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Abstract: In level set topology optimization the boundary of the structure is defined by level set function values stored 
at the nodes of a regular gird of simple bilinear elements. By changing the level set function values 
according to optimization sensitivities the boundary of the structure is moved to create an optimal structure. 
However it is possible for the boundary to cut an element more than once; violating the linear element 
assumptions resulting in insufficient nodal information for the optimization sensitivity calculations. To 
resolve this the local boundary of the structure is moved so that each element is only cut once. In 2D where 
a square element mesh is used an element cut twice times is altered by moving one of the boundaries within 
the element to intercept the node closest to it removing the extra cut from the element. In 3D where a voxel 
mesh is used the process of moving the boundary within an element is more complicated due to the greater 
number of boundary cuts possible and the effect that it can have on neighbouring elements. An algorithm is 
developed which allows the boundary within a 3D element to be moved with these considerations taken into 
account. 

1 INTRODUCTION 

Topology optimization is considered to have enabled 
a step-change in structural design as it is the most 
generalized form of structural optimization 
producing a solution least dependent on the initial 
design. It usually starts with a continuum of the 
available design space and finds the optimal 
topology as well as shape and size of the structural 
members within it. One parameterization that is 
receiving much interest in recent years is the level 
set method due to its flexibility and stability in 
handling topological changes (Allaire et al., 2004). 

Topology optimization is an iterative process 
where a finite element analysis is applied to carry 
out the sensitivity analysis. The local sensitivities 
are then used to update the level set function values, 
thus modifying the structural boundaries to create an 
improved structural geometry. To avoid the need for 
a new finite element mesh every iteration the 
geometry is usually projected onto a regular mesh of 
elements (Allaire et al., 2004). Since the finite 
element analysis is the computational bottleneck of 
optimisation simple 1st order bilinear elements (4 
node rectangular elements in 2D and 8 node brick 
elements in 3D) are most commonly used in 

topology optimisation (Dunning and Kim, 2011). 
For convenience finite element nodes are used to 
define the level set function.  As the geometric 
boundary defined by the level set function does not 
always conform to the regular element edges, there 
is a group of boundary elements which are cut by the 
boundary. A variety of methods have been used to 
estimate the material properties of these elements, 
from simple element volume ratio based calculations 
(Allaire et al., 2004) (Jang and Kim, 2005) (Wang et 
al., 2007) to local remeshing approaches (Wang and 
Wang, 2006). 

A popular approach is to compute local 
sensitivities per element for the level set function 
update (Allaire et al., 2004) (Jang and Kim, 2005). 
This means the elemental properties are 
homogenised and the nodal properties are 
approximately computed by interpolating the 
elemental properties, instead of using the more 
accurate nodal values from finite element analysis. 
Nodal sensitivities can be used directly to update the 
level set function (Dunning and Kim, 2011). 
However this means an element can be cut by two 
boundaries. In these cases, there are insufficient 
nodes for the subsequent finite element analysis to 
describe the linear displacement field of the element, 
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thus sensitivities cannot be computed for the next 
iteration.  

Several methods have been devised to resolve 
the problem of elements containing multiple 
boundaries. The simplest is to declare cut elements 
to be entirely outside the structure (Challis, 2010), 
however this is a significant simplification and 
increases the mesh density required for accurate 
optimization. Researchers have employed the 
extended finite element method (X-FEM). This has 
been developed primarily for describing fractures 
and multi-scale analysis where the elemental 
stiffness matrix is “enriched” to describe the local 
material distribution. However, higher order 
elements must be used at the geometric boundary to 
accomplish this (Belytschko et al., 2003) (Wei et al., 
2010). The local mesh refinement method splits each 
cut element into multiple elements which are fitted 
to the geometric boundary (Wang and Wang, 2006). 
However both these methods require an increase of 
the degrees of freedom with considerable additional 
computation. This increases the computational cost 
of the finite element analysis which is already a 
processing bottle neck.  

This paper proposes an alternative method to 
resolve the problem of elements containing multiple 
cuts without increasing the degrees of freedom in the 
finite element model. The proposed approach is to 
alter the local boundary geometry so that no 
elements contain multiple boundaries allowing first 
order bilinear elements to be used on the geometric 
boundary. This allows the use of accurate nodal 
properties to compute the sensitivities and avoids the 
unnecessary additional computational complexity. 
The numerical results show that the boundary “fix” 
proposed in this paper is sufficiently minimal and 
the algorithm consistently finds the optimum 
solutions.  

2 BOUNDARY MODIFICATION 
IN 2D 

2.1 Problem Statement 

The level set topology optimization procedure 
moves the structural boundary by cutting through 
elements. As a result it is possible for multiple 
boundaries to simultaneous cut through an element. 
When 1st order elements are used, there is 
insufficient nodal information for sensitivity 
computation in elements containing multiple 
boundary cuts and thus, they are considered 
“illegal”.  In   order   to   proceed  with  the topology 

optimization procedure any illegal elements must be 
avoided. 

In 2D this occurs when an element is cut twice, 
usually due to a narrow strut or a small hole in the 
structure. An example of a legal and illegal element 
can be seen in Figures 1 and 2, respectively. 

 
Figure 1: Legal 2D Element. The structure is indicated by 
the shaded region. 

 
Figure 2: Illegal 2D Element. 

2.2 Treatment for Illegal Elements  

A simple and computationally efficient method is to 
move the boundary such that all elements contain a 
maximum of one cut. To identify the illegal 
elements we examine the status of the element 
nodes. 

The implicit level set function representation 
usually has two node statuses, a node is inside the 
structure (an I-node) if the level set function is 
positive and is outside the structure (an O-node) if 
the level set function is negative. An element is cut 
by the boundary if it is made of both I-nodes and O-
nodes. Similarly an edge of the element is cut if it 
has an I-node on one end and an O-node on the 
other. In 2D an element is considered illegal if an 
element contains two I-nodes and O-nodes in 
opposite corners as seen in Figure 2. In this case the 
element contains more than two cut edges, this 
identifies an illegal element in 2D.  

We introduce a new node status, a touching node 
(a T-node) that is considered to be exactly on the 
boundary of the structure. A T-node can be either 
inside or outside depending on the status of the 
nodes it shares an edge with. If a T-node shares an 
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edge with an I-node the edge is inside the structure, 
if it shares an edge with an O-node the edge is 
outside the structure. Hence, a T-node is inside the 
structure if both edges it is connected to are inside 
and outside if both edges it is joined to are outside. 
If one edge is outside the structure and the other 
inside the structure the boundary intercepts the T-
node.  

 
 

 
Figure 3: Examples of boundary updates to avoid illegal 
elements using T-nodes. The illegal elements on the left 
and modified legal elements on the right. 

By changing an I-node or O-node in an illegal 
element to a T-node the boundary immediately 
adjacent to the T-node is moved as shown in Figure 
3. This moves the boundary outside the element so 
that it no longer cuts the neighbouring edges and 
only one boundary remains, making the element 
legal. To minimize the modification, the node that is 
the shortest distance away from the boundary, as 
defined by its level set function value, is selected to 
be changed to a T-node.  

This boundary modification algorithm is applied 
every iteration after an optimization step and Figure 
4 shows an example of the effect it can have on the 
topological solution. In order to minimize the effects 
of this algorithm on the overall optimization 
procedure, it is assumed that the mesh density is of a 
reasonable density.  

3 BOUNDARY MODIFICATION 
IN 3D 

The additional dimension in 3D level set topology 
optimization significantly increases the complexity 
of the necessary algorithm both to identify and 
eliminate the illegal elements. To achieve robust 
treatment   of   illegal  3D elements a more advanced 

 

 
Figure 4: An example of how treating an illegal element 
affects the global structure. Nodes A and B are changed to 
T-nodes. The mesh density should be high enough for 
these features to be considered to be minimal. 

correction method is formulated as discussed in the 
following. 

3.1 Identification of Illegal 3D 
Elements 

A 3D element is considered illegal if a boundary of 
the structure cuts the element in a manner that 
cannot be represented by a single linear cut. Again 
this occurs when the boundary of the structure cuts 
an element more than once. Figure 5 shows 
examples of legally cut 3D elements and Figure 6 
features examples of illegal elements showing that in 
3D between two and four separate cuts by the 
boundary are possible. This complicates the 
detection of illegal elements as there is not a clear 
relationship between the number of cut edges and 
the illegal elements. While the maximum number of 
cut edges in a legal element is 6 (Figure 5), the same 
number of cuts can produce an illegal element 
(Figure 6). Introducing T-nodes does not lead to a 
well-defined relationship between the number of cut 
edges and illegal elements, as shown in Figure 7.  
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Figure 5: Examples of legally cut 3D elements. 

 
Figure 6: Example of illegal 3D elements that have been 
cut more than once. It is possible for an element to be cut 
four times. 

 
Figure 7: Example of 3D elements containing T-nodes. 
Element A is legal. Elements B and C illegal are as the T-
nodes are intercepted by the boundary within the element 
in a manner that cuts the volume of material in two. 

Another approach that could be used to identify 
an illegal element would be to check that all the I-
nodes and O-nodes are linked by edges that are not 
cut. This would suggest a single section of the 
element containing all the I- and O-nodes and hence 
a single linear cut. However, it is unclear how to 
classify T-nodes; examples of this are shown in 
Figure 7. In addition, Figure 8 shows an illegal 
element with four I-nodes and O-nodes linked by 
uncut edges. We nickname this case the “Impossible 
4” because it is impossible to form a legal cut that 
satisfies these node statuses, to do this two 
overlapping cuts are required.   

We therefore, propose a binary index method. 
This method has been used to identify the type of 
boundary cut through an element for surface 
reconstruction (Bourke, 1994) and we develop this 
concept to identify illegal elements. The method 
assigns each node in the element a binary value 
based on its status. All O-nodes are assigned 0. Node 
0 in Figure 9 is assigned 1 if it is an I-node and 256 
if it is a T-node, node 1 is given 2 if it is an I-node 
and 512 if it is a T-node and so on with the values 
doubling for each node as a binary number. The full 
list of the values related to the node status is shown 

 
Figure 8: Example of the “Impossible 4”. All the I-nodes 
are connected to each other by uncut edges but two 
boundaries meet inside the element, making it illegal.  

in Table 1 and the local position of each node is 
shown in Figure 9.  

 
Figure 9: Local mode numbering of an element. 

Table 1: Value assigned to each of the local nodes based 
off the node status. 

Node I-node T-node O-node 
0 1 256 0 
1 2 512 0 
2 4 1024 0 
3 8 2048 0 
4 16 4096 0 
5 32 8192 0 
6 64 16384 0 
7 128 32768 0 

Summing up the value of each node produces a 
number that is unique for each possible element cut. 
The sum of the index value for each element 
therefore, is used to identify the legal elements. 
There  are  2554  legal  cuts  whose  values  are  all 
stored  in   the  index.  Examples  of  this  method  of 
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Figure 10: Example of the binary point method. Element 
A is legal; 25 is in the legal element index. Element B is 
illegal; 89 is not in the legal element index. 

identification are shown in Figure 10 applied to a 
legal element (A) and an illegal element (B). 

As well as having the advantage of being simple 
the method is also computationally inexpensive. 
This is an important characteristic as the binary 
index method is used to check element legality at 
every iteration of optimization.  

3.2 Further Issues in 3D Elements  

After an optimization step to update the structural 
boundaries and the illegal elements are identified 
using the binary index method the boundaries must 
be modified to eliminate the illegal elements. This 
step moves the boundaries in illegal elements such 
that there is only one surface cut through the 
element. This is implemented by changing the status 
of nodes to T-nodes, which follow the same rules in 
3D as in 2D. However there are several cases that 
are unique to 3D geometry. 

Firstly in 2D all the illegal elements could be 
fixed by changing one node to a T-node. However 

this is not the case in 3D. Figure 11 shows a case 
where two nodes need to be changed to T-nodes to 
remove one of the cuts. Investigation has shown that 
the maximum number of node changes required to 
correct any illegal element cut is two, including an 
element cut four times and the Impossible 4 as 
shown in Figure 12.  

 
Figure 11: Cases where changing one node to a T-node 
does not make the element legal. Two neighbouring nodes 
must be changed.  

The second issue is that unlike 2D modelling, 
changing the node closest to the boundary to a T-
node does not guarantee the smallest shift in the 
boundary. In Figure 13 the change that will produce 
a legal element with the smallest movement of the 
boundary is to change node A to a T-node and 
remove the pyramid of material around it. However 
changing the node closest to the boundary would 
change node B which would not make the element 
legal. A more robust method of node selection is 
required in 3D.  

Finally changing a node to a T-node can result in 
an illegal neighbouring element that shares the node. 
In Figure 14 changing node X to a T-node makes 
element A legal but it causes the neighbouring 
element B to become illegal. To prevent this it is 
necessary to check that changing a node to a T-node 
does not make neighbouring elements illegal. 

 
Figure 12: Illustration of how only one or two T-nodes are 
required to eliminate an illegal cut even when the element 
is cut four times as in case A. One node is required to be 
changed to a T-node make an Impossible 4 legal in case B. 
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Figure 13: In this case changing the node closest the 
boundary (node B) to a T-node does not make the element 
legal. The least significant change to make the element 
legal is to change node A to a T-node. 

3.3 Fractured Elements 

Due to the need to maintain legality in neighbouring 
elements during the boundary modification 
procedure in 3D it is possible that a simple change 
of nodes of an illegal element to T-nodes is not 
sufficient in eliminating all illegal elements. This 
problem occurs in regions where there are multiple 
structural boundaries close together. As a result 
moving a boundary cut out of one element results in 
an extra boundary cut appearing in neighbouring 
elements. This suggests that the local structure is 
porous, formed from struts that are narrower than an 
element and/or islands of disconnected material. 
Finite element analysis results in porous local 
structures described by just a few disconnected 
elements have poor accuracy and such structures are 
usually a product of numerical instability such as 
chequerboard patterns well-known in topology 
optimization. We therefore, consider elements in 
such local porous regions to be “fractured” where all 
nodes in the elements are changed to T-nodes. With 
no I-nodes left a fractured element is considered to 
be outside the structure and hence makes no 
contribution to its stiffness.  

It is worth noting that fractured elements are not 
a common occurrence in topology optimization; 
none occur during either of the example models 
shown in Figure 16 or Figure 18. If a model 
produces many fractured elements, it means the 
mesh is too coarse to further optimize the structure 
and the mesh should be refined. 

3.4 Boundary Update Algorithm for 3D 
Level Set Topology Optimization 

Having considered all cases for identifying and 
eliminating illegal elements in 3D the following 
algorithm is formulated for level set topology 
optimization. This algorithm follows the usual level 
set topology optimization boundary update to 
eliminate illegal elements. A flow chart of this 
method can be seen in Figure 15. 

The first step is to identify the elements that the 

 
Figure 14: An example when making element A legal by 
changing node X into a T-node consequently makes 
element B illegal.  

boundary passes through by examining the node 
statuses of each element. If an element contains at 
least one I-node and one O-node then it is cut by a 
boundary; if it has no I-nodes it is entirely outside 
the structure; otherwise it is entirely inside the 
structure. If an element is cut by a boundary its 
legality is checked using the binary indexing method 
described in Section 3.1, if the element is illegal then 
it is added to the correction set. Only once the 
legality of all the elements has been established does 
the correction procedure begin. 

For each of the elements in the correction set, the 
algorithm searches for the correction that would 
make the elements legal and minimize the necessary 
boundary modification. The algorithm begins by 
changing the status of one node only. Each node in 
turn is temporarily changed to a T-node and the 
binary index method is used to check if the change 
has made the element legal. If so the legality of the 
neighbouring elements that share the node and are 
currently legal is checked to make sure the change 
has not made any of these elements illegal. If all the 
legal neighbouring elements remain legal then this 
modification is considered a potential solution. If 
there   is    more   than   one   possible   solution,  the 
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Figure 15: Flow chart for boundary correction algorithm. 

one with the smallest level set function value (thus 
closest to the boundary) is selected and turned into a 
T-node to make the minimal change to the optimum 
boundary. 

If there are no possible solutions from simply 
changing a single node to a T-node, a pair of nodes 
is temporarily changed to T-nodes to find a two-
node solution. Again, of all the possible two-node 
solutions, the lowest combined level set function 

value is selected to be turned into T-nodes to make 
the element legal.  

In the rare situation that no suitable correction is 
found changing either one or two nodes to T-nodes 
then the element is considered to be fractured as 
described in Section 3.3. All its nodes are turned into 
T-nodes removing it from the structure. All the 
neighbouring elements are then examined, to 
investigate if this modification made the 
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neighbouring elements illegal. All the new illegal 
elements are then added to the correction set. 

Once all illegal elements are considered and the 
correction set is empty, the new solution is checked 
for convergence and the optimization procedure 
continues.  

An example of the effect this algorithm can have 
on the topological solution is shown in Figure 16. As 
in 2D modelling a reasonable mesh density is 
required to minimize the effect of this process on the 
optimal boundary. 

4 NUMERICAL RESULTS 

The boundary update algorithm described in Section 
3 ensures that there is always sufficient nodal 
information to perform sensitivity computation 
allowing the optimization process to reliably 
proceed. This section illustrates the numerical 
examples of the topology optimization. 

Figure 17 shows level set topology optimization 
of a 2D cantilever beam with aspect ratio 2. The 
structure displays features that would be expected in 
the optimum solution which is well-known (Michell, 
1904). The thick beam is positioned at the top and 
bottom of the design space to resist the bending of 
the structure. In the centre where less bending is 
strain is experienced smaller diagonal struts are 
formed to provide support for the exterior structure. 

A similar cantilever beam of aspect ratio 2 is 
created in 3D on a course 61x30x10 mesh with a 
central load downwards, as shown in Figure 18. 
Figure 18 B to D shows how the structure develops 
during the optimization procedure. Starting from 
fully-populated continuum (B) the boundary moves 
towards the optimum topology by removing material 
in the centre of the beam first; leaving more material 
at the top and bottom of the structure to maintain a 
higher second moment of area and reduce bending. 
The converged topology adopts similar features to 
the 2D solution with thick beams around the outside 
of the structure supported in the centre by a thinner 
“web” made of multiple struts, similar to an I-beam.  

5 CONCLUSIONS 

During level set topology optimization it is possible 
for the boundary of the structure to move in a 
manner that cuts an element more than once. This 
violates the modelling assumptions for 1st order 
bilinear elements which cannot accurately represent 

 
Figure 16: Example of how the treatment of illegal 
elements affects the global structure. A shows the 
structure before the element correction process. Arrow X 
points to a sharp indent in the structure which cuts two 
elements illegally. The correction procedure changes 4 
nodes attached to these elements to T-nodes to make both 
elements legal. The movement of the boundary flattens the 
indent as can be seen in B; however this shift is small and 
does not have a significant effect on the global topological 
solution. (Note: the triangular surface mesh in these 
images represents the mesh for visualization and is not 
used for analysis or optimization. It is shown to highlight 
the structural details.) 
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Figure 17: An Example of level set topology optimization applied to a simple cantilever beam in 2D. The modelled 
situation is show in A with the development of the optimal structure is shown in images B to D. 

 
Figure 18: Example of 3D level set topology optimization applied to a simple cantilever beam on a 61x30x10 mesh. A 
shows the modelling situation and B to F show stages of the structure development from the initial continuum structure to 
the final optimal structure. 

two boundaries in one element. Such element cuts 
are considered illegal. This paper presented a 
method to make illegal element cuts legal during 
level set topology optimization.  

A binary index method is used to efficiently and 
reliably detect illegal elements. The algorithm then 
identifies the extra boundary, or boundaries, closest 
to the edge of the elements and moves it outside the 
element to make the element legal. The possibility of 
this movement making a neighbouring element 
illegal is considered by the algorithm and prevented. 
Even with a relatively coarse mesh density this 

method does not have a significant effect on the 
global solution and produces the optimum topology.  

The implementation of this method allows the 
use of a regular grid of first order bilinear elements 
on the geometric boundary of nodal sensitivity based 
level set topology optimization. The successful 
optimum solutions in 2D and 3D numerical 
examples demonstrate the methods reliability and 
suitability for level set topology optimization.  

Possible extensions include the interface between 
two materials in composite structures and contact 
modelling   between   two   surfaces.   This   will  be 
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investigated in future works. 
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