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Abstract: This paper discusses the realization problem of a class of linear-invariant system, in which state variables, input
and output are restricted to be nonnegative to reflect physical constraints. This paper presents an efficient and
general algorithm of positive realization for positive continuous-time linear systems in the case of transfer
function with (multiple) real or complex poles. The solution of the corresponding problem for continuous-
time positive is deduced from the discrete-time case by a transformation. We deal with the positive realization
problem through convex cone analysis. We provide a simple general and unified construction method for the
positive realization of the transfer function, which has multiple poles, upper-bound and a sparse realization
matrix. We consider a sufficient condition of positive realization.

1 INTRODUCTION

This paper discuss the realization problem of a class
of linear-invariant system, in which state variables,
input and output are restricted to be nonnegative to
reflect physical constraints. The nonnegative con-
straints can be encountered in engineering, medicine
and economics (Brown, 1980) (Gersho and Gopinath,
1979), and (Benvenuti and Farina, 2001).

In the cases of discrete time, the powerful con-
structive tools of proper generators for general trans-
fer functions have been introduced a lot in the
last decade (Nagy and Matolcsi, 2003)(Nagy et al.,
2007)(Hadjicostis, 1999)(Nagy and Matolcsi, 2005).
Constructive efficient general methods to solve the
positive realization in close to minimal dimension
have mainly focused on the problems of discrete
systems (Anderson et al., 1996)(Benvenuti et al.,
1999)(Nagy et al., 2007). However, the positive real-
ization problem of the continuous time case have been
studied less than that in the discrete time. We propose
a constructive efficient algorithm to solve the posi-
tive realization for some given positive system with
(possibly multiple) complex poles in continuous time
domain. First, we solve the general problem for the
positive realization of transfer function with complex
poles in the continuous time linear system. The posi-
tive realization problem can be derived by finding an
appropriate generator of a polyhedral cone interven-
ing reachability and observability. Because the posi-
tive realization is not unique, we can choose a proper
sparse realization matrices by selecting spanning vec-

tors from the cone generator. We also handle the pos-
itive realization of the transfer function with multiple
complex poles. The sufficient conditions for the pos-
itive realization of the transfer function with multiple
complex poles are given and analyzed. The format of
the paper is as follow. In Section 2, we introduce the
preliminary concepts for the analysis of the continu-
ous positive linear system. The positive realization
problems of the transfer function with simple poles
are discussed in Section. We consider the generalized
positive realization problem of the transfer function
with multiple complex or real poles in Section 4.

2 PRELIMINARY

The convex coneX = cone(X) denotes the smallest
convex cone of a setX, which consists of all finite
nonnegative linear combinations of elements of the
setX. The dual cone,X ∗, of a coneX is defined by
X

∗ = {y|xTy≥ 0,∀x∈ X }. A convex coneX is said to
be a polyhedral cone if it is spanned by a finite num-
ber of vector setX = {x1, · · · ,xm} with xi ∈R

n andX
is called by a polyhedra generator ofX . From now,
X is also denoted by the matrix with columnsxi ∈ X.
An extreme point of a convex cone is one which is
not a proper positive linear combination of any two
points of the set. A finite setX is said to be a frame of
the polyhedral coneX if the points ofX are extreme
points inX andX spansX . A polyhedral cone is a
closed convex cone (Berman and Plemmons, 1994).
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A matrix A ∈ R
n×n is said to be a Metzler matrix if

all its off-diagonal elements are inR+. A matrix A is
a Metzler matrix if and only if there exists anα ∈ R

satisfying(A+αI) ∈R
n×n
+ (van den Hof, 1997)(Ben-

venuti and Farina, 1998). Consider a single-input, sin-
gle output linear time-invariant system ˙x = Ax+ bu,
andy= cx whereA∈ R

n×n, b∈ R
n×1 andc∈ R

1×n.
The linear system is said to be a positive linear sys-
tem if for all x0 ∈ R

n
+ and for allu(t) ∈ R, we have

y(t) ∈R for all t. A strictly proper rational function is
said to be positive realizable if there exist a matrixA
with nonnegative off-diagonal elements and nonneg-
ativeb, c such thatH(s) = c(sI−A)−1b. H(s) is the
set of strictly proper rational transfer functions. Such
a realization(A,b,c) is called the positive realization,
since it yields nonnegative state response whenever
initial states and inputs are nonnegative.

The necessary and sufficient condition of the pos-
itive realization has been introduced in (Ohta et al.,
1984). The problem of positive realization of a given
transfer function is reduced to finding an appropriate
polyhedral cone in the room sandwiched by the reach-
ability and observability cones. We summary the nec-
essary and sufficient condition of the existence of pos-
itive in the next theorem.

Theorem 2.1 ((Ohta et al., 1984)). Let (A,g,h) be
a minimal realization of H(s). Then H(s) is positive
realizable if and only if there exists a generator matrix
P such that a polyhedral coneP = cone(P) satisfies

1. exp(At)P ⊂ P for all t ≥ 0,
2. R ⊂ P ⊂ S .

where P∈ R
n×m, R is a reachable set andS is an

observable set.

Technically, it is difficult to find out a proper poly-
hedral coneP satisfying the condition of Theorem
2.1. The explicit construction methods of the poly-
hedral cone for discrete time case can be applied to
the continuous time version.

Lemma 2.1. Let P be a polyhedral cone inRn and
A ∈ Rn×n. Thenexp(At)P ⊂ P for any t≥ 0 if and
only if (A+λI)P ⊂ P for someλ ≥ 0.

3 SIMPLE POLE CASE

We consider a simple third-order asymptotically sta-
ble positive proper transfer functionH(s) with partial
fractional form as

H(s) =
R

s−λ0
+

β1

s−λ1
+

β̄1

s− λ̄1
(1)

whereλ0 < 0, λ1 is a complex pole withreal(λ1) ≤
λ0, λ̄1 is a complex conjugate ofλ1 andβ1 is complex

number. A minimal Jordan realization is given by

A=





λ0 0 0
0 x y
0 −y x



, λ0⊕A1, g=





1
1
0



 (2)

h=
[

R c2 c3
]

,
[

R ĉ
]

whereλ0 is a real pole withλ0 < 0, a complex pole
is λ1 = x+ iy with x< λ0. HereR> 0, c2 andc3 are
appropriate real values.

Definition 3.1. LetPm(ρ) for m≥ 1 denote the set of
points in the complex plane that lie in the interior of
the regular polygon with m edges having one vertex
at point ρ and including a zero point 0. For m≥ 3,
the polygonPm is defined by a subset inR2 through
the following inequalities:

Pm(ρ) =
{

(x,y)|r cos

[

(2k+1)π
m

−ϕ
]

≤ ρcos
π
m

}

,

(3)
for all k with 0 ≤ k ≤ m, where x= r cosϕ and y=
r sinϕ. Whenρ = 1, it is simply denoted byPm.

Our constructive method is similar to the results in
(Benvenuti et al., 1999)(Nagy et al., 2007). A 2×m
matrixV consisting of the vertices of a polygon in the
complex plane is defined as

V =

[

1 cos2π
m cos4π

m · · · cos2π(m−1)
m

0 sin2π
m sin 4π

m · · · sin 2π(m−1)
m

]

. (4)

for a givenm. A cone generator matrixP∈ R
3×m is

defined as

P=

[

e
V

]

,
[

p1 p2 · · · pm
]

(5)

wheree represents an 1×m vector with all entries
equal to 1 andpi ’s are extreme points in a polyhedral
conecone(P).

Theorem 3.1. Assume that the three dimensional
transfer function H(s) with a pair of strictly conju-
gate complex poles(λ1, λ̄1) and a real poleλ0 with
λ0 > real(λ1) has a realization such as (2) and the
extreme generator P is constructed as in (5). If we
have

−
π
2
+

π
m

≤ arg(λ1−λ0)≤
π
2
−

π
m
, (6)

|β1| ≤
β0

2
(7)

then there is a polyhedral generator P∈ R
3×m such

that cone(P) is exp(At)-invariant for any t> 0.

Theorem 3.2. Assume that the conditions of Theo-
rem 3.1 are satisfied. Then there is a sparse circu-
lar Toeplitz matrix A+ with 3m elements such that
(ηI +A)P = PA+ for a properη > 0. Thus we get
a Metzler matrix A∗ = A+−ηI.
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4 MULTIPLE POLES CASE

We consider the asymptotically stable transfer func-
tion H(z) being a positive linear system in the form
as

H(s) =
β0

s−λ0
+

r

∑
j=1

n j

∑
i=1

β(i)
j

(s−λ j)i (8)

whereβ0 > 0 andH(s) has a non-negative impulse
response. Ann j ×n j Jordan form matrixAi , ann j ×1
matrix bi and an 1×n j matrix ci are defined ,respec-
tively, as follows:A j = J(λ j),

J(λ j),













λ j 1 0 · · · 0
0 λ j 1 · · · 0
...

...
.. .

...
0 0 0 · · · 1
0 0 0 · · · λ j













, b j = en j ,













0
0
...
0
1













c j =
[

β(n j )
j β(n j−1)

j · · · β(1)
j

]

for 1≤ j ≤ r andA0 = λ0 whereA⊕B, diag(A,B)
and the basis vectorek has a 1 as its k-th component
and 0’s elsewhere. The transfer functionH(z) has
a canonical minimal Jordan form realization(A,b,c)

such thatA=
⊕r

j=0Ai , b=
[

1 bT
1 bT

2 . . . bT
r

]T

andc=
[

1 c1 c2 . . . cr
]

. First, let us consider
a real rational transfer functionH1(s) with multiple
complex conjugate poles of the form

H1(s) =
n

∑
k=1

{

βk

(s−λ1)k
+

β̄k

(s− λ̄1)k

}

(9)

where the poleλ1 and coefficientsβi are complex and
β̄i is defined as the conjugate ofβi . The transfer func-
tion H1(s) has a Jordan canonical form realization
such as(J(λ1)⊕ J(λ̄1),

[

eT
n eT

n

]T
,
[

c1 c̄1
]

). Then
by using similarity transformation, we can obtain a
real Jordan form realization(J(λ1,w), b̂, ĉ) of H1(s)
such thatJ(λ1,w) ∈ R

2n×2n, b̂ ∈ R
2n and ĉT ∈ R

2n

are given by

J(λ,w),













C I O · · · O
O C I · · · O
O O C · · · O
...

. . .
...

O O O · · · C













, b̂=













0
...
0
1
0













ĉ=
[

β̃2n β̃2n−1 · · · β̃1
]

(10)

for any given numberw andC = C(x,y) ,

[

x y
−y x

]

where the entries ofc2 are defined bỹβ2k = 2Re(βk)

andβ̃2k−1 = 2Im(βk) for eachk.

Theorem 4.1. Assume that a transfer function of the
form

H(s) =
β0

z−λ0
+

n

∑
k=1

{

βk

(s−λ1)k
+

β̄k

(s− λ̄1)k

}

(11)

has a non-negative impulse response function where
β0 > 0 and real(λ1)< λ0 and the maximal order n of
the pole is larger than 1. Let us define a function rm
asrm(z) = max{r̂|(r̂ cosθ, r̂ sinθ) ∈ Pm, r̂ > 0} with
respect to some z= r cosθ+ ir sinθ. Set z1 = η+λ1

η+λ0

and z2 = 1
η+λ0

. For sufficiently largeη > 0, a suffi-
cient condition is given by

0< w≤

(

1−
|z1|

rm(z1)

)

rm(z2)

|z2|
(12)

|βk| ≤
β0

(2w)k−n . (13)

Then, there exists a positive realization(A+,b+,c+)
of the transfer function H(s) that has the order mn for
all 1≤ k≤ n.

Proof. We try to find a sufficient condition of the ex-
istence of a positive realization(A+,b+,c+) for the
given transfer functionH(s). We obtain a real block
Jordan form realization(A,b,c) of the transfer func-
tion H(z) in equation (11) as

A= λ0⊕ J(λ1,w), b=

[

1
b̂

]

(14)

c=
[

1 ĉ
]

wherex= r cosθ, y= r sinθ andJ(λ1,w), b̂ andĉ are
defined in equation (10). We use the fact that there
exists anη > 0 such that(ηI +A)-invariant coneP
with mn edges (i.e.,(ηI +A)P ⊂ P ). We generalize
the concept of the cone generator introduced in (Ben-
venuti et al., 1999) for the case with multiple complex
poles. In order to formulate a polyhedral cone genera-
tor with (ηI +A)-invariant property, a block shift ma-
trix Z ∈ R

2n×2n and a matrixV ∈ R
2n×m are defined

as:

Z =













O O · · · O O
I O O O
O I · · · O O
...

...
. . .

...
...

O O · · · I O













, V̂ =













V
O
O
...
O













whereI is an identity matrix,O is a zero matrix with
proper dimension and a 2×m matrixV is defined as
(4). A cone generator matrixP ∈ R

(2n+1)×mn is de-
fined asP =

[

P1 P2 · · ·Pn
]

wherePk is defined as

Pk =

[

eT

ϕk

]

for 1 ≤ k ≤ n− 1, e represents anm× 1
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vector with all entries equal to 1 andϕk =Zk−1V̂. The
columns of matrixP represent the extreme vertices of
a finite generated coneP in R

2n+1 (i.e.,cone(P) = P )
and are positive independent. The polyhedral cone
Pk is generated byPk, i.e., Pk = cone(Pk) for each
k. Note that(A+ηI)Pk for eachk has only 1-th,k-
th andk+1-th block components. By the invariance
property, (A+ηI)

λ0+η Pk ∈ P is required. Set̃A = (A+ηI)
λ0+η .

The matrixÃ has eigenvalues{1,z1, z̄1} with |z1|< 1.
Then the positive realization problem with respect to
Ã is close related to that of the discrete time domain as
in (Benvenuti et al., 1999)(Nagy et al., 2007). Choose
{Wk,Wk+1} such that

(A+ηI)
λ0+η

Pk = α1Wk+α2Wk+1 (15)

for eachk whereα j ’s satisfyα j ≥ 0, α1+α2 = 1 and
all the entries in the first row ofWk ∈ Pk are equal
to 1. A sufficient condition for a feasible solution
(α1,α2) should satisfy two inequalities,w|z2|

rm(z2)
≤ α2

and |z1|
rm(z1)

≤ α1, and an equalityα1 +α2 = 1 for a
givenw. By rearranging the above conditions, we ob-
tain an inequality (12). From this result, we can see
thatw andη are tunable parameters to get a positive
matrix. The polyhedral coneP is ηI +A-invariant un-
der the above condition in (12). We can prove that
R ⊂ P andP ⊂ S without difficulty.

Theorem 4.2. Assume that the conditions of Theo-
rem 4.1 are satisfied. Then there is a sparse circular
matrix A+ with at most3nm non-zero elements such
that (ηI +A)P = PA+ for a properη > 0. We note
Wk ∈ cone(Pk) in Eq. (15). The columns of Wk is pos-
itively linearly combined by the three vectors chosen
from Pk similar to the process of Theorem 3.2. We can
verify that we can choose a sparse matrix A+ such
that A+ is defined by

A+ =













T1 εI 0 · · · 0
0 T2 εI · · · 0
0 0 T2 · · · 0
...

...
...

. . .
...

0 0 0 · · · T2













(16)

with T1 = T(~t1),T2 = T(~t2) and T3 = T(~t3) where~t1

has at most three nonzero elements and~t2 and~t3 have
at most two nonzero elements. Finally, we get a sparse
Metzler matrix A∗ = A+−ηI.

Some of theorems in paper were only mentioned
without detail proof due to page limit.
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