Positive Realization of Continuous Linear Systems with Order Bound

Kyungsup Kim and Jaecheol Ryou
Department of Computer Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, Korea

Keywords:  Positive Realization, Positive Linear System, Metzler Matrix, Polyhedra Cone.

Abstract: This paper discusses the realization problem of a class of linear-invariant system, in which state variables, input
and output are restricted to be nonnegative to reflect physical constraints. This paper presents an efficient and
general algorithm of positive realization for positive continuous-time linear systems in the case of transfer
function with (multiple) real or complex poles. The solution of the corresponding problem for continuous-
time positive is deduced from the discrete-time case by a transformation. We deal with the positive realization
problem through convex cone analysis. We provide a simple general and unified construction method for the
positive realization of the transfer function, which has multiple poles, upper-bound and a sparse realization
matrix. We consider a sufficient condition of positive realization.

1 INTRODUCTION tors from the cone generator. We also handle the pos-
itive realization of the transfer function with multiple
This paper discuss the realization problem of a class complex poles. The sufficient conditions for the pos-
of linear-invariant system, in which state variables, itive realization of the transfer function with multiple
input and output are restricted to be nonnegative to complex poles are given and analyzed. The format of
reflect physical constraints. The nonnegative con- the paper is as follow. In Section 2, we introduce the
straints can be encountered in engineering, medicinepreliminary concepts for the analysis of the continu-
and economics (Brown, 1980) (Gersho and Gopinath, ous positive linear system. The positive realization
1979), and (Benvenuti and Farina, 2001). problems of the transfer function with simple poles
In the cases of discrete time, the powerful con- are discussed in Section. We consider the generalized
structive tools of proper generators for general trans- positive realization problem of the transfer function
fer functions have been introduced a lot in the with multiple complex or real poles in Section 4.
last decade (Nagy and Matolcsi, 2003)(Nagy et al.,
2007)(Hadjicostis, 1999)(Nagy and Matolcsi, 2005).
Constructive efficient general methods to solve the
positive realization in close to minimal dimension
have mainly focused on the problems of discrete
systems (Anderson et al., 1996)(Benvenuti et al., The convex coner = congX) denotes the smallest
1999)(Nagy et al., 2007). However, the positive real- convex cone of a seX, which consists of all finite
ization problem of the continuous time case have beennonnegative linear combinations of elements of the
studied less than that in the discrete time. We proposesetX. The dual conex *, of a conex is defined by
a constructive efficient algorithm to solve the posi- x* = {y|x"y>0,¥x<€ x }. A convex cone is said to
tive realization for some given positive system with be a polyhedral cone if it is spanned by a finite num-
(possibly multiple) complex poles in continuous time ber of vector seK = {x1,--- ,Xm} with x; € R" andX
domain. First, we solve the general problem for the is called by a polyhedra generator of From now,
positive realization of transfer function with complex X is also denoted by the matrix with columxs= X.
poles in the continuous time linear system. The posi- An extreme point of a convex cone is one which is
tive realization problem can be derived by finding an not a proper positive linear combination of any two
appropriate generator of a polyhedral cone interven- points of the set. A finite seX is said to be a frame of
ing reachability and observability. Because the posi- the polyhedral cong if the points ofX are extreme
tive realization is not unique, we can choose a proper points inx andX spansx. A polyhedral cone is a
sparse realization matrices by selecting spanning vec-closed convex cone (Berman and Plemmons, 1994).
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A matrix A € R™" is said to be a Metzler matrix if number. A minimal Jordan realization is given by
all its off-diagonal elements are R,. A matrix A is Ao O O 1

a Metzler matrix if and only if there exists ane R A=|0 x vy|2x®A, g=]1 @)
satisfying(A+al) € R™" (van den Hof, 1997)(Ben- 0 AL

4 . . ; . . 0 - 0
venuti and Farina, 1998). Consider a single-input, sin- y X
gle output linear time-invariant syster= Ax-- bu, h=[R & c]=[R ¢
_ 1 1 . .
andy = cxwhereA€ R™", be R™ andce R™™. yhere)q is a real pole wittho < 0, a complex pole

The linear system is said to be a positive linear sys- g A1 = X+ iy with X < Ao. HereR> 0, ¢, andcg are
tem if for all xo € R} and for allu(t) € R, we have  555r00riate real values.

y(t) € Rfor allt. A strictly proper rational function is _—_
said to be positive realizable if there exist a matkix De_f|n|t|_on 3.1. LetYm(p) form> 1_d¢note t_he set of
points in the complex plane that lie in the interior of

with nonnegative off-diagonal elements and nonneg- th | I ith d havi .
ativeb, ¢ such thaH (s) = c(sl — A)~th. H(s) is the € regufar polygon with m €dges having one vertex

- - : t pointp and including a zero point 0. For m 3,
set of strictly proper rational transfer functions. Such a . : 2
a realization(A b, c) is called the positive realization, the pOjugailly is defined by a subset Ik” through

since it yields nonnegative state response wheneverthe foflowing inBeuglities:
initial states and inputs are nonnegative. (2k+1)m T
- " = — ¢ < —

The necessary and sufficient condition of the pos- Fn(p) {(X’ y)|rcos[ m o< pcosm [
itive realization has been introduced in (Ohta et al.,
1984). The problem of positive realization of a given for all k with 0 < k < m, where x=rcosp and y=
transfer function is reduced to finding an appropriate rsing. Whenp = 1, it is simply denoted b m.
polyhedral cone in the room sandwiched by the reach- - . Qur constructive method is similar to the results in
ability and observability cones. We summary the nec- (Benvenuti et al., 1999)(Nagy et al., 2007). An
essary and sufficient condition of the existence of pos- matrixV consisting of the vertices of a polygon in the

itive in the next theorem. complex plane is defined as

Theorem 2.1((Ohta et al., 1984)) Let (A,g,h) be on an 2n(m-1)

a minimal realization of Hs). Then Hs) is positive V= L C(_)S'z”_" C(_)SF Cészn(r%ll) - 4
realizable if and only if there exists a generator matrix 0 singl sin{d - sinT

P such that a polyhedral cone = con€P) satisfies for a givenm. A cone generator matriR € R3*™ is

1. exp(At)? C # forallt >0, defined as
2.R CPCS. el »
where P R™™M, & is a reachable set and is an P= [V} - [pl P2 - pm] ®)

observable set. wheree represents an & m vector with all entries
Technically, itis difficult to find out a proper poly-  equal to 1 angj’s are extreme points in a polyhedral
hedral coner satisfying the condition of Theorem conecongP).
2.1. The explicit construction methods of the poly- Thegrem 3.1. Assume that the three dimensional
hedral cone for.discrete_time case can be applied t04nsfer function Hs) with a pair of strictly conju-
the continuous time version. gate complex poleg\1,A1) and a real pole\g with
Lemma 2.1. Let 2 be a polyhedral cone ifR" and Ao > real(A1) has a realization such as (2) and the
A€ R™". Thenexp(At)? C » for any t> 0 if and extreme generator P is constructed as in (5). If we

only if (A+Al)? C 2 for some\ > 0. have
m T T T
—— 4+ =< M—N) < =——
5 TS argAi—Ao) < 5 — (6)
3 SIMPLE POLE CASE B4 Bo 7)
-2
We consider a simple third-order asymptotically sta- then there is a polyhedral generatordPR3*™ such
ble ppsitive proper transfer functid(s) with partial that conéP) is exp(At)-invariant for any t> 0.
fractional form as _ Theorem 3.2. Assume that the conditions of Theo-
H(s) = R B1 B1 ) rem 3.1 are satisfied. Then there is a sparse circu-
S—Ao S—A1 s—\; lar Toeplitz matrix A with 3m elements such that

(nl + A)P = PA, for a propern > 0. Thus we get

: . <
whereAg < 0, A1 is a complex pole witheal(A1) < a Metzler matrix A — A, —nl.

Ao, A1 is a complex conjugate @f and; is complex
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4 MULTIPLE POLES CASE

We consider the asymptotically stable transfer func-
tion H(z) being a positive linear system in the form
as

B
(s—Aj)

Bo roJ

Ao " lei;

whereBp > 0 andH(s) has a non-negative impulse
response. Am;j x nj Jordan form matrix;, annj x 1
matrix bj and an Ix nj matrix ¢; are defined ,respec-
tively, as follows:Aj = J(Aj),

H(s) = (8)

mj 1 0 0
0 A 1 0
I = | : s bj=en =
0O 0 O 1
L0 0 O Aj
— ) S
o= A" o ]

for 1< j <randAg= Ao whereAs B = diag(A, B)
and the basis vect@; has a 1 as its k-th component
and O's elsewhere. The transfer functibi{z) has
a canonical minimal Jordan form realizatioi, b, c)

such thalh = @ _oAi,b=[1 b b} bf]"
andc=[1 ¢ cr|. First, let us consider
a real rational transfer functioH1(s) with multiple
complex conjugate poles of the form

boo

- Bk Bk

s kzl{ (5—AF | (5- Mg
where the pol@ and coefficient§; are complex and
Bi is defined as the conjugate@f The transfer func-
tion Hi(s) has a Jordan canonical form realization
such asJ(\) @J(A1), [e] €f]",[c1 &i]). Then
by using similarity transformation, we can obtain a
real Jordan form realizatiofd(A1,w),b,€) of Hi(s)
such thatd(A1,w) € R2*2 b e R? andc™ € R
are given by

cC |1 O O
O C | 0]
Jaw2 |0 0 C O, b=|o
: : 1
O O O C 0
¢=[Bon PBon-1 B (10)
for any given numbew andC = C(x,y) £ ny i]

Whe[e the entries of, are defined bﬁZK = 2ReBk)
andBak_1 = 2Im(Bk) for eachk.

568

Theorem 4.1. Assume that a transfer function of the
Bk

form
{ (S)\l)k} 1)

has a non-negative impulse response function where
Bo > 0and realA1) < Ag and the maximal order n of
the pole is larger than 1. Let us define a functign r
astm(z) = maxX{f|(f cosH,fsinB) € Pm,f > 0} with

Bo +i

k=1

Bk
(Sf )\l)k

H(s) =

72—)\0

respect to some z r cosB +ir sinB. Set z = 23;
and 2 = n+—1>\o For sufficiently largen > 0, a suffi-
cient condition is given by
|21 ) Fm(22)
O<w<(l——— ) ——= 12
<(tnfm) @@
Bo
< .

Then, there exists a positive realizatiof.,b,.,c.)
of the transfer function k) that has the order mn for
all1<k<n.

Proof. We try to find a sufficient condition of the ex-
istence of a positive realizatiofA,,b,,c.) for the
given transfer functiotd (s). We obtain a real block
Jordan form realizatiofA, b, c) of the transfer func-
tion H(z) in equation (11) as

AZ)\o@J()\l,W), b= |:£I::| (14)

c=[1 ¢

wherex = r cosB, y = rsind andJ(A1,w), b andcare
defined in equation (10). We use the fact that there
exists ann > 0 such that(nl + A)-invariant coner

with mnedges (i.e.(nl + A)? C ?). We generalize
the concept of the cone generator introduced in (Ben-
venuti et al., 1999) for the case with multiple complex
poles. In order to formulate a polyhedral cone genera-
tor with (nl + A)-invariant property, a block shift ma-
trix Z € R2™2" and a matrixy € R2™™M are defined
as:

0 0 0
I O 00 o)
s_ |0 1 0 0| y-|O
00 - 10 0

wherel is an identity matrixQO is a zero matrix with
proper dimension and a>2m matrixV is defined as
(4). A cone generator matri® € R(2"1)xmn g de.
fined asP = [Py P2---Py| whereR is defined as

o
Rc= [¢k

} for1<k<n-1, erepresents amx 1
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property,%& € 7 is required. Sef = %.

The matrixA has eigenvaluefl, z;,2; } with |z1] < 1.
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