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Abstract: This paper proposes an adaptive Gravitational Search Algorithm (aGSA) focused on tuning of Takagi-
Sugeno PI-fuzzy controllers (T-S PI-FCs). The algorithm adapts two depreciation laws of the gravitational 
constant to the iteration index, a parameter in the weighted sum of all forces exerted from the other agents to 
the iteration index, and the reset at each stage of agents’ worst fitnesses and positions to their best values. 
Two fuzzy logic blocks carry out the adaptation of the ratios of exploration runs and explanation runs using 
the ratio between the minimum and maximum Popov sums as an input variable. A tuning method for T-S 
PI-FCs dedicated to a class of nonlinear servo systems with an integral component and is offered, and T-S 
PI-FCs with reduced process gain sensitivity are tuned. A case study and digital simulation results illustrate 
the optimal tuning of a T-S PI-FC for the position control of a laboratory servo system. 

1 INTRODUCTION 

Fuzzy control systems are successful in many 
applications as relatively easily understandable 
nonlinear control approaches (Blažič et al., 2003; 
Sala et al., 2005). Evolutionary algorithms are 
employed in the optimal tuning of fuzzy control 
systems; the current approaches include simulated 
annealing (Haber et al., 2009; Precup et al., 2011a), 
elite-guided continuous ant colony optimization 
(Juang and Chang, 2011), Particle Swarm 
Optimization (PSO) eventually combined with 
genetic algorithms (Ling et al., 2008; Precup et al., 
2011b; Valdez et al., 2011), and iterative genetic 
optimization (Onieva et al., 2011). 

This paper proposes a new aGSA dedicated to 
the optimal tuning of Takagi-Sugeno PI-fuzzy 
controllers (T-S PI-FCs). Our aGSA is developed 
around the popular GSA (Rashedi et al., 2009), and 
it is characterized by the several new properties: two 

Single Input-Single Output (SISO) fuzzy logic 
blocks ensure the adaptation of the ratios of 
exploration runs and of explanation runs using the 
ratio between the minimum and maximum Popov 
sums as an input variable; the inclusion of Popov 
sums guarantees the convergence; the adaptation of 
two depreciation laws of the gravitational constant to 
the iteration index; the adaptation of a parameter in 
the weighted sum of all forces exerted from the other 
agents to the iteration index. 

These properties are advantageous compared to 
the state-of-the-art because of the improved search 
process offered by our new algorithm. Therefore our 
approach, which is different to that proposed by 
Askari and Zahiri (2011), exhibits an additional 
improvement with respect to GSAs (Precup et al., 
2011b). 

This paper offers twofold new contributions. 
First, aGSA is applied to optimal tuning of T-S PI-
FCs is proposed. Second, a class of T-S PI-FCs 
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which ensures a reduced process gain sensitivity of 
the fuzzy control systems is suggested. A tuning 
method is given to minimize objective functions 
which depend on the control error and on the 
squared sensitivity function defined with respect to 
process gain variations from the state sensitivity 
models of fuzzy control systems. 

This paper treats the following topics: the new 
aGSA is presented in the next section. The tuning 
method for optimal T-S PI-FCs is described in 
Section 3. Section 4 discusses the case study of T-S 
PI-FCs optimally tuned for the angular position 
control of a laboratory DC nonlinear servo system. 
The conclusions are pointed out in Section 5. 

2 ADAPTIVE GSA 

The standard GSA uses agents (particles), and two 
equations are usually used as depreciation laws of 
the gravitational constant versus GSA’s iterations: 

)/1 ()( max0 kkgkg ψ−= , (1)
 

)/ exp()( max0 kkgkg ζ−= , (2)

where )(kg  is the gravitational constant at current 
iteration index k, 0g  is the initial )(kg , 10 <ψ<  
and 0>ζ  are parameters which affect GSA’s 
convergence and search accuracy, and maxk  is the 
maximum number of iterations. 

Considering N  agents and a q-dimensional 
search space, the position of thi  agent is defined in 
terms of the vector iX  
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where: 10 ≤σ≤ j  – a random generated number, 

)(kmPi  and )(kmAj  – the active and passive 

gravitational mass related to thi  and thj  agent, 
0>ε  – a relatively small constant, )(tmIi  – the 

inertia  mass  related  to  thi   agent,  and )(krij  –  the 

Euclidian distance between thi  and thj  agents: 

||)()(||)( kkkr jiij XX −= . (5)

The next velocity of an agent, )1( +kvd
i , and the 

next position of an agent, )1( +kxd
i , result from the 

state-space equations (Rashedi et al., 2009) 
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with 10 ≤ρ≤ i  – a uniform random variable. 
The active gravitational mass and the inertial 

mass are (Rashedi et al., 2009) 
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where )(kfi  is the fitness value of thi  agent at 
iteration index k, f is the fitness function, the term 

)(kb  corresponds to the best agent, and the term 
)(kw  corresponds to the worst agent. 

The convergence of the aGSA is guaranteed by 
hyperstability analysis results derived from (Landau, 
1979; Precup et al., 2003). A sufficient condition for 
GSA’s convergence is 
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where ,...1  ),,( 10 Nikki =ν  is the Popov sum, and 
the superscript LTI points out a discrete-time linear 
time-invariant block resulted after the organization 
of equations (4) to (7) as a dynamical feedback 
system structure. 

aGSA is formulated in terms of the flowchart 
presented in Figure 1. Stage II allows the algorithm 
to discover the extent of the search space. This stage 
is characterized by a linear decrease of )(kg  
according to (1) during the first max1kre  runs of the 
search process, where 1er  is the ratio of exploration 
runs 10 1 << er . The input variable iv  is 
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Figure 1: Flowchart of aGSA, and structures of SISO FLB1 and SISO FLB2. 

and it is applied to the Mamdani fuzzy block SISO 
FLB1 (with the structure and membership functions 
presented in Figure 1) to calculate 1er . 

aGSA restricts agents’ movements in stage III by 
the introduction of a more aggressive depreciation 
schedule of )(kg  in terms of (2) and by the linear 
depreciation of ε  

)]/()(1[ max1maxmax10 krkkrk ee −−−ε=ε . (10) 

The input variable iv  is calculated and applied to the 
second SISO fuzzy logic block (SISO FLB2) which 
calculates the ratio of explanation runs 10 2 << er . 
The next max2kre  runs in the search process are 
conducted using (10). 

The rule base of SISO FLB1 is 
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Rule 1R  points out that some runs do not fulfil (8); 
therefore a small number of runs must be conducted. 
Rule 2R  outlines that agents’ positions are 
oscillating far away from the solution, so a high 
number of runs is needed. Rule 3R  indicates that 
aGSA is close to the solution. We suggest the 
following parameter settings of SISO FLB1 to 
ensure a trade-off to convergence speed and number 
objective function evaluations: 3.0=ivPSB , 

8.0=ivPBB , ,15.01 =PSeB  and 2.01 =PBeB . 
Mamdani’s MAX-MIN compositional rule of 

inference is used in the inference engines of SISO 
FLB1 and SISO FLB2. The defuzzification for both 
SISO FLB1 and SISO FLB2 is carried out by the 
center of gravity method for singletons. 

The rule base of SISO FLB2 is similar to (11), 
and the parameters of output membership functions 
of SISO FLB2 are set as follows (similar settings to 
to SISO FLB1): 45.02 =PSeB  and 5.02 =PBeB . 

Stage IV sets the general position for the optimal 
value of fitness function and dedicates the remaining 
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time to the refinement of obtained results. The value 
of )(kg  stops decaying and only ε  continues the 
depreciation process. Worst agents’ positions are 
reset to the best values obtained so far after each run. 

Stage V evaluates the real-world optimization 
problem’s performance for the location of the best 
position vector obtained during the search process. 
The obtained solution is mapped onto the real-world 
optimization problem and tested at this stage. The 
optimization problem which leads to a new class of 
T-S PI-FCs with a reduced process gain sensitivity is 
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where: ρ  – the parameter vector of the controller, 
*ρ  – the optimal parameter vector, ρD  – the feasible 

domain of ρ , )(ρPk
IAEI  is the objective function, 

N∈t  – the independent discrete time argument, 
)(te  – the control error, )(tPkσ  – the output 

sensitivity function (Precup et al., 2011b), Pkγ  – the 
weighting parameter, IAE – the Integral of Absolute 
Error, and all variables depend on ρ . 

3 OPTIMAL TAKAGI-SUGENO 
PI-FUZZY CONTROLLERS 

Many processes in servo systems can be described 
by the continuous-time nonlinear time-invariant 
SISO state-space models saturation and dead zone 
static nonlinearity (Precup et al., 2011b). A 
simplified process model (with variable parameters) 
used in controller tuning is the transfer function 

)]1(/[)( sTsksP P Σ+= , (13) 

where Pk  is the process gain and ΣT  is the small 
time constant. 

PI controllers are recommended for processes of 
type (13) as shown in (Åström and Hägglund, 1995; 
Visioli, 2004). PI controllers’ transfer functions are 

)]/(11[/)1()( iCic sTkssTksC +=+= , (14) 

where ck  is the controller gain, iT  is the integral 
time constant and icC Tkk = . Very good control 
system performance indices and a trade-off to these 
indices can be achieved if the PI controllers are 
tuned by the Extended Symmetrical Optimum (ESO) 

method (Preitl and Precup, 1999) which uses a 
single design parameter β  and the tuning conditions 

201  ,   ),   /(1 2 <β<β=ββ= ΣΣ TTkTk iPc . (15) 

T-S PI-FCs are tuned in order to ensure the 
performance improvement. The Two Inputs-Single 
Output fuzzy controller (TISO-FC) block (Figure 2) 
uses the SUM and PROD operators in the inference 
engine and the weighted average defuzzification 
method. The rule base of T-S PI-FC is 
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where )1()()( −−=Δ tetete  is the increment of e, 
)1()()( −−=Δ tututu  is the increment of u, sT  is 

the sampling period, and the parameter 10 ≤η<  
reduces the overshoot. The tuning condition resulted 
from the modal equivalence principle is 

)  2/(2 sesee TTBTBB −β=μ= ΣΔ . (17) 

 
Figure 2: Structure of T-S PI-FC. 

The ESO method and the modal equivalence 
principle lead to the reduction of the number of T-S 
PI-FC parameters and to the simplification of the 
number of variables of the objective function. The 
parameter vector 3R∈ρ  of T-S PI-FCs is 

T][ 321 ρρρ=ρ , with η=ρ=ρβ=ρ 321   ,  , eB . 
Our aGSA is mapped onto the optimization problem 
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(12) which ensures the optimal tuning of T-S PI-FC 
parameters by means of 
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The tuning method consists of the following 
steps which have to be proceeded to get the optimal 
parameter vector *ρ : 

 Step A. Apply (15), set Ts, apply (16), derive 
the sensitivity model with respect to kP. 

 Step B. Set γkP to meet the performance 
specifications, validation condition, and 
feasible domain of ρ  in (12), 3=∈ qRDρ , to 
include all constraints. 

 Step C. Apply aGSA to get optimal parameter 
vector *ρ , apply (17) to compute *

eBΔ . 

4 CASE STUDY AND 
SIMULATION RESULTS 

The case study applies the new tuning method to a 
T-S-PI-FC for the angular speed control of a 
laboratory servo system built around the INTECO 
DC servo system laboratory equipment experimental 
setup. The parameters in (13) are (Precup et al., 
2011b) 88.139=Pk  and s 9198.0=ΣT . 

Steps A – C are applied and a set of results is 
presented as follows in terms of setting. Ts =0.01s 
and γkP =100. A good trade-off to convergence speed 
and number of evaluations of )(ρPk

IAEI  is ensured by 
aGSA parameters set to N=20, kmax=100, ζ=30, 
ε0=0.01 and g0=100. The optimal values of T-S PI-
FC parameters are 2572.22* =eB , 0806183.0* =ΔeB , 

981566.0* =η , and the reduced objective function 
of 488237min =Pk

IAEI . The comparison was done for 
the same parameter values for GSA; the optimal 
parameters of T-S PI-FC are 20* =eB , 

072393.0* =ΔeB ,  1* =η , and the reduced objective 
function is 488523min =Pk

IAEI . The convergence 
speed is defined as the number of evaluations of 
objective function until reaching the minimum. The 
average values of best five runs of both algorithms 
show the convergence speed of 532.4 for GSA and 
of 1622.8 for aGSA. 

The comparison of these results shows that the 
aGSA leads to improved optimal values of )(ρPk

IAEI  
compared to GSA for the same value of γkP.  

A sample of simulation results is presented in 
Figure 3. The simulations were carried out for the 
step-type angular position reference input of 

rad 20=r and 6.3=β  for control systems with T-S-
PI-FC tuned by the new aGSA and for the fuzzy 
control system with T-S-PI-FC tuned by GSA. 

 
Figure 3: Time responses of fuzzy control systems with 
initial T-S PI-FC (line-dotted), GSA tuned T-S PI-FC 
(solid), aGSA tuned T-S PI-FC (dotted). 

Based on these simulation results, our solutions 
can be accepted as very close to the optimal ones. 
However different conclusions can be drawn for 
other objective functions eventually controlling 
other processes (Baranyi et al., 1997; Ferreira and 
Ruano, 2009; Hladek et al., 2009; Johanyák, 2010; 
Leva and Maggio, 2011). 

5 CONCLUSIONS 

This paper has introduced an aGSA which employs 
the adaptation of two parameters of a classical GSA 
to the iteration index and on the fuzzy logic-based 
adaptation of the number of algorithm’s runs in two 
stages. Popov’s hyperstability results guarantee the 
convergence of our aGSA. 

The simple and effective implementation of 
aGSA in the optimal tuning of parameters of T-S PI-
FCs is obtained by the application of the ESO 
method and of the modal equivalence principle. In 
addition, aGSA offers a better usage of the 
algorithms resources by extending the search 
process to the entire search duration. 

Future research will concern the extension of our 
aGSA such that to be applied to other optimization 
problems which will offer robustness properties of 
the   fuzzy   control   systems.     Nonlinear    MIMO  
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processes will be targeted. 
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