
Network-based Executable File Extraction and Analysis for Malware

Detection

Byoungkoo Kim1,2, Ikkyun Kim1 and Tai-Myoung Chung2
1Network System Security Research Team, Electronics and Teletcommunicatons Research Institute,

161 Gajeong-dong, Yuseong-gu, Daejeon, 305-700, Republic of Korea
2Internet Management Technology Laboratory,

Department of Electrical and Computer Engineering, Sungkyunkwan University,

300 Chenchen-dong, Jangan-gu, Suwon, Gyeonggi-do, 440-746, Republic of Korea

Keywords: Network Packet, Malware Detection, Region Analysis, Executable File.

Abstract: The injury by various computer viruses is over the time comprised of the tendency to increase. Therefore,

various methodologies for protecting the computer system from the threats of new malicious software are

actively studied. In this paper, we present a network-based executable file extraction and analysis technique

for malware detection. Here, an executable file extraction is processed by executable file specific session

and pattern matching in reconfiguring hardware. Next, malware detection is processed by clustering analysis

technique about an executable file which is divided into many regions. In other words, it detects a malware

by measuring the byte distribution similarity between malicious executable files and normal executable files.

The proposed technique can detect not only the known malicious software but also the unknown malicious

software. Most of all, it uses network packets as analysis source unlike the existing host anti-virus

techniques. Besides, the proposed detection technique easily can detect malicious software without

complicated command analysis. Therefore, our approach can minimize the load on the system execution

despite the load on the additional network packet processing.

1 INTRODUCTION

Most of the anti-virus software uses the file based

diagnosis method. It takes only the segment or the

intrinsic part of the executable file as the checking

object. Therefore, it can minimize the un-detection

and misdetection, and the fast scanning is possible.

However, these methods can only correspond to the

known malicious software. In order to overcome the

limit, the heuristic detection method has been

developed. These methods are classified into the

mode of actually running on the virtual operating

system and the mode of scanning the file itself

without execution. That is, these are possible to

performing the detection about unknown malicious

software, but the information gathering about the

commands within the actual file has to be preceded.

So, it is easy that the system load on performing is

caused. Therefore, while the efficient detection

about unknown malicious software is carried out, the

analysis technique minimizing the load of the

accomplishment award is required. For resolving the

problem, we propose the detection technique that it

can detect not only the known malicious software

but also unknown malicious software. It uses the

network-based executable file extraction and

analysis technique for malware detection. Most of

all, the proposed technique easily can detect the

malicious software without the complicated

command analysis.

The remainder is structured as follows. The next

section summarizes the work related to ours. Then,

section 3 presents our network-based executable file

extraction and analysis method for malware

detection. Section 4 shows the experimental results.

Finally, we conclude and suggest directions for

further research in section 5.

2 RELATED WORK

This paper is mainly related to static anomaly-based

detection. It uses the characteristics about the

structure of packet or the program under inspection

430 Kim B., Kim I. and Chung T..
Network-based Executable File Extraction and Analysis for Malware Detection.
DOI: 10.5220/0004126104300433
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 430-433
ISBN: 978-989-8565-24-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

for detecting malicious code. A key advantage of

static anomaly based detection is that its use may

make it possible to detect malware without having to

allow the malware carrying program execute on the

host system. In the previous works, several methods

detect anomalies in the usage of network protocols

by inspecting packet headers. The common

denominator of them is the systematic application of

learning techniques to automatically obtain profiles

of normal behaviour for protocols at different layers.

It uses time based models in which the probability of

an event depends on the time since it last occurred,

or proposes a computationally low cost approach to

detecting anomalous traffic.

Kruegel et al. (2002) shows that it is possible to

find the description of a system that computes a

payload byte distribution and combines this

information with extracted packet header features. In

this approach, the resultant ASCII characters are

sorted by frequency and then aggregated into six

groups. Lee and Xiang (2001) used several

information-theoretic measures, such as entropy and

information gain, to evaluate the quality of anomaly

detection methods, determine system parameters,

and build models. These metrics help one to

understand the fundamental properties of audit data.

Wang and Stolfo (2005) present PAYL, a tool which

calculates the expected payload for each service on a

system. A byte frequency distribution is created

which allows for a centroid model to be developed

for each of the host services. Li et al. (2005)

describe Fileprint (n-gram) analysis as a means for

detecting malware. During the training phase, a

model or set of models are derived that attempt to

characterize the various file types on a system based

on their structural composition. Anderson et al.

(2004) proposed a search algorithm to detect the

executable code transmitted in buffer overflow

attacks. However, the algorithm only identified the

operation of the buffer overflows attack by printing

out the sequence of system calls used in the exploit.

Besides, many studies have been carried out, such as

Liu Wu et al. (2011) and Brijesh Kumar and

Constantine Katsinis (2010).

3 THE PROPOSED METHOD

In this section, we briefly introduce the malware

detection method by using the network-based

executable file extraction and analysis technique.

Here, we focus on Window PE (Portable Executable)

file of executable file types. As shown in the figure 1,

the proposed method consists of two part; H/W part

for capturing network packets related to executable

file extraction, and S/W part for malware detection.

Through these techniques, our proposed method can

perform the real-time malware detection as a

network inline-mode.

Figure 1: Network based malware detection architecture.

3.1 Executable File Extraction

An executable file extraction is processed by

executable file specific session and pattern matching

in reconfiguring hardware. As shown in the figure 2,

Windows PE file starts from “MZ(0x4D5A)” pattern

and includes “PE00(0x50450000)” pattern at the

specified position.

Figure 2: Windows PE file structure.

By using these characteristics, we can capture

network packets related to Window PE file. Figure 3

shows a network packet capturing mechanism for

extracting Windows PE files among a large quantity

of network packets by using a hardware-based

session tracking and pattern matching technology.

That is, the method of extracting a Windows

executable file includes: collecting incoming packets

having a payload according to a session of a

reference packet having an MZ pattern; performing a

PE file pattern matching for the collected incoming

packets; and forming a PE file based on at least one

incoming packet satisfying the PE pattern matching.

Figure 3: Network packet capturing mechanism.

Network-based Executable File Extraction and Analysis for Malware Detection

431

3.2 Malware Detection Method

Malware detection is processed by clustering

analysis technique about an executable file which is

divided into multiple regions. In order that the

proposed technique selects the clustering central

value, it is performed having the population of each

about normal executable files and malicious

executable files. The information of these

populations is used in inspecting each extracted

executable file. Most of all, because the proposed

technique is applied without the command analysis

of the executable files, it is easily possible to detect a

malicious executable file.

Figure 4: Region truncation of Windows PE file.

Figure 4 shows the conceptual diagram of region

distribution about executable file. A format of

Windows PE file can be divided into four regions

according to the feature: DOS Header, PE Header,

Section Table, and Sections. Here, the remaining

part except for necessary information can be easily

transformed by the malicious software manufacturer.

That is, according to this division of territory, the

region truncation about the Windows PE file can be

performed. The initial point of each region becomes

the initial point of each header of the Windows PE

file structure. The initial points easily can be

obtained through the parsing of the Windows PE file.

Figure 5: Malware detection mechanism.

Figure 5 shows the conceptual diagram of a

malware detection mechanism. The population is

distinguished from the normal executable files and

malicious executable files. Then, the byte

distribution value is calculated per the designated

region of each population. Through the clustering

learning about the calculated byte distribution values,

each regional clustering central value is calculated.

Then, the byte distribution similarity is measured

between the extracted executable file and each

population.

As shown in the figure, the byte distribution

value x of the extracted executable file X is

compared with the clustering central value y and z of

each population. As a result of the metric function,

the distance value m and n are calculated. Here, the

distance value n indicates the distance between the

clustering central value y of normal executable files

and the byte distribution x of the extracted

executable file X. If it is longer than the distance

value m between the clustering central value z of

malicious executable files and the byte distribution x

of the extracted executable file X, it is determined as

the malicious executable file. If not, it is normally

judged. Through this operation, the proposed

technique judges the malicious executable files.

Here, we use the K-means algorithm as the

clustering function and the Mahalanobis distance

algorithm as the metric function.

4 EXPERIMENTAL RESULTS

We have developed network-based malware

detection system based on our architecture, called

ZASMIN (Kim et al., 2009). As shown in the figure

6, our system was implemented in a XILINX Virtex

4 platform FPGA. Also, the screen shots were

captured during experiments to validate the

performance of the prototype. In this experiment, we

used a collection of malware executable files

gathered from other external sources and normal

Windows executable files under folder Sytem32 as a

dataset.

Figure 6: Implementation.

In this way, 1,850 Windows executable files and

845 virus executable files were used as training data

SECRYPT 2012 - International Conference on Security and Cryptography

432

of each population. Then, our system monitored 256

normal executable files and 122 virus executable

files transmitted for testing in test-bed network. As a

result, all executable files have been extracted

perfectly. Finally, the byte distribution values of the

extracted executable files were compared with the

clustering central values of each population. Here,

the truncation size of each region is determined as

the size which most well can distinguish between

normal executable file and malicious executable file

through learning tests of several times. Basically, the

size of each region is more than the minimum 100

bytes for the data confidence. Most of all, we made a

greater effort for minimizing the false positive rate,

and maximizing the detection rate.

Table 1: Experimental results.

Exp.
T. size

(byte)

Normal(256) Malware(122)

False

positives
C.

Detection

rate
C.

A. - 10% 26 93% 114

D. 120 1% 2 48% 59

P. 200 8% 21 73% 89

S.T. 160 1% 3 66% 81

S. 350 2% 5 44% 54

+ A.(All), D.(DOS header), P.(PE header), S.T.(Section Table),

S.(Sections), C.(Count)

Our experimental result in this way is shown in

the table 1. In the case of the extracted normal

executable files, 230 executable files were altogether

normally determined in each region. In the case of

the other side, only 8 executable files were

altogether normally determined in each region. That

is, the normal executable files were normally judged

with about 90% among 256 normal executable files

for testing. On the other hand, the malicious

executable files were as detected as 93% degree

among 122 virus executable files for testing.

5 CONCLUSIONS

In this paper, we present the network-based

executable file extraction and analysis technique for

malware detection. The proposed technique can

detect not only the known malicious software but

also unknown malicious software. Most of all, our

approach easily can detect the malicious software

without the complicated command analysis.

Therefore, it can minimize the load on the system

execution. Besides, it can perform the real-time

malware detection as a network inline-mode by

using in reconfiguring hardware. Finally, we

reported the experimental results of our approach.

As shown in the experimental result, our approach

showed a false positive rate under 10% and a

detection rate over 90% beyond expectation. In

future, we need to focus on reducing its false rate as

the further study through more experimental results.

Also, we will keep up our efforts for improvement in

performance of detection mechanism on real world

environment.

REFERENCES

Liu Wu, Ren Ping, Liu Ke, and Duan Hai-xin, 2011,

‘Behavior-based Malware Analysis and Detection’, In

Proceedings of the 2011 First International Workshop

on Complexity and Data Mining, Nanjing, China, pp.

39–42.

Brijesh Kumar and Constantine Katsinis, 2010, ‘A

Network Based Approach to Malware Detection in

Large IT Infrastructures’, In Proceedings of the 2010

Ninth IEEE International Symposium on Network

Computing and Applications, MA, USA, pp. 188–191.

Ikkyun Kim, Daewon Kim, Byoungkoo Kim, Yangseo

Choi, Seoungyong Yoon, Jintae Oh, and Jongsoo Jang,

2009. ‘A case study of unknown attack detection

against zero-day worm in the honeynet environment’,

In Proceedings of the 11th international conference on

Advanced Communication Technology, NJ, USA, pp.

1715–1720.

Wei-Jen Li, Ke Wang, Salvatore J. Stolfo, and Benjamin

Herzog, 2005. ‘Fileprints: Identifying File Types by n-

gram Analysis’, In Proceedings of the 2005 IEEE

Workshop on Information Assurance and Security,

West Point, NY, USA, pp. 64–71.

Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo, 2005.

‘Anomalous Payload-based Worm Detection and

Signature Generation’, In Symposium on Recent

Advances in Intrusion Detection, Seattle, WA, USA,

pp. 227–246.

Stig Andersson, Andrew Clark, and George Mohay, 2004.

‘Network-Based Buffer Overflow Detection by

Exploit Code Analysis’, In Proceedings of the

AusCERT Asia Pacific Information Technology

Security Conference, Gold Coast, Australia, pp. 23–27.

C. Kr¨ugel, T. Toth, and E. Kirda, 2002. ‘Service Specific

Anomaly Detection for Network Intrusion Detection’,

In Proceedings of the 2002 ACM symposium on

Applied computing, NY, USA, pp. 201–208.

W. Lee and D. Xiang, 2001. ‘Information-theoretic

measures for anomaly detection’, In Proceedings of

the 2001 IEEE Symposium on Security and Privacy,

Washington, DC, USA, pp. 130–143.

Network-based Executable File Extraction and Analysis for Malware Detection

433

