quirements elicitation. This process has several well-
known problems associated with it, as described in
most Software Engineering books (Pressman, 2010;
Sommerville, 2011). These problems have tradition-
ally been tackled by means of new modeling tech-
niques or new software process models (e.g. iterative
processes (Jacobson et al., 1999) or agile methodolo-
gies (Martin, 2003)). These process models increase
user participation, but finally an analyst must “trans-
late” the information gathered to requirements and
models. In most real-word projects, analysts intro-
duce “noise” and a deviation from real user needs. So,
this translation usually introduces inaccuracies that
spread throughout the development process and re-
duce software quality.

CBD’s approach to this problem tries to avoid the
main role of the analyst in requirements elicitation.
In CBD the final user specifies its requirements di-
rectly by means of collaborative techniques. More
concretely, the user intuitively designs in CBD the
user interface (forms containing UI components and
controls) that he wishes. Then CBD executes an en-
gineering process (Cordero et al., 2010) that gener-
ates a model (that conforms to a CBD metamodel)
of functional and information requirements. This
model is processed by the CBD engine generating
use case, structure (class) and behavioral (sequence)
UML models (in XMI format). Furthermore, CBD

generates a relational database (to be used in the user
application). It is in this last step where the results of
this work will be applied.

CBD is designed with a web application architec-
ture. At http://www.cbd.uma.es the reader can see a
video illustrating the workflow of CBD.

The metamodel of CBD is expressed in XSD and
all the information managed by CBD is stored in
XML format, using the XML native database man-
agement system eXist-db. So, the metadata related to
the information and functional requirements, as well
as the specifications of user interface are expressed in
XML documents. The metamodel includes the con-
cept of functional dependency.

In an evolution still in development, CBD
will have a web-application generation functionality.
From the requirements given by the user and the gen-
erated models, it will be possible to generate a final
application for the user. In the current version gener-
ation of applications is done withad hoctechniques,
which will be redesigned to use MDE techniques, par-
ticularly model-to-text transfomations.

Though generation of applications by the user is
a service offered by other solutions (Zoho or Google
Forms, for example), as far as we know, none of them
offer the power of CBD in the generation of databases
with a great wealth of tables and relations, or the
generation of UML models in XMI format (Cordero
et al., 2010).

A�Metamodel�for�Functional�Dependencies�-�Towards�a�Functional�Dependency�Model�Transformation

293



3 METAMODEL FOR
FUNCTIONAL DEPENDENCIES

In this work we propose to combine our theoretical re-
sults about functional dependencies with CBD, under
the MDE paradigm. In this sense we use the modeling
framework EMF (Steinberg et al., 2009), to adjust to
the standard. CBD generates models that conform to a
XSD metamodel. So, our first step is to transform this
metamodel to Ecore. We use the XSD2Ecore trans-
formation of EMF.

There exists in the literature some work which
introduces a metamodel for the relational data
model (Akehurst et al., 2002; Laleau and Polack,
2001). They introduce a class to define relational
tables and it also allows the encoding of constraints
(primary key, unique and functional dependency).
In (Akehurst et al., 2002) the authors provide an OCL
specification of the functional dependencies normal
forms and they design a tool which supports the nor-
malization process. This solution may be considered
a top-down approach, because we consider a rough re-
lational model with (probably) some great degree of
redundancy, and the normalization model transforma-
tion renders, by table decomposition, a depurated re-
lational model with no redundancy and a greater num-
ber of smaller tables. This work provides a very in-
teresting framework in the model-driven engineering
area to deal with functional dependencies. Neverthe-
less, this approach is not suitable for use in our col-
laborative scenario.

CBD collects the information from different users
and integrates it into a unified model. All the infor-
mation stored in the CBD model needs to be flexible
in order to allow further integration. So, it does not
use tables until the design process is concluded and
CBD generates a database and the code to manage it.

In this paper we present a metamodel oriented to
the specification of functional dependencies, without
any table reference. This metamodel considers the
whole set of attributes involved in a system and re-
lates them using functional dependencies. This new
approach is suitable for bottom-up processes, like that
used by CBD. It considers the atomic information
about attributes and dependencies, builds a model that
conforms to a functional dependency metamodel and
transforms it (using SLFD model transformations)
rendering a set of functional dependencies. This func-
tional dependency model may be transformed into a
depurated relational model.

The use of our functional dependency metamodel
provides both a bottom-up approach suitable for a col-
laborative environment and a greater capability of re-
dundancy removal. In the normalization theory, only

the interaction among the functional dependencies of
the same table are considered. Thus, the informa-
tion used to remove redundancy in a table is lim-
ited to the intra-table functional dependencies. In our
metamodel, the functional dependencies do not be-
long to any table and they are part of a global meta-
model which represents all the information from dif-
ferent users. The Simplification rule may be used in
the whole set of functional dependencies, providing a
greater level of interaction among functional depen-
dencies.

To illustrate the advantage of the inclusion of the
functional dependencies among all the attributes of
the system, we present the following example:

Example 1. We consider that in our company
we have the following table to store the details
of each employeeEMPLOYEE(Emp#,Teleph#, Room,
Employee Name). Its primary key isEmp#. We also
have another table to store the location of each IP:
NETWORK(IP, Room). Its primary key isIP. Note that
these tables are fully normalized up to 3rd Normal
Form. Suppose the company decides to save money
and it adopts the VoIP protocol. Thus, we have to
store the following informationVOIP(Teleph#,IP),
whereTeleph# is the primary key.

In the relational model, the three tables are fully
normalized. But if you consider a set of all the func-
tional dependencies fulfilled in the whole set of at-
tributes (apart from the table they belongs to), we
obtain the following set:{Emp# → Teleph# Room
Employee Name, IP→ Room, Teleph#→ IP}. This
set may be simplified to the following set of func-
tional dependencies having less redundancy{Emp#→
Teleph# Employee Name, IP→ Room, Teleph#→
IP}.

We will focus on the subset of the CBD meta-
model relative to functional dependencies. In figure 2
we show that fragment. The metamodel includes the
concepts of Schema, Attribute and Functional Depen-
dency, with their usual interpretations. We would re-
mark that in this metamodel, a functional dependency
may have more than one attribute both on its left and
right sides. So, two classes are required to model the
functional dependency “ends”.

4 MODEL TRANSFORMATION
BASED ON SLFD

As we have mentioned in the preceding sections, we
propose the use of SLFD logic as a basis for the devel-
opment of some model transformations. There can be
found in the literature a set of works which show that

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

294



Figure 2: FD model-driven architecture.

the SLFD inference system may be used to produce
efficient algorithms which solve several of the prob-
lems of functional dependencies. In all these methods
the simplification rule plays an outstanding role.

To tackle each functional dependencies problem,
in each approach the authors have designed a spe-
cific operator which transforms the set of functional
dependencies and renders a proper solution. In all
these logic operators the simplification rule is the
atomic component in the reasoning and inference. We
present here some of these algorithms, referring the
reader to the original work for a detailed explana-
tion 2:

• In (Cordero et al., 2002; Mora et al., 2003) the
simplification rule is directly used to design a cou-
ple of transformations which reduce the redun-
dancy in the functional dependencies set looking
for a more optimal specification. These transfor-
mations are similar to the normalization process.

• In (Mora et al., 2012) a closure method is pre-
sented. It introduces a SLFD operator which car-
ries out the simplification of each element in the
set of functional dependencies up to getting the
closure for the input set of attributes. It introduces
the use of a seed, built as a functional dependency
with the empty set on the left side. This seed will
play the role of the first functional dependency of
the Simplification rule. In the paper the authors
show that this approach is even more efficient than
the rest in the literature.

• In (Cordero et al., 2012) the authors introduce an-
other SLFD operator heavily based on the simpli-
fication rule. The operator is used to introduce
a depurated method which finds all the minimal
keys. The operator is used in the branching pro-
cess to reduce the search space, providing a pow-
erful pruning and a great benefit in the efficiency
of the method.

2On the site http://www.slfd.uma.es/WebFDTools/ the
reader will find an executable web prototype of some of
these algorithms.

We propose to use these algorithms to define a set
of model transformation the objective of which is to
produce a depurated set of functional dependencies
with no redundancy. This set of transformations will
render a new functional dependencies model which
will be transformed into an optimal relational model.
Then, the use of model-to-text transformations allows
the generation of DDL scripts.

The transformations will be defined in
ATL (Jouault and Kurtev, 2006), a language
properly integrated into the EMF framework.

In this paper we only show the key piece of all
the transformations we propose, which is the simpli-
fication rule. Since this rule will be applied in the
implementation of the operators mentioned above, it
is defined as a ATL helper.

helper context
MMFunctionalDependency!FunctionalDependency def :
simplifRule(pivot:FunctionalDependency) :
FunctionalDependency =

leftEnd <- leftEnd - pivot.rightEnd,
rightEnd <- rightEnd - pivot.rightEnd;

This helper will be included in a transformation
controlled by an iterator that will only apply it to a
functional dependencyfd when the expression

fd.leftEnd.contains(pivot.leftEnd)

evaluates to true.

5 CONCLUSIONS AND FUTURE
WORK

In this paper we have presented a metamodel that al-
lows us to optimize data models through the applica-
tion of MDE techniques. The metamodel is based on
the concept of functional dependency, and considers
the full set of attributes in the schema, with no rela-
tional table structure.

This fact, together with the definition of a set of
model transformations with a solid formal basis (the
SLFD logic) provides an appropriate mechanism for
the elimination of redundancy. In addition, our ap-
proach allows a process of bottom-up integration suit-
able for collaborative developments.

The functional dependency metamodel has al-
ready been incorporated into the collaborative tool
CBD. This tool allows end users to design the forms
and UI components they need in their application.
This information is collected in models that conform
to the metamodel we have presented. From all these
models CBD generates a unified database for the end
application, as well as UML models in XMI format.

A�Metamodel�for�Functional�Dependencies�-�Towards�a�Functional�Dependency�Model�Transformation

295



Our work in progress is the implementation of
model transformations based on the operators of the
SLFD logic. These operators are based on the simpli-
fication rule, that provides better results than the usual
classical algorithms based on the transitivity rule. We
use EMF framework and ATL to define the meta-
model and the model transformations.

Regarding future work, one of our goals is to com-
plete the redesign of CBD by applying MDE tech-
niques. In this sense, we will use model transfor-
mations to generate UML models, and model-to-text
transformations for code generation.

ACKNOWLEDGEMENTS

Supported by grant TIN2011-28084 of the Science
and Innovation Ministry of Spain, co-funded by the
European Regional Development Fund (ERDF).

REFERENCES

Akehurst, D., Bordbar, B., Rodgers, P., and Dalgliesh, N.
(2002). Automatic Normalisation via Metamodelling.
In ASE 2002 Workshop on Declarative Meta Program-
ming to Support Software Development.

Armstrong, W. W. (1974). Dependency structures of data
base relationships. InIFIP Congress, pages 580–583.

Cordero, P., Enciso, M., Guevara, A., Caro, J. L., Mora, A.,
and Rossi, C. (2010). A tool for user-guided database
application development. Automatic design of XML
models using CBD. In5th International Conference
on Software and Data Technologies. ICSOFT 2010,
pages 195–200.

Cordero, P., Enciso, M., and Mora, A. (Apr, 2012). Auto-
mated reasoning to infer all minimal keys.Submitted
to Information Processing Letters.

Cordero, P., Enciso, M., Mora, A., and de Guzmán, I. P.
(2002). SLfd logic: Elimination of data redun-
dancy in knowledge representation. In8th Ibero-
American Conference on Artificial Intelligence, IB-
ERAMIA 2002, pages 141–150.

Enciso, M., Mora, A., Cordero, P., and Baena, R. (2011). A
claim to incorporate functional dependencies in devel-
opment tools. Benchmarking and checking functional
dependencies algorithms. In6th International Con-
ference on Software and Data Technologies. ICSOFT
2011, pages 313–316.

Garcia-Molina, H., Ullman, J., and Widom, J. (2008).
Database Systems: The Complete Book. Pearson.

Gogolla, M. (2005). Exploring ER and RE syntax and se-
mantics with metamodel object diagrams. InMetain-
formatics 2005, pages 61–72.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999).The Uni-
fied Software Development Process. Addison Wesley.

Jouault, F. and Kurtev, I. (2006). Transforming models with
ATL. In Satellite Events at the MoDELS 2005 Con-
ference, volume 3844 ofLecture Notes in Computer
Science, pages 128–138, Berlin. Springer Verlag.

Laleau, R. and Polack, F. (2001). A rigorous metamodel
for UML static conceptual modelling of information
systems. In13th International Conference on Ad-
vanced Information Systems Engineering, CAiSE’01,
pages 402–416.

Martin, R. (2003).Agile software development : principles,
patterns, and practices. Prentice Hall.

Mora, A., Cordero, P., Enciso, M., Fortes, I., and Aguilera,
G. (2012). Closure via functional dependence simpli-
fication. International Journal of Computer Mathe-
matics, 89(4):510–526.

Mora, A., Enciso, M., Cordero, P., and de Guzmán, I. P.
(2003). An efficient preprocessing transformation for
functional dependencies sets based on the substitution
paradigm. In10th Conference of the Spanish Associ-
ation for Artificial Intelligence, CAEPIA 2003, pages
136–146.

OMG (2001).The Unified Modeling Language Version 1.4.
Object Management Group formal//01-09-67.

Pressman, R. S. (2010).Software Engineering: A Practi-
tioner’s Approach, 7/e. McGraw-Hill.

Sommerville, I. (2011).Software Engineering, 9/e. Pear-
son.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

296


