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Abstract: Providing Interactive Systems with educational capabilities is essential in order to achieve real effectiveness 
in simulation based training. However, the development cost of adding intelligence to those systems is huge. 
In this paper we present OLYMPUS, a generic learning platform that allows integrating Interactive Systems 
with an Intelligent Learning System. The platform is able to diagnose students’ activity while they solve 
procedural tasks, it assists them with feedback and helps instructors follow students’ progress with a 
monitoring tool. Additionally, OLYMPUS provides the instructional designers with authoring tools to help 
them during the knowledge acquisition process. 

1 INTRODUCTION 

Human beings spend a considerable part of their 
lives learning how to carry out every type of 
activity. During our lives we acquire different types 
of skills, and a lot of them share a common feature: 
they are procedural tasks. The learning process of 
this type of task is not easy. Sometimes the tasks to 
be learned can be dangerous, or they must be 
acquired in real environments. Unfortunately, most 
of the time the cost of  trainings is unaffordable, and 
for this reason, the use of Virtual Reality (VR) or 
Mixed Reality (MR) based training systems is the 
best solution. 

In order to achieve real effectiveness, VR 
systems need to be combined with Intelligent 
Learning Systems (Mellet d’Huart, 2002). This 
means Interactive Intelligent Learning Systems 
(IILS) are a step ahead of common VR training 
systems, because they assist the students in the 
learning process of a task or a set of tasks. An IILS 
is composed of an Interactive System (IS, an 
interface based on VR or MR), and of an Intelligent 
Learning System (ILS). The former aims at 
achieving faithful reproduction of reality, while the 
latter is centered in the instruction and learning 
processes. Combining those two, IILSs that are 
capable of supporting students in their learning 
process are obtained. 

Our objective in this work has been to mimic a 
real student-expert learning process, that is, 
transferring expert knowledge to students. In order 
to achieve this, we propose OLYMPUS, a generic 
learning platform that has the ability of diagnosing 
students’ activity while they solve procedural tasks, 
it assists them with feedback when needed and 
provides the instructors with a monitoring tool. In 
order to give students this intelligent assistance, our 
platform’s kernel contains a set of generic modules 
that execute a methodological process to give 
intelligent feedback in any Interactive System for 
training procedural tasks. The process has three 
main steps: firstly the events happening in the virtual 
environment are observed; then, captured 
observations are interpreted, so high level 
representation of students’ activity is obtained; and 
lastly, the activity is diagnosed in order to detect 
students’ errors and possible gaps in their 
knowledge. The diagnostic results are used by other 
modules of the platform to generate feedback for the 
students or by any other educational component that 
might be integrated. Still, the amount of information 
required for this process is huge and it needs to be 
modelled, which usually is a tedious and time 
consuming task. 

In this paper, we present a general overview of 
OLYMPUS, which is composed of a framework that 
facilitates the development of IILSs for specific 
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domains, its runtime kernel, a set of tools that help 
to complete the knowledge models required by the 
runtime kernel (also known as knowledge 
acquisition process), and a monitoring tool that 
provides the instructors with visual information 
about the students activity. The paper begins 
briefing some other relevant related works in the 
field of Intelligent Tutoring Systems which have 
inspired our work. After that, the learning platform 
is described and, next, an example of the knowledge 
acquisition process provided by OLYMPUS’ expert 
tool for a top-of-the-range truck driving IILS is 
presented. Finally the main conclusions are stated 
and some of our current lines of reasearch are 
indicated. 

2 RELATED WORK 

The area of Artificial Intelligence (AI) in education 
has followed different paradigms of development 
throughout history. Among them, during the 80s and 
90s, Intelligent Tutoring Systems (ITS) started to 
emerge. ITSs are computer systems for intelligent 
tutoring which provide many of the benefits of one-
on-one instruction without requiring a tutor for every 
student (Bloom, 1984). These systems have also 
been integrated with ISs, allowing the students to 
“learn by doing” in real world contexts. Since the 
first ITSs, three important approaches have been 
established: model-tracing tutors (Anderson and 
Pelletier, 1991), constraint based tutors (Mitrovic et 
al., 2009) and example based tutors (Aleven, 2005). 
Constraint based tutors and example based tutors 
were developed to reduce the cost of the process of 
building an ITS, although it still requires substantial 
expertise in AI and programming, and that is why 
ITSs are difficult and expensive to build. In order to 
avoid this obstacle, authoring systems have been 
shown as a successful solutions. Some of them can 
build tutors that integrate simulators, but their 
simulation capabilities are quite limited. XAIDA 
(Wenzel et al., 1999), RIDES (Munro et al., 1997), 
VIVIDS (Munro and Pizzini, 1998) and SIMQUEST 
(Joolingen and Jong, 1996) can be placed in this 
group. 

Remolina´s flight training simulator (Remolina, 
2004) is a more sophisticated ITS authoring tool. It 
is designed for non-programmers so it offers a GUI 
to edit task-principles, exercises and student models. 
Further, tasks are described by finite state machines 
where the situations that the students are going to 
face are defined. These state machines are related to 
students’ activity, so they are able to discern if the 

previously defined learning objectives have been 
achieved. Depending on the skills acquired by the 
students, the student model will be modified. 
Although these features are quite powerful, they 
require some programming skills. In addition, the 
relation between the authoring tool and the simulator 
is high, which involves representing low level 
information, and hence, it increases the probability 
of generating an incomplete domain model. A 
similar approach is followed by The Operator 
Machine Interface Assistant (OMIA) (Richards, 
2002), which includes a scenario generator tool and 
an ITS. The scenarios are edited using a visual 
authoring tool, where elements of the simulation are 
defined so they can be detected later in the 
simulation. It also allows for configuring some 
parameters for the ITS. OMIA is capable of 
providing automatic diagnosis and, depending on the 
exercise definition, it provides students with 
enhancements and simulates different discussions 
with other crew members. 

In recent years, more ITS authoring tools have 
been proposed, which address more efficiently the 
problems involved on ITS development. CTAT 
(Aleven et al., 2006) is composed of a set of 
authoring tools that allow creating Example-Tracing 
tutors. For this kind of tutor, the author carries out 
demonstrations of how the students should solve a 
particular problem. CTAT offers tools to implement 
student interfaces and to add correct and incorrect 
examples of solutions. Using these authoring tools 
implies defining each solution separately, which can 
be time consuming as the number of possible 
solutions increases (eg. environments with a high 
grade of unpredictability). With the aim of reducing 
the tutor development time, SimStudent (Matsuda et 
al., 2007) generalizes authors’ demonstrations, so 
not all the possible solutions need to be defined. 
ASPIRE (Mitrovic et al., 2009) is another authoring 
system for both procedural and non procedural tasks. 
The system allows creating domain independent 
constraint based ITSs. To achieve this, it provides a 
workspace to generate the domain ontology, which 
is the base for the author to define the solutions of 
the tasks that are going to be learned. These 
solutions are defined using constraints, and one of 
the advantages of ASPIRE is that it can generate the 
constraints automatically. Another domain 
independent ITS framework is ASTUS (Paquette et 
al., 2010), which focuses its efforts on knowledge 
representation. Among its strengths are the capacity 
of recognizing the composition of errors made by 
the students, the generation of feedback for specific 
errors, and the generation of hints and 
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demonstrations for specific steps. However, it is 
only suitable for well-defined domains, so it can be 
difficult to use for ill-defined domains. 

OLYMPUS was designed with the objective of 
adding educational capabilities to a wide range of 
Interactive Systems. In addition, our efforts are 
centred on achieving sophisticated knowledge 
representation independently from the learning 
domain. OLYMPUS allows the instructional 
designers to create personalised learning courses. 
The platform is composed of various tools: The 
Virtual Environment Management Tool allows the 
instructional designers to identify objects of the 
virtual environment that are interesting for the task 
solutions and to define knowledge about them. The 
Expert’s Tool lets them create different knowledge 
models in order to design tasks for the students, as 
well as capture and analyze experts’ activity as an 
aid to define the models. In this manner, the IILSs 
created with OLYMPUS are able to automatically 
diagnose, assist and monitor students while they 
perform tasks. In comparison with the above 
mentioned ITS authoring tools, OLYMPUS offers a 
multi-technique diagnosis module. Thanks to this 
feature, different diagnosis techniques can be 
integrated depending on the domain where the IILS 
is going to be used. 

3 OLYMPUS’ ARCHITECTURE 

In order to obtain the benefits of a real one-on-one 
tutoring, an IILS has to be able to diagnose, give 

suitable feedback and monitor students’ activity. In 
order to attain this, we defined the architecture of 
OLYMPUS that is shown in Figure 1. This 
architecture involves the complete process from 
knowledge acquisition to assisting students during 
the tasks, and four different roles can be 
distinguished: 

• Student: the user to be trained. 
• Instructional Designer: the teacher that designs 

the tasks. 
• Expert: the professional that the instructional 

designers capture solving the tasks so they can 
define the knowledge models needed by 
OLYMPUS. 

• Instructor: the one that supervises the students 
in the training sessions. 

The whole process starts by designing the tasks that 
the instructors are going to propose to the students. 
This design process is guided by the methodology 
defined by ULISES: a generic framework for the 
development of IILSs that establishes the 
communication process between an Interactive 
System and other educational components in three 
steps: observation, interpretation and diagnosis. For 
the first step, the ULISES framework needs to gather 
information from the virtual scene where the tasks 
are executed, which will be defined by the 
instructional designer with the help of the Virtual 
Environment Management Tool. For example, in a 
driving simulation environment, various elements of 
interest can be defined with this tool: lanes, vehicle 
properties (eg. speed, acceleration), road signs, etc. 

 
Figure 1: OLYMPUS architecture. 
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Once the observable information is defined, 
instructional designers can model the rest of the 
knowledge needed by the system. To make this 
possible, they have to make use of the Expert’s Tool. 
With this tool, instructional designers can capture 
the experts’ activity in the IS and thereby, design the 
“ideal” knowledge models. Following this process, 
the ULISES runtime kernel will be able to generate 
diagnosis information that will be delivered to 
HERMES, an adaptive and configurable feedback 
module that selects feedback messages in real time 
in response to the students’ activity.  

After the tasks have been modelled, instructors 
can launch them and supervise the students through 
the Monitoring Tool. As is shown in the student’s 
data flow in Figure 1, a student’s activity is sent 
from the IS to the ULISES runtime KERNEL, which 
generates a diagnosis and transmits the results to the 
Monitoring Tool. These results are displayed 
graphically in real time to help the instructors follow 
and control the training sessions. 

In the following sections, the components that 
compose OLYMPUS are explained more 
thoroughly. 

3.1 ULISES Framework 

ULISES (Lozano-Rodero, 2009) is a framework for 
the development of IILSs. It is the core system of 
OLYMPUS, as it defines how the educational 
functionalities must be integrated with the IS. 
ULISES is based on the natural process that the 
teachers follow when they are supervising students. 
Firstly they perceive what is happening in their 
environment, then they interpret what is happening 
out there and lastly they make a diagnosis about 
students’ activity. In order to follow this behaviour, 
ULISES is based on a metamodel that is divided into 
three main abstraction levels: observation, 
interpretation and diagnosis levels. These three 
levels describe generically the elements that have to 
be particularised to describe an IILS. In other words, 
the methodology specifies how to observe the 
actions being carried out in the interactive system, 
how to interpret the steps made by the students and 
the context where they are executed, and lastly, how 
to diagnose them. 

ULISES represents each level of the metamodel 
with a corresponding model, thus, the framework 
needs to have the observation, interpretation and 
diagnosis models. For this reason, ULISES’s 
architecture is composed with the corresponding 
three subsystems. ULISES runtime kernel 
subsystems communicate with the others via multi-

agent architecture, using the FIPA standard of 
interoperability. This architecture allows the agents 
to exchange information by subscription, request and 
query communication protocols. 

3.2 HERMES Feedback Subsystem  

HERMES is a domain independent feedback system 
whose behaviour is customisable to suit the student’s 
characteristics and the task’s context (Lopez, 2011). 
What is more, it takes advantage of the multimodal 
capabilities of ISs. HERMES selects its feedback 
based on the diagnosis results generated by ULISES. 
This feedback selection process discerns the most 
important action among all the actions that are being 
executed by a student in a particular moment. 
Further, it also determines what the most appropriate 
message is, taking into account students’ 
characteristics. The selection algorithm takes into 
account both assimilation of the messages and 
educational factors. Besides, the algorithm makes it 
possible for HERMES to customise its behaviour to 
the characteristics of the domain and to the experts’ 
preferences. 

3.3 Virtual Environment Management 
Tool 

The objective of the tool is to interactively generate 
knowledge associated with the elements in the 
training scenarios. To achieve this, three steps need 
to be followed according to the following: (1) define 
the scene ontology, (2) create the knowledge-mesh 
and (3) validate knowledge observation. 

1. Firstly, the objects that are going to appear in 
the simulation need to be specified. Those 
objects are contained in an ontology that is 
called scene ontology. This ontology will be 
composed of classes and their properties. For 
example, if a lane needs to be defined in the IS, 
a class will be created for it with its 
corresponding properties: maximum speed of 
the lane, type of lane, etc. 
 

2. Once the scene ontology is created, the next 
step is to define the physical representation of 
the objects. This definition is done by assigning 
customisable geometries called knowledge-
mesh. Additionally, the simulation 
environment can be provided by observers. 
Their function is to observe the environment 
during a simulation session. To achieve this, 
they are equipped with sensors, so when they 
collide with an instance of a knowledge-mesh, 
the system is able to recognise the object and to 
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identify its properties.  
3. Lastly, the tool offers the possibility of 

validating whether or not all the generated 
elements are consistent and if the generated 
knowledge satisfies the requirements. 

3.4 Expert’s Tool 

The main objective of this tool is to give expression 
to expert’s knowledge, without requiring any 
expertise in AI. As we have seen, ULISES and 
HERMES subsystems need some knowledge, which 
is provided by the expert’s authoring tool. Regarding 
the ULISES framework, interpretation and task 
models are two models that need to be defined. 

Before explaining these two models, it is 
indispensable to refer to the lower layer; the 
observation model. The basic unit of this level is the 
observation, which describes a fact taking place in 
an interval of time. Without defining observations it 
would be impossible to define further levels. For 
example, if an overtaking in the right lane needs to 
be described at the interpretation level, first the lane 
change needs to be observed. The definition of the 
observation model is done manually taking into 
account the ontologies defined in the Virtual 
Environment Management Tool, that is, 
observations are the link to join the scenario 
information with the ULISES framework. However, 
making this connection requires some programming 
and a simple process needs to be followed, which is 
out of the scope of our tools.   

One step ahead in the completion of the 
knowledge models is the definition of the 
interpretation model. Its aim is to represent the 
necessary information to guess what actions (steps) 
the students are executing in the virtual 
environment. To do so, detecting the context where 
the actions are being carried out is decisive. For 
example, accelerating before a traffic light is not the 
same as in an overtaking situation. Therefore, the 
authoring tool provides modelling steps and 
situations using a constraint based approach. In 
domains that are not well structured, events do not  

occur in a predictable manner, so temporal 
knowledge is not relative. For this reason, the use of 
constraints to define relations is an appropriate 
solution (Allen, 1983). 

Once the steps and situations are modelled in the 
interpretation model, that is, once the system is able 
to discern what is happening in the IS, the next step 
is to state the correction of the actions made by the 
students in a given situation. This information is 
defined in the Task Model, which is composed in the 

following manner: a task is composed of situations, 
and each situation has one or many possible 
solutions. As has been noted, this framework is 
independent of how to define solutions, in other 
words, it is independent of the diagnosis technique. 
Either way, the solutions define how each step of a 
situation is solved correctly or incorrectly. At the 
same time, the Task Model will also gather the 
necessary information for HERMES. 

Defining the information for those two models is 
not an easy task. The grade of complexity of the 
maneuvers that can occur in the IS is unpredictable. 
Thus, the variety of signals that come from the 
virtual environment can be high and the relations 
and patterns between these signals needs to be 
identified in order to generate accurate interpretation 
and task models. To give a solution to this problem, 
the Expert’s Tool offers a Capturing Tool. Its 
objective is to capture experts while they interact in 
the IS to monitor their activity in the form of signals 
and to show it in the Expert’s tool afterwards. 
Further, the tool allows analysing rigorously the 
information and establishing patterns between them, 
which is a great asset for the definition of the 
required models. 

3.5 Monitoring Tool 

Visualising the diagnosis results is as important as 
generating an accurate diagnosis and that is why 
OLYMPUS offers another visual resource: the 
Monitoring Tool. This tool allows the instructors to 
monitor students’ activity in real time. The activity 
shows which steps are being executed and in which 
situations they are happening. And, what is more, 
the monitoring tool indicates if each situation and 
step has been carried out correctly or incorrectly. 

 
Figure 2: View of the expert capturing tool. 

Although the diagnosis results are showed in real 
time (Figure2), when the exercise is completed a 
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thorough report of the exercise can be displayed. In 
this report, the marks obtained for each situation and 
steps can be consulted, as well as information about 
the acquisition grade of the learning objectives. 
Besides, students’ results from each exercise are 
saved for the instructor to follow the progress that 
the students are having over time. 

4 THE MODELLING PROCESS 
WITH THE EXPERT’S TOOL 

After having done a general overview of the 
different tools that OLYMPUS offers, in this 
chapter, examples of how to model a task with the 
Expert’s Tool will be described. This tool is the core 
tool of OLYMPUS, as it makes the rest of the tools 
run. Firstly, it uses the information defined in the 
scenario, and then it generates the interpretation and 
task models, which feed the ULISES runtime kernel 
and HERMES feedback subsystem. In this manner, 
HERMES can generate personal feedback for the 
students and the Monitoring Tool can show 
diagnosis results successfully, which would be 
impossible without the Expert’s Tool. 

4.1 Defining the Task Model 

Defining the Task Model implies that experts think 
about the situations that the students are going to 
face during their training. In each task the students 
will need to acquire certain learning objectives, 
which will help the experts to know if the students 
are acquiring the desired skills or not. In an 
economical driving context, an expert may want to 
measure if the students act with sufficient 
anticipation when they face a traffic light. In this 
case, for example, a TrafficLight situation could be 
defined. The next step is more difficult, the solution 
or solutions for the TrafficLight situation need to be 
defined. In such a context, some possible steps of 
interest can be accelerating, breaking and passing 
the traffic light. The conditions for this situation are: 

• Accelerating when the traffic light is yellow or 
red is incorrect if the car is less than 30 metres 
from the traffic light. 

• Passing the traffic light in red is incorrect. 
Once the situation and the steps are identified, the 
solution for the situation needs to be specified. As 
noted before, these solutions will be diagnosed with 
a specific diagnosis technique. As our diagnosis 
module allows integrating different diagnosis 
techniques, in this case a constraint based approach 

has been developed due to the high unpredictability 
that a driving context implies. So this time, the 
correct steps performance will be modelled with 
constraints. The Accelerate step would be defined 
with this constraint: 

(S.TrafficLightDistance>30.0) 
OR 

(S.LightState=2.0 
AND 

S.TrafficLightDistance < 30.0) 

Figure 3 shows the solution definition for the 
Accelerate step within the TrafficLight situation. In 
order to define a constraint, instances of the 
observation will be used. In the constraint definition 
for Acceleration just one instance (S) of the 
TrafficLight is used. TrafficLightDistance and 
LightState are properties of the observation 
TrafficLight (S). On the other hand, each constraint 
is related to a learning objective, so when an action 
is executed by the student, it will affect the 
corresponding learning objective. 

 
Figure 3: 1.Name and description of the situation 
2.Selection of the diagnosis technique 3.Steps that are 
inside a situation (decelerate, accelerate and 
passTrafficLight 4.Definition of the constraints and 
parameters to calculate the marks related to a learning 
objective. 5.Definition of instances. 

4.2 Interpreting Students’ Activity 

In order to diagnose the correctness of the situations 
and the steps that have been defined in the Task 
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Model, firstly they have to be interpreted, which is 
achieved thanks to the modelling of the steps and 
situations in the interpretation model. Following 
with the previous example, the situation TrafficLight 
and the steps Accelerate, Break and PassTrafficLight 
need to be modelled. Unlike the diagnosis module, 
the interpretation module always need that its 
elements be modelled using constraints. The 
interpretation interface allows entering different 
types of constraints, as constraints to detect the 
starting point of an action as well as its end point. As 
the cited steps are easy to model (we just need to 
detect if we are breaking, accelerating etc.), a more 
complex step is explained to illustrate the definition 
of a step: StartCar. For the case of StartCar, the 
constraints below will indicate the beginning and 
end of the step: 

Start constraint: P2 [Meets] P3 AND P3 [Meets] P2 
End constraint: P3 [Meets] P2 

P2 and P3 correspond to the contact and start 
position of the key when the car is going to start. 
The meets relation keyword indicates that an 
observation (P3) starts at the same time that another 
observation (P2) ends. 

4.3 Capturing Experts Activity 

The design process of interpretation and task models 
is a complex task. In order to define the constraints, 
the relation between observations and the threshold 
values of the observations is unpredictable just by 
observing a student while interacting in the virtual 
environment. As the experts are the ones that have 
expertise in a particular domain, the objective of the 
tool is to capture their activity and to model the 
necessary models according to their activity. For 
example, if the objective is to define correct 
overtaking, the expert would have to define 
parameters as distance to the car ahead or how to 
make a lane change. For this purpose, the Expert’s 
tool offers a tool to capture experts and to monitor 
their activity. The capturing tool offers interfaces 
that can be distributed as graphs and tabs, where the 
signals of interest will be placed as best suits. 
Furthermore, the tool offers methods to record 
sessions, zoom and other features that provide visual 
benefits that will let the instructional designers 
analyze the observations that interest them. 

Once the models have been completed, one last 
step remains: their validation. In order to check 
whether the results of the generated models are the 
desired ones, the Expert’s tool uses the same visual 
resource of the monitoring tool. In this manner, the 
experts   will   be   able to see if the diagnosis results 

meet their criteria. 

5 GENERAL DISCUSSION AND 
CURRENT WORK 

The OLYMPUS platform has been successfully 
applied in an IILS for training professional truck 
drivers and in another IILS for the training of 
mentally challenged people in gardening tasks. Our 
IILS paradigm has been shown effective for the 
driving and gardening simulation domains where the 
unpredictability of the actions carried out by the 
students is high. Compared to an ITS authoring tool, 
our platform has proven itself capable of saving the 
majority of the software development effort. 
However, some domain specific software, as 
observations, need to be programmed for any 
domain. In order to justify this “problem”, some 
factors need to be kept in mind. Our platform is not 
designed for a specific domain, so we prioritised 
preserving the high flexibility of the platform to 
avoid eliminating all programming effort. The most 
domain specific software in this kind of simulation 
based scenarios forces us to program all the cases 
that can occur in the simulation context and to write 
the code for action/decision correctness evaluation. 
In our case, thanks to the Expert’s tool and ULISES, 
all this effort is saved. 

The constraint based approach used in this work 
has provided a good base for the definition of task 
models. Still, there have been some situations where 
we have missed other diagnosis techniques. For 
example, regarding to the truck simulation, in the 
case of crossroads the constraint based diagnosis 
technique was not sufficient. This is because when a 
crossroad is going to be exited, some previous steps 
need to be taken into account in order to diagnose 
correctly such a situation. Nevertheless, this is not 
an unsolvable case; our platform allows integrating 
multiple diagnose techniques at the same time. This 
hybrid diagnose technique can be really useful in 
various domains. In some domains, it is 
advantageous to use knowledge discovery 
techniques for automatically learning a partial 
problem space, but in other cases, as in the driving 
domain, it is not suitable. 

Although the scenario definition and the 
knowledge models definition take a relatively short 
time, the Virtual Environment Management Tool 
and the Expert’s tool need a learning process. Both 
tools have proven themselves easy to use, but due to 
the number of features they provide, it takes time 
learning to use the tools. In our opinion, it is worth 
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spending the time on the familiarisation process with 
the tools, due to the huge amount of programming 
time that is saved. 

At the moment, OLYMPUS has been tested in 
the truck driving domain and in the development of 
an IILS of gardening tasks for disabled people, so 
further evaluation of the platform is needed in order 
to test the limits of its generality. While for the 
driving domain just the constraint based diagnosis 
technique has been implemented, a research avenue 
would be to integrate other diagnosis techniques and 
in order to take advantage of the benefits of each 
technique. For beginners, our intention is to apply 
our platform in an ill-defined domain. Completing 
solutions with a constraint based solution in ill-
defined domains can be a tedious task, so our 
intention is to implement techniques similar to the 
ones used in model-tracing tutors in order to 
expedite even more the knowledge definition 
process for OLYMPUS. Following the same 
principle, we are working on automating the 
generation of interpretation models by using data 
mining methods. 
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