LARGE-SCALE LINKED DATA PROCESSING
Cloud Computing to the Rescue?

Michael Hausenblas1, Robert Grossman2, Andreas Harth3 and Philippe Cudré-Mauroux4
1Digital Enterprise Research Institute, NUI Galway, Galway, Ireland
2University of Chicago & Open Cloud Consortium, Chicago, U.S.A.
3Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe, Germany
4eXascale Infolab, Department of Informatics, University of Fribourg, Fribourg, Switzerland

Keywords: Linked Data.

Abstract: Processing large volumes of Linked Data requires sophisticated methods and tools. In the recent years we have mainly focused on systems based on relational databases and bespoke systems for Linked Data processing. Cloud computing offerings such as SimpleDB or BigQuery, and cloud-enabled NoSQL systems including Cassandra or CouchDB as well as frameworks such as Hadoop offer appealing alternatives along with great promises concerning performance, scalability and elasticity. In this paper we state a number of Linked Data-specific requirements and review existing cloud computing offerings as well as NoSQL systems that may be used in a cloud computing setup, in terms of their applicability and usefulness for processing datasets on a large-scale.

1 MOTIVATION

Although datasets are increasingly made available over the Web, it is still relatively rare that a dataset is linked to another one. An important trend over the past decade has been the growing awareness of the importance of “light-weight” approaches (Franklin et al., 2005) to integrate data. With these approaches the goal is to create loosely integrated “dataspaces” instead of completely integrated databases or distributed databases. Early approaches for lightweight data integration include (Grossman and Mazzucco, 2002), which advocated using Universal Keys—columns of data identified by a Uniform Resource Identifier (URI)—and Web protocols to link columns of data in one table to another table.

The most successful effort for light-weight Web data integration is based upon Tim Berners-Lee’s Linked Data principles (Berners-Lee, 2006): 1. Use URIs to identify data elements, 2. Using HTTP URIs allows looking up data elements identified through the URI, 3. When someone looks up a URI, provide useful information using standards, such as RDF, and 4. Include links to URIs in other datasets to enable the discovery of more data elements. In a nutshell, Linked Data is about applying the general architecture of the WWW to the task of sharing structured data on a global scale. Technically, Linked Data is about employing URIs, the Hyper-text Transfer Protocol (HTTP) and the Resource Description Framework (RDF) to publish and access structured data on the Web and to connect related data that is distributed across multiple data sources into a single global data space (Bizer et al., 2009), enabling a new class of applications (Hausenblas, 2009) where the data integration effort is shared between data publishers, third-party services and data consumers. Increasing numbers of data providers have begun to adopt Linked Data; the most prominent example of the Linked Data principles applied to open data sources is the Linked Open Data (LOD) cloud1 depicted in Figure 1.

It currently contains over 300 datasets that con-

1http://lod-cloud.net/
tribe around 35+ billion RDF triples and over 500 million cross-data set links (Bizer et al., 2010). In the visualisation of the LOD cloud in Figure 1, each node represents a distinct dataset and arcs indicate the existence of links between data elements in the two data sets.

Currently, there exist three options to process Linked Data in a central location:

- **Dedicated triple stores**\(^2\), such as 4store, AllegroGraph, BigData, BigOWLIM, Virtuoso or YARS2, as well as triple stores in the cloud like the Talis platform\(^3\) or Dydra\(^4\).
- **Relational databases** along with i) built-in RDF support, for example Oracle 11g\(^5\), or ii) RDB2RDF mappings, currently under W3C standardisation\(^6\).
- **NoSQL offerings**.

In this paper, we focus on the last category. We emphasise that this paper is concerned with the question to what extent NoSQL systems can be used to process Linked Data in a cloud computing setup; we consider the more general question of the appropriate data management infrastructure for distributed data as out of scope for this work. Sometimes the term cloud computing is used instead of NoSQL, since in practice, many cloud computing offerings (Armbrust et al., 2010) are NoSQL solutions and many NoSQL solutions are cloud-enabled.

A good starting point for Linked Data processing with the cloud is Arto Bendiken’s write-up on “How RDF Databases Differ from Other NoSQL Solutions”\(^7\) as well as Sandro Hawke’s “RDF meets NoSQL”\(^8\).

The remainder of the paper is structured as follows: in Section 2 we state requirements concerning Linked Data processing, then, in Section 3 we review systems in terms of their Linked Data processing capabilities and in Section 4 we compare the systems against the requirements stated earlier as well as conclude our survey and report on next steps.

2 Requirements

Based on the interactions with researchers and practitioners in the realm of various projects as well as drawing from own experience in the field of Linked Data processing in the past four years, we have identified a number of requirements in addition to the “hard” requirements performance, throughput, scalability and elasticity (Armbrust et al., 2010; Cooper et al., 2010; Dory et al., 2011):

URIs as Identifiers

Supporting URIs as primary keys. The first Linked Data principle (see above) suggests the use of URIs to name entities. The processing platforms must thus be able to use URIs as identifiers natively, or to map URIs to their own internal identifiers efficiently.

RDF Support

Importing and Exporting RDF datasets. The ability to import RDF data both in small chunks (for example, as RDF/XML files) and as large data dumps (for example, bulk loading of large N-Triples or N-Quads files) is essential, since in the LOD cloud data is typically exposed in an RDF serialisation.

Interface

The ability to serve information as HTTP, which is often used when browsing Linked Data sets and dereferencing URIs to get additional information about arbitrary data elements.

Partitioning

Support for logical partitions, for example via Named Graphs\(^9\) (also sometimes referred to as “context”) for managing the dataspace.

Update

Providing update facilities, for example via HTTP PUT/POST over an HTTP interface or via SPARQL update\(^10\) to perform arbitrary inserts and updates on data.

Indexing

Support for a modular indexing sub-system that allows to use specialised indexing services, such as text indexing via the Semantic Information Retrieval Engine (SIREn)\(^11\). The ability to offer those indexes is important in many LOD applications, for example to support full-text search interfaces and co-reference services such as SameAs.org\(^12\).

Inferencing

Support for reasoning, for example taking into account equivalence statements via owl:sameAs axioms as well as other logical constructs provided by RDFS and OWL (e.g., subclasses, transitive properties, etc.).

Rich Data Processing

Providing query facilities which can range, depending on the functionality and scalability requirements of the application, from simple Linked Data

\(^2\)http://www.w3.org/wiki/LargeTripleStores

\(^3\)http://www.talis.com/platform/

\(^4\)http://dydra.com/

\(^5\)http://www.oracle.com/technetwork/database/options/semantic-tech/

\(^6\)http://www.w3.org/2001/sw/rdf2rdf/

\(^7\)http://blog.datagraph.org/2010/04/rdf-nosql-diff

\(^8\)http://decentralyze.com/2010/03/09/rdf-meets-nosql/

\(^9\)http://www.w3.org/2011/rdf-wg/wiki/TF-Graphs

\(^10\)http://www.w3.org/TR/sparql11-update/

\(^11\)http://siren.sindice.com/

\(^12\)http://sameas.org/
look-ups over triple pattern look-ups to conjunctive queries and finally full-fledged general SPARQL query13 facilities (joins, aggregates, property paths, etc.) in order to perform rich, structured queries.

Efficient Graph Processing

Efficient support for path or transitive closure queries. As entities are interlinked on the LOD cloud, it is often necessary to follow series of links iteratively to resolve a given query. Such graph queries are very common in our context, however can be extremely expensive on some platforms, for example, on relational platforms where they often boil down to multi-joins.

In Section 4 we discuss the above listed, Linked Data-specific requirements along with the findings of this paper.

3 DATA PROCESSING SYSTEMS REVIEW

Following Cattel’s terminology (Cattell, 2011) we understand data stores to include cloud computing as well as NoSQL offerings. In the following, we review several data stores, in alphabetic order, in terms of their capabilities to perform large-scale processing of Linked Data processing perspective. A number of runner-ups are discussed as well in the following.

3.1 BigQuery

BigQuery14 is a cloud computing offering by Google, supposed to complement MapReduce jobs in terms of interactive query processing, introduced together with Google Storage and the Google Prediction API in early 2010. In late 2010 we looked into utilising BigQuery for Linked Data processing by developing the BigQuery Endpoint (Hausenblas, 2010a), an application deployed on Google App Engine that allows to load RDF/N-Triples content into Google Storage as well as exposing an endpoint allowing to query the data.

3.2 Cassandra

Apache Cassandra is a second-generation distributed database, bringing together Dynamo’s (DeCandia et al., 2007) fully distributed design and Bigtable’s column-family-based data model (Chang et al., 2006). There is a Cassandra storage adaptor for RDF.rb (Bendiken, 2010b) available, developed by Arto Bendiken and we developed CumulusRDF (Ladwig and Harth, 2010), which uses Apache Cassandra as a storage back-end.

Brisk15 is a Hadoop-style data processing framework built on top of the Apache Cassandra data store.

3.3 CouchDB

Apache CouchDB is a distributed, document-oriented database written in the Erlang; it can be queried and indexed in a MapReduce fashion. It manages the data as a collection of JSON documents and is used by Ubuntu, Couchbase and many more. Greg Lappen has provided a CouchDB storage adaptor for RDF.rb (Lappen, 2011). CouchDBs native language is JSON, hence it seems that efforts related like JavaScript Object Notation for Linked Data (JSON-LD)16 are a good fit for the data representation part. Only recently, a discussion took place on the CouchDB users list regarding “CouchDB vs. RDF databases” (Nunes, 2011).

3.4 Hadoop/Pig

Apache Hadoop is a software framework written in Java that supports reliable, scalable, distributed computing. Apache Pig17 is a high-level data analysis language on top of Hadoop’s MapReduce framework. The community discusses (Castagna, 2010) best practices for processing RDF data with MapReduce/Hadoop. Mika et al. experimented with a system using Hadoop and Pig for SPARQL query processing (Mika and Tummarello, 2008). Tanimura et al. (Tanimura et al., 2010) have reported on an extensions to the Pig data processing platform for scalable RDF data processing using Hadoop, somewhat related to what Sridhar et al. (Sridhar et al., 2009) have suggested in their RAPID system. Arto Bendiken has developed RDFgrid (Bendiken, 2010a), a framework for batch-processing RDF data with Hadoop, as well as Amazon’s Elastic Map Reduce18.

3.5 HBase

Apache HBase is a distributed, versioned, column-oriented store modelled after Google’s Bigtable, written in Java. A couple of institutions like Mendeley, Facebook and Adobe are using HBase. Gabriel Mateescu has provided an article (Mateescu, 2009) on how to process RDF data using HBase and Paolo Castagna has developed an experimental HBase-RDF implementation (Castagna, 2011). Sun and Jin (Sun and Jin, 2010) have proposed a scalable RDF store based on HBase.

13 http://www.w3.org/TR/sparql11-query/
14 https://code.google.com/apis/bigquery/
15 http://www.datastax.com/products/brisk
16 http://json-ld.org/
17 http://pig.apache.org/
18 http://aws.amazon.com/elasticmapreduce/
3.6 MongoDB

MongoDB is a schema-free, JSON-document-oriented database written in C++. It is used by an array of sites and providers including SourceForge, CERN, and Foursquare. Rob Vesse has reported (Vesse, 2010) on experiments he conducted with MongoDB as an RDF store and William Waite has provided a write-up on “Mongo as an RDF store” (Waite, 2010). Further, Antoine Imbert has developed MongoDB::RDF for Perl (Imbert, 2010).

3.7 Pregel

Pregel is a system for graph processing developed at Google (Malewicz et al., 2010). Similar to Hadoop, Pregel uses a set of nodes in a cluster to distribute work which is executed in parallel, with defined synchronization points to allow for exchange of intermediate results between the parallel processes. Unlike the MapReduce framework, for which an open source implementation is available in Apache Hadoop, Pregel is currently not available outside Google.

3.8 SimpleDB

Amazon SimpleDB is a distributed database/web-service written in Erlang. It is often used together with other Amazon Web Services (AWS) offerings such as the Simple Storage Service (S3), for example by Alexa, Livemocha or Netflix. Stein and Zacharias have summarised (Stein and Zacharias, 2010) their experiences with RDF processing in SimpleDB in their open source project Stratustore19.

3.9 Riak

Riak is a Dynamo-inspired key-value store with a distributed database network platform and built-in MapReduce support. It supports high availability and is used in production by institutions such as Comcast, Wikia or Opscode. Andrew McKnight has shared (McKnight, 2010) his thoughts concerning SPARQL query processing on the Riak platform and we had a look into storing an RDF graph in Riak using HTTP Link headers (Hausenblas, 2010b) allowing for graph traversing.

3.10 Other Systems

There are a number of systems that would be capable of processing Linked Data in the cloud, however we are not aware of a cloud deployment or the features are not yet available, publically; for sake of completeness, we list these systems in the following:

19http://code.google.com/p/stratustore/

3.10.1 Distributed Graph Databases

- **Neo4j** is a graph database implemented in Java that has built-in RDF processing support, including indexing. Further, *Gremlin* is a graph traversal language that works over graph databases implementing the Blueprints interface20, such as Neo4j or OrientDB21 and *Graphbase*22 is an implementation of the Blueprints interface on top of Hbase.

- Microsoft’s *Trinity* (Microsoft, 2011) is a graph database over distributed memory cloud, providing computations on large scale graphs; it can reportedly be deployed on hundreds of machines. Further, Microsoft is building a graph library23 on top of their cloud computing framework Orleans that targets hosting very large graphs with billions of nodes and edges.

- *GoldenOrb*24 is a cloud-based open source project for massive-scale graph analysis, building upon Hadoop, modelled after Google’s Pregel architecture.

3.10.2 Hybrid Systems

- **MonetDB**25 has support for RDF processing in the queue.

- **Sindice** (Oren et al., 2008), a semantic indexer, uses Hadoop and Lucence/SIREn to processes billions of triples.

- The *Large Knowledge Collider* project is working on a Web-scale Parallel Inference Engine26, a MapReduce-based, distributed RDFS/OWL inference engine.

- Hizalev reported (Hizalev, 2011) on a *Redis-based* triple database.

- Seaborne reported (Seaborne, 2009) running TDB, a native persistent storage layer for the RDF processing framework Jena, on a cloud storage system.

- **SARQ**27 is an open source text indexing system for SPARQL using a remote Solr server.

4 DISCUSSION

Table 1 lists our Linked Data-specific requirements introduced earlier against the identified systems from

20http://tinkerpop.com/
21http://www.orienttechnologies.com/orient-db
22https://github.com/dgreco/graphbase
24http://www.goldenorbos.org/
25http://www.monetdb.org/Home
26http://www.few.vu.nl/~jui200/webpie.html
27https://github.com/castagna/SARQ
Table 1: Coverage of Linked Data processing capabilities.

<table>
<thead>
<tr>
<th>System</th>
<th>Backend</th>
<th>Identifiers</th>
<th>Interface</th>
<th>Partition</th>
<th>Update</th>
<th>Index</th>
<th>Query</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Hausenblas, 2010a)</td>
<td>BigQuery</td>
<td>URIs</td>
<td>Linked Data</td>
<td>quads</td>
<td>+</td>
<td>fixed</td>
<td>custom</td>
<td>-</td>
</tr>
<tr>
<td>(Ladwig and Harth, 2010)</td>
<td>Cassandra</td>
<td>URIs</td>
<td>Linked Data</td>
<td>quads</td>
<td>+</td>
<td>multiple</td>
<td>Linked Data lookups</td>
<td>-</td>
</tr>
<tr>
<td>(Tanimura et al., 2010)</td>
<td>Pig/Hadoop</td>
<td>URIs</td>
<td>custom</td>
<td>triples</td>
<td>-</td>
<td>fixed</td>
<td>SPARQL rules</td>
<td>-</td>
</tr>
<tr>
<td>(Sridhar et al., 2009)</td>
<td>Pig/Hadoop</td>
<td>URIs</td>
<td>custom</td>
<td>triples</td>
<td>-</td>
<td>fixed</td>
<td>RAPID</td>
<td>-</td>
</tr>
<tr>
<td>(Mika and Tummarello, 2008)</td>
<td>Pig/Hadoop</td>
<td>URIs</td>
<td>custom</td>
<td>triples</td>
<td>-</td>
<td>fixed</td>
<td>SPARQL forward-chaining rules</td>
<td>-</td>
</tr>
<tr>
<td>(Huang et al., 2011)</td>
<td>RDF-3X/Hadoop</td>
<td>URIs</td>
<td>custom</td>
<td>triples</td>
<td>-</td>
<td>fixed</td>
<td>SPARQL</td>
<td>-</td>
</tr>
<tr>
<td>(Sun and Jin, 2010)</td>
<td>HBase</td>
<td>URIs</td>
<td>custom</td>
<td>triples</td>
<td>-</td>
<td>fixed</td>
<td>SPARQL</td>
<td>-</td>
</tr>
<tr>
<td>(Vesse, 2010)</td>
<td>MongoDB</td>
<td>URIs</td>
<td>custom</td>
<td>triples</td>
<td>-</td>
<td>multiple</td>
<td>SPARQL</td>
<td>-</td>
</tr>
<tr>
<td>(Stein and Zacharias, 2010)</td>
<td>SimpleDB</td>
<td>URIs</td>
<td>custom</td>
<td>triples</td>
<td>+</td>
<td>multiple</td>
<td>SPARQL</td>
<td>-</td>
</tr>
<tr>
<td>(Hausenblas, 2010b)</td>
<td>Riak</td>
<td>URIs</td>
<td>HTTP</td>
<td>triples</td>
<td>-</td>
<td>fixed</td>
<td>custom</td>
<td>-</td>
</tr>
</tbody>
</table>

Sec. 3. The practical applicability of the systems surveyed varies: some systems represent first steps in mapping the RDF triple structure into a K/V-based storage layout, while others focus on optimising join processing capabilities. Similarly, while some systems provide defined interfaces for insert, update and query, other systems are still in the prototype status which custom interfaces, often resembling those of the underlying processing system.

As becomes apparent from the plethora of systems surveyed and listed in Table 1, the burgeoning field of cloud-based Linked Data management is still fractured. Community-built benchmarks can serve as catalysts and help to unify a field. While the Wisconsin Benchmark (DeWitt, 1993) can be considered as the prototypical benchmark for parallel databases, it is rather outdated. (Pavlo et al., 2009) compared MapReduce with parallel databases, providing useful insights and guidance on what are important metrics. Most relevantly, Cooper et. al. (Cooper et al., 2010) introduced the Yahoo! Cloud Serving Benchmark (YCSB) and only recently Dory et. al. (Dory et al., 2011) reported on elasticity and scalability measurements of cloud databases.

We currently establish a benchmark for Linked Data processing with cloud computing offerings\(^{28}\) as we believe that a common, benchmark could help to further identify and organise requirements, and in the process unite a fractured field towards a common goal.

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Sto-

\(^{28}\)https://github.com/mhausenblas/nosql4lod

Mateescu, G. (2009). Finding the way through the semantic Web with HBase. developerWorks, IBM.

