An Ontology-based Data Acquisition Infrastructure
Using Ontologies to Create Domain-independent Software Systems
Dominic Girardi¹, Klaus Arthofer² and Michael Giretzlehner¹
¹Research Unit Medical-Informatics, RISC Software GmbH, Hagenberg, Austria
²Department for Process Management in Health Care, Upper Austria University of Applied Sciences, Steyr, Austria

Keywords: Ontology, Meta Modelling, Data Acquisition.

Abstract: We created an ontology-based data acquisition infrastructure which is able to store data of almost arbitrary structure and can be set up for a certain domain of application within hours. An ontology editor helps the domain expert to define and maintain the domain specific ontology. Based on the user-defined ontology, a web-based data acquisition system and an ETL data import interface are automatically created at runtime. Furthermore, rules for semantic data plausibility can be established in the ontology to provide semantic data quality for subsequent processing of the collected data. After a comprehensive requirement analysis we decided to use a special meta model instead of standard OWL ontologies. In this paper, we describe our metamodel and the reason for not using OWL in our case in detail as well as we present the infrastructure and the project it is currently used for.

1 INTRODUCTION

Research in common and medical research in particular is grounded on a vast amount of data. This precious data, which is often yielded by expensive studies or experiments, needs to be stored in a structured and save way. Since data structures are often complex, a professional data acquisition system is needed to acquire and store the data. Due to the fact that every field of study requires its own individual data structure, these data acquisition systems are hardly reusable and need to be developed individually for each new domain, which is elaborate and expensive. For that reason study authors tend to use sub-optimal data storage solutions like excel sheets.

In order to encounter this drawback, we developed an ontology-based data acquisition and storage infrastructure including a generic web-based data acquisition system, an ontology-guided ETL module, an easy to use ontology editor, and a powerful rule checking mechanism to ensure semantic data quality. It is able to store data of almost arbitrary structure and ready to be used for a certain domain within a few hours.

In Section 3 we describe the technical background of the system in detail including the ontology format we use. In Section 4 we motivate, why we did not use the standard ontology format OWL for our system and oppose OWL to our meta model. Section 5 contains the practical results of the projects are presented including screen shots and key numbers of the running system. In Section 6 we summarize our results.

2 RELATED RESEARCH

The most related work to ours is described in (Zavaliy and Nikolski, 2010). In their paper - that only contains 1 page - the authors describe the use of an ontology for data acquisition, motivated by the demand of adaptive data structures. They used an OWL ontology to model their domain, which consists of four concepts (Person, Hospital, Diagnosis and Medication). There is no information given on user interfaces or semantic data checks. Aside from this work, it was very hard to find any publications on ontology based data acquisition systems. In most publications ontologies are used for information extraction from text (Tran and Kameyama, 2007) or to enrich the existing data with structural and semantic information or to build a cross-institutional knowledge base. In (Kataria et al., 2008) the authors describe the usage of ontologies for inter-hospital data extraction to improve patient care and safety by analyzing hospital activities, procedures, and policies. Here, the ontology is strongly connected to the project. In (Kiong et al., 2011) e.g. the authors describe an ontology based sys-
tem for extracting research relevant data out of heterogeneous hospital information systems. Here again, the purpose is to find a superior common data model to compare data of different medical institutions. In contrast to our system, the ontology is strongly connected to the project.

3 META MODEL-BASED DATA ACQUISITION SYSTEMS

State-of-the-art data storage and acquisition systems are logically organized in multiple layers (Balzert, 2010). This multi-tier architecture - mostly common is a three tier architecture with a data layer, a logical layer and a user interface layer - helps to reduce the technical dependencies among the particular layers and makes them exchangeable as long as the interfaces between the layers remain constant. Still, the semantic dependency of the whole system from the data structure of the field of application – the real world problem cannot be resolved by using multi-tier-architectures. Changes to the data model, caused by changing requirements, cause transitive changes to the whole application. This makes the whole system rigid, inflexible and only adaptable at high costs and personal effort. In order to resolve this dependency a special data model is needed. It must be independent from the field of application, which sounds self-defeating at a first glance. How should a data model store data for a real world domain, without being influenced by it? Meta models are data models of higher level of abstraction and can be used to solve this issue.

3.1 Meta Models

The Object Management Group OMG (MOF, 1997) defines four levels (M0 - M3) of meta modeling. Each model at level Mi is an instance of a model at level Mi+1. Level M0 contains the real world transactional data. Each object at M0 is an instance of a model defined in M1, which is called the model layer. Each model at level M1 can be seen as an instance of a meta model at level M2 - the meta model layer. Level M1 contains meta meta models.

Conventional data storage systems use M1 data models, which directly describe the field of application. M2 meta models describe M1 data models. We developed a meta model which is able to store M1 data models as well as their M0 transactional data. This allows replacing the conventional M1 data model by the M2 meta model. As a consequence the logical layer cannot be implemented directly anymore, but serves as an execution environment for the logic rules, which are stored in the meta model. Furthermore, the user interface(s) can be created automatically based on the meta information stored in the meta model.

3.2 Meta ER Model

Since most M1 data models are relational models stored in a relations database, they can be described using an Entity Relationship model (ER model), which was introduced by Peter Chen in 1976 (Chen, 1976). Consequently a meta model, which is able to describe an ER model can be used to store data structures that are stored in a relational database. Our meta ER model consists of six main entities which are shown in Figure 1.

The central entity class is Entity. It corresponds to a table in a relational database. So, for each table that is needed in the M1 data model a row in the Entity table is created. Thus, the independence of the data model from the real world is achieved. Changing entities do not cause changes to the data model any more, but only to its content. The same mechanism applies to attributes and relations. If an attribute is needed, it is simply added to the Attribute table instead of creating a new attribute to a table and changing the data model itself. While the entity classes on the left hand side describe structural elements, the transactional data is stored in the three entity classes on the right hand side: Record, Value, and Reference. A table in a relational database consists of columns (attributes) and rows. Each row is a single record of a certain entity. Each single cell in a table contains a value which can be uniquely assigned to exactly one record and one attribute of an entity. In addition to these basic entities the whole meta data-model consist of 19 more entity classes, which are responsible [Diagram of Meta ER data model]
for, auditing, user management, GUI customization, and semantic plausibility checks.

4 WHY WE DID NOT USE OWL ONTOLOGIES

So far, our basic meta model does not provide any feature that cannot be covered by classical OWL ontologies. According to (Chandrasekaran et al., 1999)

"Ontologies are content theories about the sorts of objects, properties of objects, and relations between objects that are possible in a specified domain of knowledge."

(Gruber, 1993) provides a more general definition:

"An ontology is a specification of a conceptualization."

Their original purpose is to share a common knowledge of a domain across multiple institutions. An aspect which is meant to be used as a backbone for the semantic web (Ding, 2001) and (Berners-Lee et al., 2001). Furthermore, ontologies are very popular for knowledge representation and organization in many scientific domains like the Gene Ontology (Smith et al., 2003) in bioinformatics. According to the definitions above, meta models can be seen as equivalent to ontologies. Consequently the question arises, why we did use our own meta model instead of the standard ontology format OWL, since there exist numerous ontology editors like Protege project (Knublauch et al., 2004) and reasoning engines.

4.1 OWL

The Web Ontology Language OWL is a XML based description language for ontologies (McGuinness and van Harmelen, 2004). It is based up the Resource Description Framework (RDF) (Manola and Mille, 2004) and part of the Semantic Web Stack. The main concepts of OWL are classes, properties and individuals (Horridge et al., 2004).

Individuals represent objects in the real world domain this ontology models. They correspond to records in our meta model, with the difference that OWL individuals can be part of more than one OWL class, which is not possible in our meta model, where each record is an instance of exactly one entity class. OWL properties are binary relations which connect two individuals (or values), which corresponds to relations in the ER model or to a data type which can be expressed using attributes in the ER model. Classes, comparable to entity classes in the ER world and in our meta model, are interpreted as sets containing individuals. They encapsulate all properties that can be applied to these individuals. Basically, all concepts in the ontology can be mapped to a corresponding concept in our meta model, whereas their behavior is sometimes different. For our purpose the tradition restricted behavior of the ER world is the more sufficient one. The degree of freedom in OWL is generally higher than in our meta model. Still, this degree of freedom doesn’t always make sense for a data acquisition system e.g. individuals should only belong to one well defined entity; otherwise they would be mixed up during subsequent data processing.

4.2 Purpose

OWL Ontologies were not designed to build the backbone of generic data acquisition systems. In our system the ontology is not just used for data definition but also as a base for automatic GUI generation. The information that can be stored in an OWL ontology would only be sufficient for a very simple GUI design. For a more customizable GUI more data fields like the text color, background color, formats, and many more are needed for each attribute, which are not available in OWL.

4.3 Reasoning vs. Semantic Plausibility

For OWL ontologies, a variety of reasoners are available such as Pellet (Sirin et al., 2007), Racer, or FaCT++. They basically perform inference and rule consistency checking on the ontology itself. They check if there is a contradiction within the ontology, produced by restrictions that are set to the classes of the ontology. Furthermore, they perform the assignment of individuals to classes. Functionalities which are indisputably useful, but for our system we needed something else.

The semantic plausibility rules in our system can show a structure like this: if a patient is female and there is at least one treatment for this patient where the procedure was either an appendectomy (removal of the appendix) or a cholecystectomy (removal of the gallbladder) than the complication of the type violation of the uterus is plausible, otherwise it is not. Restrictions like this can hardly be formulated with OWL syntax. The premise of these kinds of restriction can only be modeled with defined classes, whereas for each possible configuration of the premise-attribute a single defined class has to be modeled - a tasks that seems feasible for the attribute gender with only two values: male and female, but hardly doable for an attribute like diagnose with pos-
sible several thousands of diagnoses. Furthermore, in OWL, restrictions can only be made to classes and their properties. Restrictions to transitively connected classes are not possible. Given a data structure like this: A patient can contain several treatments and for each treatment there exist several complications, so an 1:n relation from patient to treatment and an 1:n relation from treatment to complication. In OWL it is very complicated to restrict the possible values in an individual of the class complication due to the configuration of an individual of the class patient. In our system any attribute of any class can be set into a dependency relationship to any other attribute of any other class even if there is no direct connection between the two classes. This requirement is hardly realizable using OWL syntax and was the main reason why we decided to use our own meta model instead of OWL.

4.4 Open World vs. Closed World

OWL ontologies are built upon the **Open World Assumption**. In contrary to the **Closed World Assumption**, where everything is false, that is not explicitly defined, the **Open World Assumption** allows a big degree of freedom in data definition. Although there are surely good arguments for open world assumption based software (Baresi et al., 2006) for our application the close world assumption is definitely more realistic.

4.5 Storage

While ontologies are usually stored in OWL files, our system is a database based solution. As mentioned in Section 3.2 on page 2, aside from the core meta model entities there exist 19 more entities. Hence, storing the 19 additional tables in a relation database, while keeping the ontology information in a file, is a very inefficient storing strategy. Of course, it is possible to store an OWL ontology in a relational database (Astrova et al., 2007), but creating a relation model for an OWL based ontology is a mix of two concepts that unnecessarily complicates the system.

5 THE OBIK INFRASTRUCTURE

In 2010 the OBIK project was started with the goal to create an ontology-based data acquisition system that is able to store data of almost arbitrary structure. Furthermore, the system should provide a web interface, which is automatically created based on the ontology information which allows viewing, entering and editing the data. Aside from manual data input, electronically stored data should be able to be imported from heterogeneous data sources by an ontology guided ETL process. The abbreviation OBIK stands for Ontology based Benchmarking Infrastructure for Hospitals (German: Krankenanstalten). Although the title implies a restriction to the field of medicine there is no such restriction. Since the user is free to design ontologies for any field of application, this infrastructure can also be used to collect data for e.g. economic research or business applications.

The system consists of four main modules OBIK Management Tool, Web Interface, ETL Plug-In, and Plausibility Engine.

5.1 OBIK Management Tool

The **OBIK Management Tool** is a Java-based software. The main feature is the **Ontology Editor** (see Figure 2), which allows the administrator to create and maintain the ontology. There are no predefined entities or relations in an empty ontology. So, the administrator is absolutely free to model the ontology after the demands of his domain of application. Usability had priority to the development of the system, because the users are experts on their domain, which is not necessarily ontology design or computer science. Most operations - such as creation and manipulation of entities, relations and attributes or the administration of the plausibility rules - can be done by drag and drop or by the use of intuitive wizard dialogs. Furthermore, the administrator can view, manipulate and download the stored data. Since the structure of the presented data depends on the stored ontology, the structure of the user interface (tables, editors, search forms) is created dynamically at runtime, based on the ontology definitions. Changes to the ontology, have immediate effects on these elements. Numerous search and filter functions help to extract the desired
data sets for further processing. The check of plausibility rules can be run from this perspective. Selected datasets can be downloaded in multiple formats including CSV, PDF and XML for subsequent data processing. A complete download of the whole ontology including all data into a relational M_1 data model, exported as DDL and SQL scripts, is also available.

5.2 Web Interface

The web interface allows the users to enter and edit data. The interface is primarily used to manually complement electronically imported data with additional information. If no electronic sources are available the whole data need to be entered via the web interface. Due to the web technology data from distributed institutions can be brought together in one central ontology.

The whole structure of the web interface (input fields, tables, search forms) is derived from the ontology and created at runtime. So, changes to the ontology have immediate effects to the web forms. Green and red colored message boxes indicate the result of the plausibility check for a given data set.

5.3 ETL Plug-in

For importing electronically stored data into the ontology the Pentaho Kettle Extraction, Transform, Load (ETL) tool is used. The powerful ETL tool allows the integration of numerous input sources and the definition of complex ETL processes. For the last step, the import of the extracted and rehashed data tables into the ontology respectively meta model, we developed a Kettle plug-in. It maps the data fields of the Kettle data tables onto the structures of our meta model according to the user’s definitions.

5.4 Plausibility Engine

The Plausibility Engine is responsible for checking the semantic data integrity. It applies the dependency rules to each data set and evaluates if the current data violates any of these. As stated above, dependencies work on attribute level and set two attributes (master and slave) in a dependency relation, whereas the current value of the slave attribute depends on the current value(s) of the master attribute(s). If one slave depends on more than one master attribute the two dependencies have to be connected using logical operators AND or OR. Thus, a tree of dependency rules can be set up for each slave attribute. A visualization of such a tree can be seen in Figure 3. For the evaluation process the dependency tree is processed bottom-up from the leaves to the root of the tree. Since one certain attribute can be the slave of one dependency(tree) and master for the next dependency(tree) a chain of transitive dependencies can be created which will be processed following the constraint propagation pattern (Rossi et al., 2006).

5.5 Results

The OBIK infrastructure is currently being used to perform comparative benchmarking of hospitals in Upper Austria. It contains more than 2,000 patient records including medical parameters like pre-existing illnesses, risk factors, diagnoses, treatments, procedures and other administrative data. Talking in meta model terms, the ontology including data set consists of 43 entities with 120 attributes and 49 relations. There are about 40,000 records with more than 188,000 values and about 107,000 references.

First runs of the plausibility checks on the data yielded tremendous inconsistencies concerning the semantic data quality - far beyond simple syntactic and numeric errors; drawbacks that either cause decreased usefulness of the statistical outcome or time and costs on identification and correction. To be more precise: one of the semantic checks verifies the plausibility of a complication depending on the foregone medical procedure. It is run at data-input time, which means the study nurse gets alerted immediately when she enters implausible data. This check fails in 15 cases out of 2000. Experiences showed that identification and correction (contacting the study nurse in the hospital, re-checking the data, ...) takes about 10 minutes on average for each error; resulting in 150 minutes time savings for this check. Currently there are more than 100 checks implemented, showing similar error rates.
6 CONCLUSIONS

We could show, that ontologies are not only a powerful tool for data modeling and knowledge sharing but also applicable for highly generic software systems. For this purpose, which was not the origin purpose, the standard ontology format OWL could not fulfill all our requirements, which brought us to use a meta model instead. Aside this format issue, the usage of ontologies helped to create an absolutely generic data acquisition and storage system, which can be set up and maintained by the people who use it, without any database or programming skills. The intuitive ontology editor helps domain experts to manifest their knowledge into their ontology and the rest of the application (data input forms, overview tables, search and filter functions, export and import interface) are created automatically on the fly.

REFERENCES