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Abstract: This paper aims to present a novel experience-based solution for a black-box control problem, applied to an 
anthropomimetic robot. The control method is tested on a point to point control problem of a multi-jointed 
robot arm. The model characteristics – dynamics, kinematics, and control parameters – are considered as 
unspecified, and therefore we deal with a machine learning approach that follows the cybernetic concept of 
black-box. The only available data of the system are those obtained from measuring inputs and outputs. The 
control algorithm involves two levels: feedforward and feedback. The main focus is, however, on feedback 
level where the algorithm for experience-based estimation of kinematic coefficients is combined with fuzzy 
logic control in order to relate the control inputs with the robot arm motion in the global frame. 

1 INTRODUCTION 

Contemporary humanoid robots are constructed in 
order to replicate humans just by copying the outer 
form, while keeping the internal classical machine 
structure. If, however, one intended to replicate the 
human internal mechanics, he would face a 
situation: complex multi-degree-of-freedom joints, 
muscles crossing over several rotation axes and 
working in an antagonistic mode, presence of 
mechanical compliance, etc. Such systems can no 
more be modelled and controlled in a classical 
analytical way – a biologically-inspired approach is 
needed (Potkonjak et al., 2010).  

Holland and Knight, 2006 have proposed a new 
expression - anthropomimetics. It concerns a new 
principle in robot construction (Fig. 1), mimicking 
the human body, skeleton and muscle system. The 
goal is to attain a high level of performances (e.g. 
maneuverability) analogous to human paragon. The 
idea of this paper is based on the work done within 
the project ECCEROBOT (European 7th Framework 
Program, project “Embodied Cognition in a 
Compliantly Engineered Robot”). 

By combining the experience-based approach 
with fuzzy logic, this paper aims to solve the point-
to-point control problem in the absolute frame, i.e. 
find a way to control the anthropomimetic robot in 
reaching a prescribed hand tip position. 

The outline of this paper is as follows. A short 

overview of most similar projects and related topics 
is presented in Section 2. Section 3 shows an 
empirical approach to feedforward (FF) control. The 
influence of each control input on the hand tip 
motion in the global frame is evaluated in Section 4. 
By implementing the fuzzy logic algorithm in 
Section 5 we form the final control as FF+feedback 
(FB) for the anthropomimetic robot arm. Efficiency 
of our control algorithm is shown in Section 6. 

 

 
                           (a)                                          (b) 

Figure 1: (a): ECCEROBOT test rig. (b): The latest 
prototype of the ECCEROBOT. 

2 RELATED WORKS 

The posed problem can be considered from different 
points of view, as black-box modeling or 
identification of nonlinear systems. 
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Rivals and Personnaz, 1995 showed that there 
are advantages in using nonlinear state-space 
models, including a larger class of nonlinear 
dynamical models. Several examples of nonlinear 
black-box model structures and approximation 
issues are proposed by Ljung, 2001. Relationships 
between fuzzy models, neural networks and classical 
non-parametric models are discussed. Van Mulders 
et al., 2009 introduced two nonlinear optimization 
methods for the identification of nonlinear black box 
systems. Each method relies on estimation of the 
parameters of a polynomial nonlinear state-space 
model by means of a nonlinear least-squares 
optimization. Gonzalez-Olvera et al., 2009 presented 
a black-box modelling of two degrees of freedom 
manipulator. Recurrent neural networks with output 
feedback are used to solve the visual servoing 
problem.  

Another possible solution for the black-box 
control can be determined by applying machine 
learning or predictive control algorithms. 
Researchers in the field of robotics, Chhabra and 
Jacobs, 2008 introduce a new learning model for 
simulated two-joint arm motor control referred to as 
the Greedy Additive Regression (GAR) model. The 
model maintains a base of control sequences (i.e., 
motor synergies) and it is presented for learning the 
coefficients of a linear combination of sequences. 
Stulp et al., 2009 presented both, human data and 
experience-based learning, in order to determine if 
the end-effector can be brought into a position where 
the object can be grasped, regardless of the path. 
Haruno et al., 2001 proposed a new modular 
architecture, the modular selection and identification 
for control (MOSAIC) model, for motor learning 
and control based on multiple pairs of forward 
(predictor) and inverse models.  

3 FEEDFORWARD LEVEL 

3.1 Biologically Inspired Control 

Potkonjak et al., 2012 presented the control of 
antagonistic drives based on a biologically inspired 
puller-and-follower concept for a single joint 
system. The pattern of the EMG activity in elbow 
flexors when a slow linear flexion movement is 
produced against small constant load is analysed by 
Tal’nov et al., 1999. After reaching the final value of 
the joint angle, the burst in the agonist (AG) EMG 
intensity slowly drops to a steady-state level. In 
order to provide fine tuning of joint position, AG 
activation is followed by burst in antagonist (ANT).  

We apply the same logic to control the joints in the 
robot. Namely, the input voltage fed into the 
actuators must generate similar commands to 
muscles, followed by the appropriate activation of 
ANT. Fig. 2 demonstrates the input voltage of the 
controlled joint and its position. It allows to 
distinguish two input voltage components in both 
AG and ANT: the control signal burst mainly 
responsible for the joint motion; and the silent 
period that keeps the reached steady state position. 
The ratio between the maximum values of the AG 
and ANT inputs as well as the ratio between their 
burst time duration are constant for a particular joint. 
Therefore, in order to move the joint to the required 
position we should change appropriately the AG 
maximum value and its burst time duration, while 
the ANT value and its burst time duration are 
proportionally modified. Namely, it is assumed that 
antagonist activation would always make 
proportional contribution to joint motion, compared 
to agonist contribution. The joints are controlled by 
voltage inputs presented in Fig. 2. 

 

Figure 2: Top: Agonist and antagonist input voltage 
control. Bottom: The obtained elbow angle during 
appropriate control. 

3.2 Experience Acquisition in 
Multi-jointed System 

The approach used in controlling a single-joint is 
now generalized to the multi-jointed robot arm. In 
examples, a fixed-base arm with seven single-
degree-of-freedom joints moved by antagonistically 
coupled drives is considered. The experience 
acquiring means the set of motion experiments 
performed from a set of initial hand-tip positions 
which define the initial region, and ending in a 
region of final positions. Figure 3 shows the initial 
and the final region. When performing a motion 
experiment, the joints are controlled by heuristically 
determined control voltages which follow the pattern 
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presented in Fig. 2.  The used pointing example does 
not specify the path, only the end point. 

 

Figure 3: Recorded initial and final positions of robot hand 
tip. 

The positions shown in Fig. 3, the initial and the 
final sets, together with the controls applied in these 
experiments are recorded and represent the system 
experience, the experience base. The region of initial 
positions is a sphere with the radius of 0.1݉, while 
final region is in the sphere with the radius of 
0.05݉. In case of a larger sphere, we have to spend 
more time on experience acquisition if we intend to 
keep the same distances within the grid, or we may 
create a grid with larger distances which however 
would require a more complex interpolation 
procedure. 

Created in the above described way, the 
experience base relates the initial positions and the 
input voltages, on one side, with the reached points 
(output) on the other. Knowledge acquiring, the 
training, means filling in the base. In our example, 
for each initial position there are 90 ൊ 130 final 
positions in the final sphere. The distances in the 
initial grid are between 2.5ܿ݉ and	3.5ܿ݉. The 
relevant distance in the final set of positions 
concerns the final points that resulted from the same 
initial point:  the distances are from 2ܿ݉ to	2.5ܿ݉.  

3.3 Feedforward Exploitation in 
Multi-jointed System  

In the exploitation stage the robot is required to 
reach a target point (hand-tip position ܨ) that has 
not been previously reached in training, starting 
from a position (ܵ) that has not been previously 
used. In this phase, the experience base is used to 
derive the appropriate input control pattern. Here, a 
linear interpolation scheme was applied to compute 
the control from a set of closest neighbors found in 

the base. The FF motor control represents as a linear 
combination of these neighboring control sequences 
(Chhabra and Jacobs, 2008). 

The interpolation and the calculation of the FF 
control are done before the robot moves, i.e. off-line. 
Since any interpolation gives the approximate 
solution, the obtained control would drive the robot 
to a vicinity of the target point; the deviation being 
dependant on the competency of the knowledge base 
and the interpolation method; hence the closest 
neighbours would be used for FF interpolation. 
Therefore, the algorithm starts with the sequential 
search for the closest four initial positions around ܵ, 
from the initial set. Also, the four final positions 
around ܨ, from the final set, as well as the control 
inputs are chosen for the linear interpolation 
algorithm. The positions ܵ and ܨ	must be inside of 
polyhedral defined by neighbours from the initial 
and the final sphere, respectively. Namely, after 
acquiring stage, the model shows generalization to 
novel tasks whose dynamics lie within the 
polyhedral of already learned dynamics (Haruno et 
al., 2001). The total control input for each motor is 
the summation of the sequences from experience 
base using the coefficients, to weight the 
contributions. Numerous experiments of FF 
interpolation, in our case of the ECCEROBOT, have 
shown that the distance between the position reached 
by FF and the target position ܨ	in global frame does 
not exceed 6݉݉. The required precision of the 
robot hand tip is set to 1݉݉ in each axis. FF control 
is not sufficient to drive the hand tip into satisfactory 
final position. To achieve this requirement we need 
to extend the control by adding feedback for fine 
tuning. Therefore, at the moment when the tip is at 
6݉݉ distance from the final point, the feedback 
component is added. 

4 FUZZY LOGIC FEEDBACK 
CONTROL 

We shortly remind of the goal – solving the point-to-
point control problem in the global frame, relying 
only on experience. The fuzzy logic (Zadeh, 1965) is 
chosen to cope with this complex problem. A fuzzy 
controller is implemented. 

In the proposed fuzzy controller we use two 
input variables (position error and derivative of 
position error) and one output variable (voltage) for 
each axis. The membership functions for inputs and 
output are shown in Fig. 4. 

As shown in Fig. 4, fuzzy membership functions 
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comprise a range of values and can actually overlap. 
Triangular shapes have been adopted for the fuzzy 
subsets. Both input variable ranges (ݔଵ,  ଶ) wereݔ
founded experimentally and the inputs do not exceed 
defined values. The maximum feedforward position 
error is extended to a 10mm in a case of the lower 
base resolution. The “diff_error” input (and “error” 
as well) is calculated every 0.001s (sampling time), 
so derivative of the error has low values and 
rescaling was required to obtain reasonable range of 
inputs. The following five and seven fuzzy levels are 
chosen for the control inputs of the fuzzy controller 
in the fuzzification process. These numbers of sets 
are established as optimal values for our system. The 
final region of interests for “error” variable is 
between [-1mm, 1mm], so the first fuzzy set (NOE) 
has to be in that range, the second and the third set 
(SNE and SPE) have to overlap with the first set and 
have to be narrow if we want to control the error 
near the zero value. The fourth and the fifth set (NE 
and PE) cover a wider range around 5mm value and 
the sixth and the seventh set (VNE and VPE) cover 
more than 6mm values in a case of greater error. 
These seven sets are also required for smooth error 
change definition due to time. Numerous simulations 
showed more satisfactory results if the sets do not 
overlap at 0.5 degree. The number of sets depends 
on the (input range)/(final region range) ratio and the 
desired time response of the system. Analogues 
procedure is applied to “diff_error” sets.  

 

Figure 4: Membership functions for position error, 
derivative of position error and voltage. 

Seven sets of membership functions are defined 
for the output variable “voltage”. We want to avoid 
rough fluctuations of the voltage during changeable 
position error and thus seven sets, including 
overlapping between two consecutive sets, are 
implemented. 

If-then rule base is shown in Table 1. All 
possible rule combinations of fuzzy inputs and their 
results as outputs are presented in that table. The 
used fuzzy operator is AND. The derivation of the 
fuzzy control rules is heuristic in nature and based 
on the following theoretical criteria presented in 
Table 1. Finally, for our purposes the centroid 
defuzzification method is used. 

Table 1: If-then rules. 

   
   

  E
R

R
O

R
 

DERIVATIVE OF ERROR 

AND DNE SDNE DZE SDPE DPE 

VNE VNV VNV VNV VNV VNV 

NE NV NV SNV SNV NOV 

SNE NV SNV SNV NOV SPV 

NOE NV SNV NOV SPV PV 

SPE SNV NOV SPV PV PV 

PE NOV SPV SPV PV PV 

VPE VPV VPV VPV VPV VPV 

 

The meanings of the acronyms from Table 1 are 
shown in Table 2. 

Table 2: The meanings of the acronym from the Table 1. 

ERROR DIFF_ERROR 
VNE-very_negative_error 
NE – negative_error 
SNE – Snegative_error 
NOE – no_error 
SPE – Spositive_error 
PE – positive_error  
VPE – very_positive_error 

DNE – diff_negative_error 
SDNE–Sdiff_negative_error 
DZE – diff_zero_error 
SDPE– Sdiff_positive_error 
DPE – diff_positive_error 

VOLTAGE 
VNV – very_negative_voltage       NV – negative_voltage 
SNV – Snegative_voltage               NOV – no_voltage 
SPV – Spositive_voltage                PV – positive_voltage 
VPV – very_positive_voltage 

5 KINEMATIC COEFFICIENTS 

The fuzzy logic was implemented and now we 
dispose with the control signals of our process. 
There are 2n (in our case n=7) control inputs and 
only three outputs (x, y and z position), so that a 
question is posed: How to determine the influence of 
each control input on the hand tip motion in the 
global frame? 

Although this system has fourteen inputs, the 
feedback phase uses only seven independent inputs, 
the pullers, to control the hand tip positioning. The 
other seven result from the puller-follower concept 
(Potkonjak et al., 2012). 
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Kinematic coefficients are defined as parameters 
which describe the relation between control inputs 
and the axes of the global frame. For each joint ݅ 
(controlled by two inputs), three normalized 
coefficients ݊ೣ , ݊ , ݊	are assigned, for x, y and 

z axis, respectively. 
Suppose that pure feedforward brings the hand 

tip to point ܨ ൌ (ݔ, ,ݕ  ). Coordinates of theݖ
points from the narrow environment (neighbours of 
,ݔ) ) are denoted asܨ ,ݕ ݆ ,(ݖ ൌ 1,2, … , ܰ	(݆-
neighbour number). This chapter presents only the 
algorithm for the x axis – the analogues procedure is 
applied for y and z axes. The first calculated 
parameter is 

 

௫ೕܭ

ൌ
หݔ െ หݔ

หݔ െ	ݔห 		 หݕ െ หݕ 	 หݖ െ	ݖห
 

(1)

 

which defines normalized ݔ distance (between 
feedforward and the neighbouring position) in 
comparison to ݕ and ݖ distance for the current 
neighbour ܵ. Next calculated parameter is about 
joint angle position in the local frame: 
 

ೕܧ ൌ 	 หݍ െ	ݍห ; 

ܲೕ ൌ 	
ாೕ

ாభೕା	ாమೕା	…ା	ாళೕ
 

(2)

 

which determines normalized deviations between 
joint positions (ݍ; 	݅ െ joint	number) reached by 
FF, and joint positions (ݍ) of the neighbour. 
Parameter ܲೕ 	is used to normalize the joint 

difference between all seven joints for the chosen 
neighbour in the joint space. Now, the normalized 
distance along ݔ axis between ܨ and each 
neighbour position ܵ is evaluated. Equation (3) 
estimates coefficients (ܮ௫ೕሻ used to compare the ݔ 

distances of each neighbour ݆ from ܨ: 
 

௫ೕܮ

ൌ
หݔ െ หݔ

หݔ െ	ݔଵห 		 หݔ െ	ݔଶห  ⋯	หݔ െ	ݔேห
 

(3)

 

The required coefficients (ܭ௫ೕ, ܲೕ, ܮ௫ೕ) have been 

estimated. The influence of each coefficient should 
be treated equally and therefore a product of these 
parameters is formulated as a connection: 

 

௫ܥ ൌ 	ܭ௫ೕ ܲೕ

ே

ୀଵ

௫ೕ (4)ܮ

 

Equation (4) represents the influence of a particular 
joint ݅ along x direction. The proper form which is 

used as the final kinematic coefficient is 
 

݊ೣ ൌ
௫ܥ

௫ܥ  ௬ܥ 	ܥ௭
 (5)

 

Finally, the influence of each joint on each axis 
direction is calculated and can be used in final form. 

The final equation for the control input during 
feedback phase is 

 

ܷ ൌ ܷ,௦௧௧ േ ݊ೣ ܷ௨௭௭௬ሺݔሻ േ	݊ ܷ௨௭௭௬ሺݕሻ 
(6)േ ݊ ܷ௨௭௭௬ሺݖሻ 

 

The variable ௦ܷ௧௧ሺ݅ሻ is a static voltage of i – joint 
required to keep the joint in the prescribed position 
during steady state. For the target position the static 
voltage is estimated using feedforward algorithm 
(see Section 3.3). The signs േ in (6) are chosen 
experimentally using experience base. They 
represent the situation when the control input is 
increased, in which direction (positive “” or 
negative “െ”) the hand tip moves to (for each axis). 

6 SIMULATION RESULTS 

Control was verified by simulation. The theory 
developed above is applied to the simulator of the 
robot arm driven by antagonistically coupled drives. 

 

 

Figure 5: Hand tip position in global frame during 
feedforward and feedback control. 

Figs. 5 and 6 depict the example where the 
feedforward makes the error of 5mm in z axis 
direction. The whole motion of the robot arm 
lasts	5,5ݏ. During first 3ݏ feedforward control is 
applied in order to drive the robot arm tip from 
initial position ܵ to position	ܨ. In the next	2,5ݏ the 
system is controlled by FF and FB. In spite of 
oscillations caused by fuzzy controller the final hand 
tip position finally comes into prescribed region, 
േ1mm around the reference position ܨ (Fig. 5). 
Figure 6 shows FF and FB control signals. 
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Figure 6: The feedforward and feedback control of the 
most representative joints in the system. 

7 CONCLUSIONS 

The core of this paper was the implementation of 
fuzzy controller along with estimation of kinematic 
coefficients to formulate the feedback for a robotic 
arm with antagonistically coupled compliant drives.  

Since the suggested control algorithm relies on 
the experience and fuzzy logic, it is expected to be 
applicable to a wider class of robots. The only 
modification would be different training data – 
experience base should be customized for the 
specific robot skills. Since the experience acquiring 
stage in feedforward phase is time consuming, 
further research can explore solution to speed up this 
process. As our control depends on base resolution, 
the future work would consider developing of more 
sophisticated method to increase precision of the 
control algorithm (e.g. to make more complex fuzzy 
engine). 
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