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Abstract: A comparison of stereo correspondence algorithms can be conducted by a quantitative evaluation of 
disparity maps. Among the existing evaluation methodologies, the Middlebury’s methodology is commonly 
used. However, the Middlebury’s methodology has shortcomings in the evaluation model and the error 
measure. These shortcomings may bias the evaluation results, and make a fair judgment about algorithms 
accuracy difficult. An alternative, the A∗	methodology is based on a multiobjective optimisation model that 
only provides a subset of algorithms with comparable accuracy. In this paper, a quantitative evaluation of 
disparity maps is proposed. It performs an exhaustive assessment of the entire set of algorithms. As 
innovative aspect, evaluation results are shown and analysed as disjoint groups of stereo correspondence 
algorithms with comparable accuracy. This innovation is obtained by a partitioning and grouping algorithm. 
On the other hand, the used error measure offers advantages over the error measure used in the 
Middlebury’s methodology. The experimental validation is based on the Middlebury’s test-bed and 
algorithms repository. The obtained results show seven groups with different accuracies. Moreover, the top-
ranked stereo correspondence algorithms by the Middlebury’s methodology are not necessarily the most 
accurate in the proposed methodology. 

1 INTRODUCTION 

The research and development process on stereo 
correspondence algorithms requires of an objective 
assessment of results. In fact, an evaluation 
methodology should be followed in order to perform 
a fair comparison among different algorithms 
(Szeliski, 1999), tune the parameters of an algorithm 
within a particular context (Kelly et al., 2007), 
identify algorithm’s advantages and drawbacks 
(Kostlivá et al., 2007), determine the impact of 
specific procedures and components (Hirschmüller 
and Scharstein, 2009; Bleyer and Chambon, 2010), 
support decision for researchers and practitioners 
(Cabezas and Trujillo, 2011), and, in general, to 
measure the progress on the field (Szeliski and 
Zabih, 2000). Among the quantitative evaluation 
methodologies available in the literature, the 
Middlebury’s methodology (Scharstein and Szeliski, 
2002; 2011) is widely used. This methodology is 
based on a test-bed composed by four images of 
different geometric characteristics. Three different 

error criteria are defined in relation to challenging 
image regions. The percentage of Bad Matched 
Pixels (BMP) is used as error measure. It is gathered 
according to error criteria by comparing the 
estimated disparity maps against ground-truth data, 
using an error threshold. A rank is assigned to 
algorithms under evaluation, according to error 
scores and error criteria. A final ranking is computed 
by averaging previously established ranks. In this 
way, the evaluation model of Middlebury’s 
methodology relates ranks to weights. The model 
assumes that the algorithm of minimum weight has 
the best accuracy. However, the Middlebury’s 
methodology has some shortcomings, such as the 
use of the BMP measure along with the evaluation 
model. The BMP measure is a binary function using 
a threshold, where the treshold selection may impact 
on the evaluation results. Once the error in 
estimation exceeds the threshold, the error 
magnitude is ignored. Moreover, the same 
magnitude errors may cause depth reconstruction 
errors of different magnitude (Van der Mark and 
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Gavrila, 2006; Gallup et al., 2008; Cabezas et al., 
2011). Nevertheless, the BMP measure does not 
consider this fact. Consequently, the BMP measure 
may not be suited to properly evaluate the accuracy 
of a disparity map (Cabezas et al., 2011). In regard 
to the evaluation model, two or more algorithms 
may have the same error score using an error 
criterion. In this case, the rank assigned to these 
algorithms became arbitrary. This fact may impact 
on the final ranking. Adittionally, different 
algorithms may have the same average ranking. 
Nevertheless, it does not mean that these algorithms 
perform similarly on test-bed images. Moreover, 
althought it is possible to determine a set of top 
ranking algorithms based on the Middlebury’s 
methodology, the cardinality of this set is a free 
parameter. This fact may lead to discrepancies or 
controversy among researchers about the state-of-
the-art on the field. Thus, the above shortcommings 
may introduce bias to evaluation results, as well as 
they may impact the interpretation on the state-of-
the-art of stereo correspondence algorithms in the 
research comunity. 

In the 	ۯ∗	evaluation model proposed in (Cabezas 
and Trujillo, 2011), the composition of the most 
accurate set of algorithms is determined withouth 
ambiguity. However, this evaluation model fails in 
considering an evaluation scenario on which a user 
may be interested in an exhaustive evlauation of the 
entire set of algorithms, and not only in determining 
which algorithms are the most acccurate overall.  

In this paper, an extension to the 	ۯ∗ evaluation 
model presented in (Cabezas and Trujillo, 2011) is 
introduced. The extension is based on iteratively 
evaluating the entire set of stereo correspondence 
algorithms by computing groups of algorithms with 
comparable accuracy. The composition of each 
group is unambiguously determined based on error 
scores and the Pareto Dominance relation (Van 
Veldhuizen et al., 2003). Additionally, the error 
measure proposed in (Cabezas et al., 2011) is used in 
the presented evaluation. The obtained evaluation 
results show that the extended methodology, in 
conjuction with the used measure, allow a better 
understanding and analysis of the accuracy of stereo 
correspondence algorithms. The imagery test-bed, 
and the error criteria of Middlebury’s methodology, 
as well as a set of 112 stereo correspondence 
algorithms (Scharstein and Szeliski, 2011), were 
used in the experimental validation. As evaluation 
results, seven different groups of algorithms were 
obtained. Each group is associated to a different 
accuracy. In particular, the most acurate group is 
composed by nine algorithms. Among these 

algorithms, two of them apply local optimisation 
strategies, whilst the seven remains apply global 
optimisation strategies. Most of these global 
algorithms are based on Graph Cuts (GC) 
(Kolmogorov and Zabih, 2001).  

2 RELATED WORK 

A quantitative comparison of stereo correspondence 
algorithms is presented in (Szeliski and Zabih, 
2000). The evaluation considers both, the 
comparison against ground-truth data, using the 
BMP measure, and the prediction-error approach of 
(Szeliski, 1999). In this work, these two approaches 
were applied separately over data, and it is 
concluded that consistent results were obtained 
between the two approaches, whilst certain types of 
errors are emphasised by each approach. 

Accuracy and density are considered as the two 
main properties of a disparity map in (Kostlivá et al., 
2007). Two errors measures are defined based on 
these properties: the error rate (i.e. mismatches and 
false positives) and the sparsity rate (i.e. false 
negatives). A Receiver Operating Characteristics 
(ROC) analysis is adopted upon the defined errors. 
An is better relation is defined based on the ROC 
curve. A particular algorithm’s parameter setting is 
better than another if it produces a more accurate 
and denser result. Nevertheless, the ROC curve can 
be computed using only one set of stereo images. 
Thus, the evaluation turns probabilistic when the 
imagery test-bed involves more stereo images. 
Additionally, the evaluation model of this 
methodology requires a weight setting in relation to 
the importance of each stereo image considered in 
the test-bed. Moreover, error rate is computed using 
a threshold. Thus, it may have the same drawbacks 
than the BMP measure. 

A cluster ranking evaluation method is proposed 
in (Neilson and Yang, 2008). It consists on using 
statistical inference techniques to rank the accuracy 
of stereo correspondence algorithms over a single 
stereo image, and the posterior combination of 
rankings from multiple stereo images, to obtain a 
final ranking. This work is focused on comparing 
matching costs using a hierarchical Belief 
Propagation (BP) algorithm (Felzenszwalb and 
Huttenlocher, 2004). Additionally, different 
significance tests should be applied when the test-
bed involves several stereo images. Moreover, a 
greedy clustering algorithm is used. The clustering 
algorithm computes iteratively the final ranks as the 
average of several ranks in a partition. In this way, 
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the assigned rank may be a real number which lacks 
of a concise interpretation. In this work, the BMP 
measure is used in order to determine estimation 
errors.  

Stereo correspondence algorithms of real-time 
performance and limited requirements in terms of 
memory are evaluated in (Tombari et al., 2010). The 
evaluation involves both: accuracy and 
computational efficiency. The complement of the 
BMP measure is used as the accuracy measure, 
whilst the amount of estimated disparities per second 
is used for measuring computational efficiency. 
However, the fact that estimation accuracy and 
computational efficiency are opposite goals is not 
taken into account. Moreover, the evaluation model 
of Middlebury’s methodology is used in this work. 
Thus, the averaged rankings values may lack of a 
concise meaning. 

The Middlebury’s methodology was introduced 
in (Scharstein and Szeliski, 2002). Additionally, a 
website with an online ranking is kept updated in 
(Scharstein and Szeliski, 2011). This evaluation 
methodology uses a ground-truth imagery test-bed 
of four stereo images: Tsukuba, Venus, Teddy and 
Cones, (Scharstein and Szeliski, 2003). Three error 
criteria are defined in relation to image regions: 
nonocc, all and disc. The nonocc criterion is 
associated to image points in non-occluded regions. 
The all criterion involves points in the whole image. 
The disc criterion is associated to image points in 
discontinuity regions or neighbourhoods of depth 
boundaries. The BMP measure is gathered on these 
image regions. A threshold	δ	is defined by the user. 
A threshold value equal to 1 pixel is commonly 
used. Nevertheless, the BMP measures the quantity 
of errors. It may conceal estimation errors of a large 
magnitude, and, at the same time, it may penalise 
errors of small impact in the final 3D reconstruction. 
On the other hand, the evaluation model of the 
Middlebury’s methodology can be seen as a linear 
combination of ranks, where a real value is 
associated to the accuracy of an algorithm. However, 
there are several processes of non-linear nature 
involved in the 3D reconstruction from stereo 
images. This fact may raise concerns about the 
convenience of evaluating the disparity estimation 
process by a linear approach (Cabezas and Trujillo, 
2011), and has to be considered in addition to the 
other weaknesses already identified in the first 
section of this paper. 

The 	ۯ∗ evaluation methodology is introduced in 
(Cabezas and Trujillo, 2011). In this work, the 
evaluation of disparity maps is addressed as a 
Multiobjective Optimisation Problem (MOP). The 

evaluation model is based on the Pareto Dominance 
relation (Van Velduizen et al., 2003). It computes a 
proper subset A∗ from the set of stereo 
correspondence algorithms under evaluation. The set A∗	is composed by the algorithms which associated 
error score vectors are not better, neither worst, 
among them. It is argued that the proposed 
evaluation model can be used to compute more sets 
or disjoint groups of algorithms with comparable 
accuracy. However, this capability is not 
demonstrated neither discussed. Moreover, the 
formal definition of the set A∗	is presented, but its 
computation from an algorithmic point of view is 
not discussed. In this work the BMP is used as the 
error measure. 

In regard to error measures, the mean absolute 
error, the Mean Square Error (MSE), the Root Mean 
Square Error (RMSE), and the Mean Relative Error 
(MRE) have been used for ground-truth based 
evaluation (Van der Mark and Gavrila, 2006). 
However, the MSE and the RMSE measures ignore 
the relation between depth and disparity and 
penalise, in the same way, all errors regardless of the 
true depth, whilst the formulation of the MRE 
measure presented in (Van der Mark and Gavrila, 
2006) is not suited to be used along with the concept 
of error criteria. 

Table 1: Error measure scores using the Tsukuba stereo 
image, and SymBP+occ and EnhancedBP algorithms. 

 SymBP+occ EnhancedBP

BMP 
nonocc     0,966     0,945 
all     1,755     1,736 
disc     5,086     5,048 

SZE 
nonocc 568,767 809,588 
all 636,391 876,363 
disc 127,504 142,798 

 
The Sigma-Z-Error measure (SZE) is proposed in 

(Cabezas et al., 2011). This ground-truth based 
measure considers the inverse relation between depth 
and disparity, as well as the magnitude of estimation 
errors. It is focused on measuring the impact of 
disparity estimation errors in the Z axis. The measure 
allows a better judging of algorithm’s accuracy, since 
two algorithms may have a similar quantity of errors 
using the BMP measure. It is illustrated in Table 1, 
using the error scores of the BMP measure and the 
SZE measure, the Tsukuba stereo image, and the 
EnhancedBP (Larsen et al., 2007) and SymBP+Occ 
(Sun et al, 2005) algorithms. It can be observed that 
the BMP error scores are similar. In fact, the BMP 
scores indicate that the EnhancedBP algorithm is, by a 
slight difference, more accurate than the SymBP+Occ 
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algorithm. In contrast, the SZE error scores indicate a 
considerable difference in the accuracy of the 
estimated maps, as well as the SymBP+Occ algorithm 
is more accurate than the EnhancedBP algorithm. A 
larger comparison between the BMP and the SZE 
measures can be found in (Cabezas et al., 2011). 

3 BACKGROUND 

The formalisation of different aspects related to the 
quantitative evaluation of disparity maps, as well as 
to the Pareto Dominance relation, is presented in this 
section, for the sake of completeness. 

3.1 Ground-truth based Evaluation of 
Stereo Correspondence Algorithms 

Let A be a non-empty set of stereo correspondence 
algorithms under evaluation, as follows: 

 A = ቄa ∈ A│a: (	Iୱ୲ୣ୰ୣ୭) → 	Dୣୱ୲୧୫ୟ୲ୣୢ(ୟ)ቅ,  (1)
 

where 	Iୱ୲ୣ୰ୣ୭ is a non-empty set of stereo images 
(i.e. the imagery test-bed), and Dୣୱ୲୧୫ୟ୲ୣୢ(ୟ)is the set 
of estimated disparity maps obtained by a particular 
stereo correspondence algorithm.  

Let Dୣୱ୲୧୫ୟ୲ୣୢ	be the set of estimated disparity 
maps to be compared, defined as: 

 Dୣୱ୲୧୫ୟ୲ୣୢ = ቄDୣୱ୲୧୫ୟ୲ୣୢ(ୟ) ∈ Dୣୱ୲୧୫ୟ୲ୣୢ│ ∀a	 ∈ A: ∃	Dୣୱ୲୧୫ୟ୲ୣୢ(ୟ)ቅ. (2) 
 

The base of the ground-truth based evaluation 
process is the comparison of the set Dୣୱ୲୧୫ୟ୲ୣୢ 
against the ground-truth data, considering different 
elements that compose an evaluation methodology. 
This can be formalised as follows. Let g be a 
function such that: 

 g: ቀDୣୱ୲୧୫ୟ୲ୣୢ(ୟ)xD୲୰୳ୣxRୡ୰୧୲ୣ୰୧ୟxE୫ୣୟୱ୳୰ୣୱቁ →Vୟ , (3) 

where D୲୰୳ୣ	is the set of ground-truth data, Rୡ୰୧୲ୣ୰୧ୟ 
is the set of errors criteria, E୫ୣୟୱ୳୰ୣୱ	is the set of 
error measures, and Vୟ ∈ ℝ୩	is a vector of error 
scores. The magnitude of k is determined by the 
cardinality of the sets	D୲୰୳ୣ,	Rୡ୰୧୲ୣ୰୧ୟ, and 	E୫ୣୟୱ୳୰ୣୱ. 

Let V be the set obtained by applying the 
function g to the set	Dୣୱ୲୧୫ୟ୲ୣୢ: 

 V = ቄVୟ ∈ V│	∀	Dୣୱ୲୧୫ୟ୲ୣୢ(ୟ) 	∈ Dୣୱ୲୧୫ୟ୲ୣୢ: ∃ Vୟቅ (4) 

 

The evaluation model of the Middlebury’s 
methodology assigns a ranking to each algorithm 
under evaluation, based on the error scores of the 
estimated disparity maps. This ranking is a real 
value. The evaluation model is formalised as: 

 ∀ V௔ ∈ V: ∃ r │ r: (V(ୟ)) → ℝ . (5) 
 
On the other hand, the evaluation model of the ۯ∗	methodology operates by defining a partition 

over the set	A. It is formalised as follows. Let d be a 
function such as: 

 d: (A) → Aᇱ ∪ A∗│Aᇱ ∪ A∗ ⊆ A	 ∧ 	Aᇱ ∩ A∗ = {Ø} ,  (6) 
 

subject to: 
 ∄ Aୟᇱ ∈ Aᇱ │ Aୟᇱ ≺ 	Aୟ∗ ∈ A∗ , (7) 
 

where the symbol “≺” denotes the Pareto 
Dominance relation.  

Additionally , the ۯ∗ methodology defines an 
interpretation of results based on the cardinality of 
the set	A∗, which is stated as follows: 

 ቊ if │A∗│ = 1, then ifݕܿܽݎݑܿܿܽ	ݎ݋݅ݎ݁݌ݑݏ │A∗│ > 1, then  (8) ,ݕܿܽݎݑܿܿܽ	݈ܾ݁ܽݎܽ݌݉݋ܿ
 

where ݎ݋݅ݎ݁݌ݑݏ	ݕܿܽݎݑܿܿܽ means that there exists a 
unique stereo correspondence algorithm with a 
superior accuracy, and ݈ܾܿ݁ܽݎܽ݌݉݋	ݕܿܽݎݑܿܿܽ 
means that there exists a set of algorithms with a 
comparable accuracy among them (i.e. producing 
disparity maps which associated error vectors are not 
better neither worst among them), see (14). The 
interpretation of results, in both of the above cases, 
is performed in regard to the imagery test-bed 
considered. It cannot be extrapolated to other 
images, neither be generalised to all possible 
capturing conditions. 

3.2 Evaluation of Disparity Maps based 
on the Pareto Dominance  

In general, a MOP involves two different spaces: a 
decision space and an objective space (Van 
Veldhuizen et al., 2003). The nature of these spaces 
may depend on the nature of the particular MOP. 
The evaluation of disparity maps is viewed as a 
MOP in (Cabezas and Trujillo, 2011). In this work, 
the decision space is defined as the set of stereo 
correspondence algorithms under evaluation, and the 
objective space is defined as a set composed by 
vectors of error measures scores. In particular, let	p 
and q be elements of the decision space:	p, q	 ∈ A	 ∧		p	 ≠ q. Let V୮ and V୯	 be a pair of vectors 
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belonging to the objective space, defined based on 
(1) and (3). Then, the following relations between  V୮ and	V୯	can be considered, without loss of 
generalisation: 	 V୮ = 	V୯	iff		∀	i	 ∈ {1,2,… , k}: V୮௜ = V୯௜	.		 (9) V୮ ≤ 	V୯	iff		∀	i	 ∈ {1,2, … , k}: V୮୧ ≤ V୯୧	.	 (10) V୮ < V୯	iff		∀	i	 ∈ {1,2, … , k}: V୮୧ < V୯୧ ∧ V୮ ≠ 	V୯. (11) 

In the context of stereo correspondence 
algorithms comparison by quantitative evaluation of 
disparity maps, for any two elements in the decision 
space, three possible relations are considered: 	 p	 ≺ q	(p	dominates	q)		iff		V୮ < 	V୯.	 (12) 

p	 ≼ q	(p	weakly	dominates	q)		iff		V୮ ≤ V୯. (13) p	 ∼ q	(p	is	comparable to	q)		iff		V୮ ≰ V୯	 ∧ 	V୯ ≰ 	V୮.	 (14) 

The relations above gives rise to the computation 
of sets Aᇱ	and A∗ in (6).  

3.3 Error Measures  

The BMP error measure is computed by counting 
the disparity estimation errors that exceeds the 
threshold	ߜ. It is formulated as follows: 

 ε(x, y) = ൜1	if|D୲୰୳ୣ	(x, y) − Dୣୱ୲୧୫ୟ୲ୣୢ	(x, y)| > ,(x	if|D୲୰୳ୣ	0ߜ y) − Dୣୱ୲୧୫ୟ୲ୣୢ	(x, y)| ≤ δ (15) 

BMP = 1N෍ ε(x, y),୒
(୶,୷)  (16) 

where N is the total of pixels and δ is the error 
threshold.  

The SZE error measure is an unbounded metric. 
It is computed by summing the differences between 
the true depth and the estimated depth over the entire 
estimated map (Cabezas et al., 2011). It is 
formulated as follows:  

 SZE = ෍ ฬ f ∗ BD୲୰୳ୣ	(x, y) + ߤ − f ∗ BDୣୱ୲୧୫ୟ୲ୣୢ	(x, y) + ฬ(୶,୷)ߤ , (17) 

where f is the focal length, B is the distance between 
optical centres, and  μ is a small constant value 
which avoids the instability caused by missing 
disparity estimations.  

4 GROUPING STEREO 
ALGORITHMS 

The methodology of (Cabezas and Trujillo, 2011) 
offers theoretical advantages over conventional 
evaluation methodologies for stereo correspondence 
algorithms. In particular, it avoids a subjective 
interpretation of evaluation results, since it 
reformulates the problem as a MOP, and it is based 
on the cardinality of the set	A∗. However, it fails in 
considering an evaluation scenario on which a user 
may be interested in an exhaustive evaluation of the 
entire set of algorithms, and not only in determining 
which ones are the most accurate. In practice, this 
scenario may rise very often. For instance, when a 
user is interested in a particular algorithm which is 
not in the set	A∗, but belonging to the set	Aᇱ. This 
situation can be tackled by introducing an algorithm 
devised to iteratively compute a partition of the set A 
into the sets Aᇱ	and	A∗. The composition of these sets 
is determined based on the three possibilities in 
regard to the Pareto Dominance relation in (12), (13) 
and (14).  

The partitioningAndGrouping algorithm 
assigns to each computed set	A∗	an ordinal label 
related to the partition established in the iteration. In 
particular, the first partition –the set	Aଵ∗– is 
composed by the most accurate stereo 
correspondence algorithms, among the evaluated 
algorithms. Moreover, all algorithms in a partition 
with an n-label of accuracy are dominated by at least 
one algorithm in a partition with an m-label of 
accuracy, subject to m<n. This is: 

 ∀q ∈ A୬∗ ∃ p ∈ A୫∗ │p ≺ q,	 (18) 

subject to: 	 m < n. (19) 
 
The partitioningAndGrouping algorithm is 

presented below for the sake of completeness in an 
object oriented pseudo-code as follows: 
 
partitioningAndGrouping(void){ 
 // A is the set under evaluation 
 A = Set( );  
 A.load(“Algorithms.dat”); 
 //p and q are two particular   
 //algorithms 
 p = Element ( );  
 q = Element ( ); 
 //auxiliary variables  
 //A’ and A* are empty sets  
 A’ = Set( );  
 A* = Set( ); 
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 levelCount = Int (1); 
 p_DomFlag = Boolean (false); 
 q_DomFlag = Boolean (false);        
 otherwiseFlag = Boolean (false); 
 do{ 
    //a member of A is introduced in A* 
    A*.push( A.pop( ) ); 
    //A iteration invariant 
    while ( !A.isEmpty( ) ){ 
       p_DomFlag=false; 
       q_DomFlag=false; 
       otherwiseFlag=false; 
       p= A.pop( ); 
       // A* iteration invariant 
       for each element in A* { 
          q = A*.next( ); 
          if (q≺p){ 
             A’.push(p); 
             q_DomFlag=false; 
          } 
          elseif(p	≼	q || p	∼	q){ 
             otherwiseFlag=true; 
          } 
          elseif(p	≺	q){ 
             A’.push(q); 
             A*.remove(q.id); 
             p_DomFlag=true; 
          }           
       }//for each 
       if (!q_DomFlag &&      
           (otherwiseFlag ||  
            p_DomFlag)){ 
              A*.push(p); 

  }// end if 
    }//while 
    A*.save(“A*Label_”+labelCount);  
    labelCount++; 
    //the sets are updated 
    A = A’; 
    A’.removeAll( ); 
    A*.removeAll( );   
 }while(!A.isEmpty( )); 
}; // end method 

 
The key step of the 

partitioningAndGrouping algorithm consists in 
computing a partition: the set A	is updated with the 
elements of the set	Aᇱ, and A∗ is recomputed. The 
algorithm stops once the set A	became an empty set. 
In this way, the entire set of algorithms under 
evaluation is grouped according to the Pareto 
Dominance relation. 

5 EVALUATION RESULTS 

The set of 112 stereo correspondence algorithms 
reported in the online ranking of Middlebury’s 
evaluation methodology (Scharstein and Szeliski, 

2011) is used for evaluating the proposed 
methodology. All algorithms and estimated disparity 
maps were taken as the input into the proposed 
methodology. As output, seven groups of algorithms 
were obtained, using the SZE error measure. The 
cardinality of the obtained groups, as well as the 
percentage of each group in relation to the total of 
algorithms, is shown in Table 2.  

Table 2: Obtained A*-Groups using algorithms at 
Middlebury’s web site.  A∗ Group Cardinality Percentage 

1  9   8 % 
2 47 42 % 
3 19 17 % 
4 19 17 % 
5  6  5.3 % 
6  9  8 % 
7  3  2.7 % 

Total 112 100% 
 

The algorithms in the group 1 are of special 
interest, since they produce the most accurate 
disparity maps for the considered test-bed. Table 3 
contains the SZE scores of selected algorithms 
among the seven groups. Among these, the 
GC+SegmBorder algorithm belongs to the first 
group, the ObjectStereo algorithms belongs to the 
second group, the RTAdaptWgt algorithm belongs 
to the third group and so on. It can be observed that 
the GC+SegmBorder stereo correspondence 
algorithm has superior performance, according to 
evaluation criteria. 

More evaluation results are presented in the 
following subsections. The algorithms in the first 
group of accuracy are briefly described in the 
subsection 5.1. The results obtained by using the 
proposed methodology are contrasted against the 
results obtained by using the Middlebury’s and the 
conventional		ۯ∗ methodologies in the subsection 
5.2. The algorithms belonging to the groups 2 to 7 
are listed in the subsection 5.3. 

5.1 A Brief Description of the First 
Group of Algorithms  

The first group of algorithms and associated SZE 
scores are shown in Table 4. Among these nine 
algorithms, seven algorithms can be classified as 
global algorithms, whilst two of them can be 
classified as local algorithms according to the 
taxonomy in (Scharstein and Szeliski, 2002). This 
result implies that there exist local algorithms with 
comparable performance of global algorithms.  
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Among the global algorithms, the GC+occ, 
MultiCamGC (Kolmogorov and Zabih; 2001, 2002), 
and MultiResGC (Papadakis and Caselles, 2010) 
algorithms are based on GC. Although the FeatureGC 
and GC+SegmBorder algorithms, are, as far to the 
authors known, unpublished (Dec, 2011), being 
reasonable to assume that they are based on the GC. 
The GC+occ and MultiCamGC algorithms consider an 
energy function using three terms: image intensities 
similarity, disparity smoothness, and occlusion 
handling and uniqueness constraint fulfilment. The 
MultiResGC algorithm considers the above criteria, 
using an energy function with four terms.  

The DoubleBP algorithm (Yang et al., 2008), is 
based on the BP. In particular, a hierarchical BP is 
applied twice, where occlusions and textureless 
areas are first identified and filled using 
neighbouring values.  

The Segm+Visib algorithm (Bleyer and Gelautz, 
2004) is based on colour segmentation. Segments 
are grouped into planar layers. The textureless areas 
and the depth discontinuities are handled by 
segmentation, whilst occlusions are detected by the 
layers assignment.  

In regard to the local algorithms, the DistinctSM 
algorithm (Yoon and Kweon, 2007) uses a similarity 
measure based on the distinctiveness of image points 
and the dissimilarity between them. The idea is: the 
more similar and distinctive two points are, thus the 
probability of a correct match is larger (Manduchi 
and  Tomassi,  1999).  In  this  algorithm,  occluded  

points are not modelled explicitly.  
In the algorithm PatchMatch (Bleyer et al., 

2011), the concern is about when the window 
captures a slanted surface. An adaptation of the work 
of (Barnes et al., 2009) is used to find a slanted 
support plane at each pixel. It is pointed out in (Bleyer 
et al., 2011) that according to the BMP measure, the 
algorithm PatchMatch has an outstanding 
performance in the nonocc criterion of the Teddy 
stereo image. However, the SZE scores indicate that 
the performance of the algorithm in the nonocc 
criterion is not particularly outstanding. In contrast, 
the SZE scores of the Venus image, composed in 
essence by slanted planes, are considerably better than 
the scores obtained by most of the others algorithms, 
as can be observed in Table 4. 

5.2 Obtained Results vs. Related 
Works Results 

The proposed methodology –		ۯ∗	Groups – performs 
an exhaustive evaluation of all algorithms, by 
computing groups of comparable accuracy. In this 
way, the proposed methodology allows a complete 
and objective interpretation of evaluation results. In 
contrast, the results presented in (Cabezas and 
Trujillo, 2011), only identifies the algorithms in the 
first group, without providing useful information to 
the user about the rest of algorithms. In practice, and 
for evaluation purposes, this difference may be quite 

Table 3: Selected SZE scores of algorithms from different groups. 

Tskuba Venus Teddy Cones 
nonocc all disc nonocc all disc nonocc all disc nonocc all disc 

GC+SegmBorder 212.0 242.8 124.6 30.8 46.8 24.0 39.4 62.89 20.3 50.4 64.9 24.3 
ObjectStereo 578,7 618,5 136,2 885,3 912,4 107,9 141,6 215,1 35,8 73,9 117,9 36,2 
RTAdaptWgt 651,0 705,9 151,0 1078,3 1131,7 109,3 186,3 246,92 47,7 83,0 144,8 45,9 
RealtimeBP 748,0 931,6 188,0 1114,1 1223,9 158,7 205,0 311,7 64,7 92,6 198,7 56,8 

OptimizedDP 829,8 963,6 190,7 1274,4 1424,0 168,0 213,1 366,8 68,5 95,3 211,0 59,5 
DP 901,4 989,5 203,0 2052,9 2206,3 258,6 239,4 721,8 82,8 146,3 524,4 92,6 

MI-nonpara 1149,3 1301,9 282,4 2227,0 2560,4 378,5 1233,6 2903,4 139,6 184,3 1815,9 103,4 

Table 4: SZE values using algorithms in the first group of accuracy. 

 Tskuba Venus Teddy Cones 
 nonocc all disc nonocc all disc nonocc all disc nonocc all disc 

DoubleBP 658.8 703.0 116.3 1062.7 1115.3 95.8 102.3 155.6 28.4 71.3 341.5 37.8 
PatchMatch  538.5 568.8 168.4 539.1 571.0 85.4 115.4 498.1 66.0 49.9 261.8 32.8 
GC+SegmBorder 212.0 242.8 124.6    30.8 46.8 24.0 39.4 62.89 20.3 50.4 64.9 24.3 
FeatureGC 212.2 257.9 102.9 1013.6 1045.1 97.6 98.6 185.9 36.9 77.4 130.1 46.0 
Segm+visib 388.1 414.8 122.4 1088.0 1131.2 124.3 63.7 87.8 27.8 67.0 127.8 43.2 
MultiResGC  411.9 451.5 108.4 1080.5 1137.3 113.5 121.4 170.6 43.7 92.7 154.9 49.8 
DistinctSM  363.2 411.9 115.3 1050.9 1103.0 103.0 143.0 191.8 52.2 73.0 121.7 37.0 
GC+occ 190.9 266.1 116.8 1319.6 1455.2 168.8 469.5 951.6 131.6 301.4 792.9 163.8 
MultiCamGC  192.7 266.1 113.7 1201.0 1269.6 107.1 448.0 679.9 108.3 218.2 411.5 102.3 

 

VISAPP 2012 - International Conference on Computer Vision Theory and Applications

160



significant. On the other hand, the evaluation results 
based on the ranking computed by the Middlebury’s 
methodology may lead to a subjective interpretation.  

Table 5: List of the algorithms in the first A*-group vs. 
Middleburry’s rank. 

Algorithm Middleburry’s Rank 
DoubleBP 4 

PatchMatch 11 
GC+SegmBorder 13 

FeatureGC 18 
Segm+visib 29 
MultiResGC 30 
DistinctSM 34 

GC+occ 67 
MultiCamGC 68 

Table 6: Middleburry’s results vs. obtained results. 

Algorithm Middleburry’s 
Rank ۯ∗-Group 

ADCensus 1 2 
AdaptingBP 2 2 
CoopRegion 3 2 
DoubleBP 4 1 

RDP 5 2 
OutlierConf 6 2 

SubPixDoubleBP 7 2 
SurfaceStereo 8 2 

WarpMat 9 2 
ObjectStereo 10 2 
PatchMatch 11 1 

Undr+OvrSeg 12 2 
GC+SegmBorder 13 1 

InfoPermeable 14 2 
CostFilter 15 2 

 

The algorithms in the first group, and the ranks 
assigned by the Middlebury’s methodology are 
shown in Table 5. It can be observed that the 
assigned ranks are distant among them. This 
indicates that the SZE error measure and the 
evaluation model of the proposed methodology 
show different evaluation properties to those of the 
BMP measure and Middlebury’s evaluation model. 

On the other hand, the top 15 ranked algorithms 
by the Middlebury’s evaluation and the assigned 
group by the proposed methodology are shown in 
Table 6. It can be observed that most of algorithms 
are in the group 2, using the Pareto Dominance 
relation. Thus, Middlebury’s ranking may be failing 
in identifying the most accurate algorithms. These 
discrepancies can be explained by the fact that 
accurate depth estimation implies accurate disparity 
estimation, but a small percentage of disparity errors 
(i.e. under an error threshold) do not necessarily 
imply accurate estimation in terms of depth. 

5.3 Exhaustive Evaluation of Stereo 
Correspondence Algorithms 

The algorithms in the groups 2 to 7 are listed in 
Table 7. These results may be of interest for 
researchers that had reported a stereo 
correspondence algorithm to the Middlebury’s 
online website. It is worth to note that the selection 
of test-bed images, error criteria, error measures and 
algorithms in the evaluation process will impact on 
the groups’ composition and cardinality.  

6 CONCLUSIONS 

In this paper, an evaluation methodology of stereo 
correspondence algorithms based on the Pareto 
Dominance relation is extended by the introduction 
of the partitioningAndGrouping algorithm. The 
resulting methodology is termed as 		ۯ∗ Groups. As 
a distinctive property, the 		ۯ∗ Groups methodology 
allows to perform an exhaustive evaluation and an 
objective interpretation of results. Innovative 
evaluation results were obtained using the SZE error 
measure, which is based on the inverse relation 
between depth and disparity, and considers the error 
magnitude. The obtained evaluation results indicate: 
there is not a single algorithm of superior 
performance. There are local stereo algorithms with 
adaptive support strategies of comparable 
performance to global stereo algorithms according to 
the Pareto Dominance relation. Algorithms based on 
GC, BP and colour segmentation are the most 
accurate algorithms using global optimisation 
strategies.  

Table 7: Algorithms and A*-groups. 

Algorithm A*-
Group

 Algorithm A*-
Group

ADCensus 2  PUTv3 3 
AdaptingBP 2  GradAdaptWgt  3 
CoopRegion 2  RT-ColorAW  3 
RDP 2  MultiCue  3 
OutlierConf  2  HistoAggr  3 
SubPixDoubleBP  2  BPcompressed  3 
SurfaceStereo 2  FastAggreg  3 
WarpMat 2  Layered 3 
ObjectStereo 2  ESAW  3 
Undr+OvrSeg 2  ConvexTV  3 
InfoPermeable 2  TensorVoting  3 
CostFilter  2  HRMBIL  3 
GlobalGCP 2  ReliabilityDP 3 
AdaptOvrSegBP  2  HBpStereoGpu 3 
P-LinearS 2  AdaptDispCalib 4
PlaneFitBP  2  CurveletSupWgt 4
SymBP+occ 2  FastBilateral 4
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Table 7: Algorithms and A*-groups. (cont.) 

ASSM  2  CostRelaxAW 4
ConfSuppWin 2  RealtimeBFV 4
GeoDif 2  VariableCross 4
C-SemiGlob 2  RealtimeBP 4
IterAdaptWgt 2  CCH+SegAggr  4
RandomVote  2  AdaptPolygon  4
SO+borders 2  RealTimeGPU 4
Bipartite  2  CostRelax 4
MVSegBP  2  AdaptDomainBP 4
OverSegmBP  2  TreeDP 4
LocallyConsist  2  CSBP 4
SegmentSupport  2  DCBGrid 4
VSW  2  H-Cut 4
SegTreeDP  2  SAD-IGMCT  4
AdaptWeight 2  FLTG-DDE 4
InteriorPtLP  2  PhaseBased 4
ImproveSubPix  2  OptimizedDP 5 
BP+DirectedDiff 2  TwoWin 5 
SemiGlob  2  DOUS-Refine 5 
RealTimeABW  2  BP+MLH 5 
PlaneFitSGM  2  IMCT 5 
2OP+occ  2  PhaseDiff 5 
VarMSOH  2  BioPsyASW 6 
Unsupervised  2  DP 6 
SNCC  2  DPVI 6 
StereoSONN  2  2DPOC 6 
RealtimeVar  2  RegionalSup 6 
GenModel  2  SSD+MF 6 
RTCensus  2  SO 6 
GC  2  STICA 6 
GeoSup  3  Infection 6 
RTAdaptWgt  3  MI-nonpara 7 
CostAggr+occ  3  LCDM+AdaptWgt 7 
RegionTreeDP  3  Rank+ASW 7 
EnhancedBP  3    

 

REFERENCES 

Barnes, M., Shechtman, C., & Finkelstein, E., 2009. 
Patchmatch: A randomized correspondence algorithm 
for structural image editing. In ACM Transactions on 
Graphics, 28(3). pp. 1–11. 

Bleyer, M., & Chambon, S., 2010. Does Color Really 
Help in Dense Stereo Matching?. In Proceedings of 
the International Symposium 3D Data Processing, 
Visualization and Transmission, pp. 1–8. 

Bleyer M. & Gelautz M. 2004. A layered stereo algorithm 
using image segmentation and global visibility 
constraints. In Proceedings International Conference 
Image Processing. IEEE Computer Society pp. 2997–
3000. 

Bleyer, M., Rhemann, C., & Rother, C., 2011. PatchMatch 
Stereo - Stereo Matching with Slanted Support 
Windows. In Proceedings of the British Machine 
Vision Conference, pp. 1–11. 

Cabezas, I., Padilla V., & Trujillo, M., 2011. A measure 
for accuracy disparity maps evaluation. In 
Proceedings of the Iberoamerican Congress on 
Pattern Recognition. Springer-Verlag, pp. 223–231. 

Cabezas, I., & Trujillo, M., 2011. A Non-Linear 
Quantitative Evaluation Approach for Disparity 
Estimation. In Proceedings of the International 
Conference on Computer Vision, Theory and 
Applications, pp. 704–709. 

Felzenszwalb, P., & Huttenlocher, D., 2004. Efficient 
belief propagation for early vision. In Proceedings of 
Computer Vision and Pattern Recognition. IEEE 
Computer Society, pp. 261–268. 

Gallup, D., Frahm, J., Mordohai, & P., Pollefeys, M., 
2008. Variable Baseline/Resolution Stereo. In 
Proceedings of Computer Vision and Pattern 
Recognition, IEEE Computer Society, pp. 1–8. 

Hirschmüller, H., & Scharstein, D., 2009. Evaluation of 
Stereo Matching Costs on Images with Radiometric 
Differences. In IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 31(9). IEEE Computer 
Society, pp. 1582–1599. 

Kelly, P., O’Connor N., & Smeaton A., 2007. A 
Framework for Evaluating Stereo-Based Pedestrian 
Detection Techniques. In IEEE Transactions Circuits 
and Systems for Video Technology, 18(8). IEEE 
Computer Society. IEEE, pp. 1163–1167. 

Kolmogorov, V., & Zabih, R., 2001. Computing visual 
correspondence with occlusions using graph cuts. In 
Proceedings of Eighth International Conference on 
Computer Vision, IEEE Computer Society, pp. 508–
515. 

Kolmogorov, V., & Zabih, R., 2002. Multi-camera scene 
reconstruction via graph cuts. In Proceedings of 
European Conference on Computer Vision, Springer 
Verlag, pp. 82–96. 

Kostlivá, J., Cech, J., & Sara, R., 2007. Feasibility 
Boundary in Dense and Semi-Dense Stereo Matching. 
In Computer Vision and Pattern Recognition. IEEE 
Computer Society, pp. 1–8. 

Larsen, E., Mordohai, P., Pollefeys, M., & Fuchs, H., 
2007. Temporally consistent reconstruction from 
multiple video streams using enhanced belief 
propagation. In International Conference on Computer 
Vision.  IEEE Computer Society, pp. 282–298. 

Manduchi, R., & Tomasi, C., 1999. Distinctiveness maps 
for image matching. In International Conference on 
Image Analysis and Processing. pp. 26–31. 

Neilson, D., & Yang, Y., 2008. Evaluation of 
Constructable Match Cost Measures for Stereo 
Correspondence using Cluster Ranking. In Computer 
Vision and Pattern Recognition. IEEE Computer 
Society, pp. 1–8. 

Papadakis, N., & Caselles V., 2010. Multi-label Depth 
Estimation for Graph Cuts Stereo Problems. In 
Journal of Mathematical Imaging and Vision, 38(1). 
Kluwer Academic Publishers, pp. 70–82.  

Scharstein, D., & Szeliski, R., 2011. Middlebury Stereo 
Evaluation - Version 2. Retrieved October 24th, 2011,  
from: http://vision.middlebury.edu/stereo/eval/. 

Scharstein, D., & Szeliski, R., 2002. A Taxonomy and 
Evaluation of Dense Two-Frame Stereo 
Correspondence Algorithms. In International Journal 
of Computer Vision, Volume 47, pp. 7–42. 

VISAPP 2012 - International Conference on Computer Vision Theory and Applications

162



 

Scharstein, D., & Szeliski, R., 2003. High-accuracy Stereo 
Depth Maps using Structured Light. In Computer 
Vision and Pattern Recognition. IEEE Computer 
Society, pp. I–195–I–202. 

Sun J., Li, Y., Kang, S., & Shum H., 2005. Symmetric 
stereo matching for occlusion handling. In Computer 
Vision and Pattern Recognition. IEEE Computer 
Society, pp. 399–406. 

Szeliski, R., 1999. Prediction Error as a Quality Metric for 
Motion and Stereo. In International Conference on 
Computer Vision, Volume 2. IEEE Computer Society, 
pp. 781–788. 

Szeliski, R., & Zabih, R., 2000. An Experimental 
Comparison of Stereo Algorithms. In Proceedings of 
the International Workshop on Vision Algorithms.  
Springer-Verlag, pp. 1–19. 

Tombari, F., Mattoccia, S., & Di Stefano, L., 2010. Stereo 
for Robots: Quantitative Evaluation of Efficient and 
Low-memory Dense Stereo Algorithms. In 
Proceedings of International Conference Control 
Automation Robotics and Vision. IEEE Computer 
Society, pp. 1231–1238. 

Van der Mark, W., & Gavrila, D., 2006. Real-time Dense 
Stereo for Intelligent Vehicles. In IEEE Transactions 
on on Intelligent Transportation Systems, 7(1). IEEE 
Computer Society, pp. 38–50. 

Van Veldhuizen, D., Zydallis, J., & Lamont, G., 2003. 
Considerations in engineering parallel multiobjective 
evolutionary algorithms. In IEEE Transactions on 
Evolutionary Computation, 7(2). IEEE Computer 
Society, pp. 144–173. 

Yang,  Q., Wang, L., Yang, R., Stewénius,  H., & Nistér, 
D., 2008. Stereo matching with color-weighted 
correlation, hierarchical belief propagation and 
occlusion handling. In Transactions on Pattern 
Analysis and Machine Intelligence, 31(3). IEEE 
Computer Society, pp. 492–504. 

Yoon, K., & Kweon, I., 2007.  Stereo matching with the 
distinctive similarity measure. In International 
Conference on Computer Vision. IEEE Computer 
Society, pp. 1–7. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

AN EVALUATION METHODOLOGY FOR STEREO CORRESPONDENCE ALGORITHMS

163


