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Abstract: We consider the problem of signal reconstruction from noisy observations in a highly under-determined prob-
lem setting. Most of previous work does not consider any specific extra information to recover the signal.
Here we address this problem by exploiting the similarity between the signal of interest and a consecutive
motionless frame. We incorporate this additional information of similarity that is available into a probabilistic
image prior based on the Pearson type VII Markov Random Field model. Results on both synthetic and real
data of MRI images demonstrate the effectiveness of our method in both compressed setting and classical
super-resolution experiments.

1 INTRODUCTION W. Lu, 2010), however both of these works require
us to tune the free parameters of the model manu-
Conventional image super-resolution (SR) aims to re- ally, and (JCR. Giraldo et al., 2010) reckons that the
cover a high resolution scene from a single or multi- range of parameter values was not exhaustively tested.
ple frames of low resolution measurements. A noisy (N. Vaswani and W. Lu, 2010) also mentions that
frame of a single low resolution image or signal often they were not able to attain exact reconstruction us-
suffers from a blur and down-sampling transforma- ing fewer measurements than those needed by com-
tion. The problem is more challenging when the ob- pressed sensing (CS) for a small image. By contrary,
served data is a single low resolution frame becausein this paper we will demonstrate good recovery from
it contains fewer measurements than the number ofvery few measurements using a probabilistic model
unknown pixels of the high resolution scene that we that includes an automated estimation of its hyper-
aim to recover. This makes the problem ill-posed and parameters.
under-determined too. For this reason, some addi- Related work on sparse reconstruction gained
tional prior knowledge is vital to obtain a satisfactory tremendous interest recently and can be found in e.qg.
solution. We have demonstrated in previous work (A. (R. G. Baraniuk etal., 2010; S. Ji et al., 2008; E. Can-
Kaban and S. AliPitchay, 2011) that the Pearson type des et al., 2006; DL. Donoho, 2006). The sparser a
VII density integrated with Markov Random Fields signal is, in some basis, the fewer random measure-
(MRF) is an appropriate approach for this purpose. ments are sufficient for its recovery. However these
In this paper, we tackle the problem using a more works do not consider any specific extra information
specific prior information, namely the similarity to a that could be used to accentuate the sparsity, which is
motionless consecutive frame as the additional input our focus. Somewhat related, the recent work in (W.
for recovering the signals of interest in a highly under- Lu and N. Vaswani, 2011) exploits partial erroneous
determined setting. This has real applications e.g. information to recover small image sequences.
in medical imaging where such frames are obtained  This paper is aimed at taking these ideas further
from several scans. Previous work in (N. Vaswani through a more principled and more comprehensive
and W. Lu, 2010) found the average frame from those treatment. We consider the case when the observed
scans to be useful for recovery. frame contains too few measurements, but an addi-
In principle, the more information we have about tional motionless consecutive scene in high resolu-
the recovered signal, the better the recovery algorithmtions is provided as an extra input. This assumption
is expected to perform. This hypothesis seems to is often realistic in imaging applications. Our aim is
work in (JCR. Giraldo et al., 2010; N. Vaswani and to reduce the requirements on the number of mea-

123

Ali Pitchay S. and Kaban A. (2012).

SINGLE-FRAME SIGNAL RECOVERY USING A SIMILARITY-PRIOR BASED ON PEARSON TYPE VIl MRF.

In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods, pages 123-133
DOI: 10.5220/0003791401230133

Copyright ¢ SciTePress



ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods

surements by exploiting the additional similarity in- In general, the idea is that the main characteris-
formation. To achieve this, we employ a probabilis- tic of any natural image is a local-smoothness. This
tic framework, which allows us to estimate all pa- means that the intensities of neighbouring pixels tend
rameters of our model in an automated manner. We to be very similar. Henceé)z will be sparse. There-
conduct extensive experiments that show that our ap-fore, here we propose an enhanced prior to exploit
proach not only bypasses the requirement of tuning more information that leads to more sparseness. By
free parameters but it is also superior to a cross vali- employing the given additional information of the
dation method in terms of both accuracy and compu- consecutive image or signal, we will employ the dif-
tation time. ferencef between the recovered imageand the ex-

tra information denoted as Obviously the more pix-

els z ands have in common, the more smooth their

2 IMAGE RECOVERY difference will be. Figure 1 shows a few examples
of histograms of the neighbourhood featubBesfrom

FRAMEWORK real images, where the sparsity is entirely the con-

sequence of the local smoothness. Additionally, we

2.1 Observation Model also show the histograms of the new neighbourhood

featuresDf that includes the additional similarity in-
A model is good if it explains the data. The follow- formation. We see the latter is a lot sparser than the
ing linear model has been used widely to express theformer.

degradation process from the high resolution signal Then we can formulate thieth feature in a vec-

to a compressed or low resolution noisy signdL. tor form, with the aid of thé-th row of this matrix

C. Pickup et al., 2007; H. He and L. P. Kondi, 2004; (denoted;) as the following:

H. He and L. P. Kondi, 2003; RC. Hardie and KJ. 1 N

Barnard, 1997): filf* 4 o/ = dijfj =Dif (2)
j€# neighlgi) =1

y=Wz+n (1)
) ] ) 4 Since our task is to encode the sparse property of
where the high resolution signal denoteddis an  ignals, therefore this feature is useful: The differ-

N-dimensional column vector aryds anMx1 matrix ence between a pixel of the difference imdgand

representing the noisy version of the signal, with< the average of its neighbours is close to zero, almost

N. ) ) _everywhere except an the edges of the dissimilarity
In classical super-resolution, the transformation 504g.

matrix W typically consists of blur and down- Plugging this into the Pearson-MRF density, we

sampling operators. In our study, we also utilise ran- haye the following prior, that we refer to asimilar-
dom Gaussian compressive matrid¥swith entries prior:

sampled independent and identically distributed (i.i.d) \

from a standard Gaussian. Finally,is the additive 1 _ 2 R
noise, assumed to be Gaussian with zero-mean and ()= Zpr (A ) il:l{(D' Z=9)"+A = @)
varianceg?.

1+v

whereZp, vy = [dz[IL1{(Di(z—9))?+A} 2 is
2.2 The Similarity Prior the partition function that makes the whole probabil-
ity density function integrate to one, and this multi-
The construction of a generic prior for images, the variate integral does not have an analytic form.
Pearson type VII MRF prior was presented in (A.
Kaban and S. AliPitchay, 2011). It is based on the 2.3 Pseudo-likelihood Approximation
neighbourhood featurd3z whereD makes the signal
sparse. In this paper, we aim to recover both 1D and As in previous work (A. Kaban and S. AliPitchay,
2D signals using the additional similarity information. 2011), we employ a pseudo-likelihood approximation

We define the entries @, i.ed;; as follows: to the partition functionZ,, ). Replacing the ap-
o proximation using the extra information into (3), we
1 ifi=j; obtain the following approximate image model:
dij=<¢ —1/# ifiandjare neighbours; -
0 otherwise Pr(zAv) ~ N T (32 AY/2{(Di(z—9)%+A} 2
V) v
where # denotes the number of cardinal neighbours ilzl F(z)vm
and it is 4 forimages and 2 for 1D signals. (4)
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Figure 1: Example histograms of the distribution of neigh-
bourhood featureBjz, andD;f where i=1,...,N from a MRI
real data.

We shall employ this to infez simultaneously
with estimating our hyper-parametar,sv ando.

2.4 Joint Model

The entire model is the joint model of the observa-
tionsy and the unknowna.

Pr(yaz7 f|WaO-25}\aV)

= Pr(y|z,W,0?)Pr(z|f,A,v) (5)

3 MAP ESTIMATION

We will employ the joint probability (5) as the objec-
tive to be maximised. Maximising this w.rz.is also
equivalent to finding the most probable image.e.
the maximum a posteriori (MAP) estimate, since (5)
is proportional to the posteridir (z]y).

2=argmin{—logPr (y[2)] - loglPr(2)]}  (6)

Namely, the most probable high resolution signal is
the one for which the negative log of the joint prob-
ability model takes its minimum value. Hence, our
problem can be solved through minimisation. The ex-
pression for the negative log of the joint probability
model will then be defined as our minimisation ob-
jective and also called as the error-objective. It can be
written as:

Obj(z, 02,)\,v) = —log[Pr(y|z, 02)] —log[Pr(z|f,A,v)]
(7)

Equation (7) may be decomposed into two terms: the
first one that contains all the entries that invahend

the second one contains the terms that do not — i.e.
Obj(z,0%,A,v)=0bj(z) + Obj y)(A,V).

3.1 Estimating the most Probable z

The observation model is also called the likelihood
model because it expresses how likely it is that a given
z produced the observgdhrough the transformation
W. Hence we have for the first term in (5):

Priviz) Dexp{ -5z~ Wa) (y- W)} (9

By plugging in the term for the observation model and
the prior into (7), we obtain the objective function.
The terms of the objective (7) that dependzare the
following:

. 1
Obj,(2) = 252 (y—Wz)?

v+1 N 5
+=5 2 og{(Di(z=9)*+A} (9)
The most probable estimate is théhat has the high-
est probability in the model. It is equivalently the one
that achieves the lowest error. Recap, our model has
two factors which depend on the likelihood or also
known as the observation model, and the image prior
that assists the signal recovery. Thus, our error mod-

where the first factor is the observation model and the e|s both themismatchof the predicted modeWwz
second factor is the image prior model and its free wijth the observed datg and determinanfor allow-

parameterd andv.

ing the free parameters to control the smoothness and
the edges encoded in the prior.

125



ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods

The objective is differentiable; therefore any non-
linear optimiser could be practical to optimise the
term (9) w.r.t. z. The gradient of the negative log
likelihood term is given by:

. 1
0(z)Obj, = ?W’(Wz —y)+

Di(z—9)
(Di(z—9))2+A (10)

N
(v+1) ZLD,T
3.2 Estimation ofa?, A and v

Writing out the terms in (7) that depend @, we
obtain a closed form for estimating to@.
M

(iZ(yi - Wi2)2>

Terms that depend anandv are given by:

1

7 (11)

Objv) = Nlogl (HTV) —Nlogl (%) + %Iog)\

1+v N

5 i;log((Di(z—s))2+)\) (12)

Both of these hyperparameters need to be positive val-

Algorithm 1: Recovery algorithm.

. Initialise the estimates

2: iterate until convergenceto

3: estimateo? using (11)

4 iteratively update andv in turn using defini-

ton
(13) and (14), with the current estimate
iterate to update using (10)

end

(A

7.

v and one foz. However, experiment suggests that it is
not necessary to estimate the minimum with high accu-
racy. We notice that the inner loops do not require the
entire convergence. It is sufficient to increase but not
necessarily minimise the objective at each intermediate
step.

4 EXPERIMENTS AND
DISCUSSION

We design our experiments for both CS and SR-type W
and we compare with the previous works in (A. Kaban

and S. AliPitchay, 2011). We devise two hypotheses
to investigate the role of the new prior and we test those

ued. To ensure our estimates are actually positive, we ysing synthetic 1D and 2D signals and real MRl signals.

parameterise the log probability objective (12) such as
to optimise for the +/- square root of these parameters.
Taking derivatives w.r.t/A and./v, we obtain:

dlogp(z) & v(Di(z—s))?>—A (13)
dVA A ((Di(z—9)2+A)VA
dlogp(z)

k- [N logh — iilog((Di(z— )2 +A)
e

wherey(.) is the digamma function. The zeros of these
functions give us the estimates #f/A and+,/v. Al-

(14)

though there is no closed-form solution, these can be ob-

tained numerically using any unconstrained non-linear
optimisation methotl which requires the gradient vec-
tor of the objectives.

3.3 Recovery Algorithm

Our algorithm that implements the equations given in
the previous section is given in Algorithm 1. Note that at
each iteration of the algorithm, two smaller gradient de-
scent problems have to be solved; namely oneXfor

1We made use of the efficient implementation available

from http://www.kyb.tuebingen.mpg.de/bs/people/carl/
code/minimize/
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Our hypotheses are the following:

e The quality of the recovered signal using the addi-
tional information is no worse than the one without
the extra information provided that the extra infor-
mation isuseful. This is when the number of zero
entries in the new form of the neighbourhood fea-
ture, i.eDf is larger than the number of zero entries
in Dz, that is the generic feature that has not been
given the extra similarity information.

e The fewer the edges ifi(that is, the non-zeros in
Df), the fewer measurements are sufficient for en-

abling a successful recovery.

Before we proceed with the experiments, we should
mention the construction of the measurement maffix
We study two different types: CS-type W is a random
Gaussian matrix\l x N) with iid entries. The SR-type
W is a deterministic transformation that blurs and down-
samples the imade

4.1 lllustrative 1D Experiments

In this section, we implement our recovery algorithm
on the 1D data, derived from a spike sighaf size

2Code to generate SR-type matrices can be found from
http://www.robots.ox.ac.uk/elle/SRcode/ index.html

Spata taken from http://people.ee.duke.eduoArin/
BCS.html
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Figure 3: (a) Linear scale. (b) Log scale. MSE performance
of 1D spike signal using the extra information. The number
of zero entries irD(z-9) is varied. The error bars represent
one standard error about the mean, from 50 independent tri-
als. The level of noise was=8e-5.

Figure 2: (a) The original spike signal; the extra similarit
information; and an example of recovered signal from 190
measurements. (b) Comparing the MSE performance of 1D
spike signal recovery with and without the extra informa-
tion. The error bars are over 10 independent trials and the

level of noise wag=8e-5. ters is cross-validation. It is therefore of interest how

does the automated estimation of the hyper-parameters
of our Pearson type VIl based MRF compare to a cross-
validation procedure. Next, we address this by look-
ing at two aspects: MSE performance, and CPU time.

512x1 as shown in Figure 2(a). We proceed by plugging
the extra signal into our image prior and varying the

number of measurements using randomly generated
measurement matricé¥ with i.i.d. Gaussian entries as e use the same spike signal for this purpose. For

in CS. The recovery results are summarised in Figure 2. comparison, we have chosen 5-folds cross valida-
We see our enhanced prior is capable to achieve a goodinn method for estimating the hyper-parametemnd
recovery and has a lower mean square error (MSE) than,, an the noise variance is assumed to be known for this
the one without extra information. method. A sensible search range is pursued to avoid a
We also examine the MSE performance as a func- |ong execution time as we are aware that this method
tion of the number of zero entries in the relevant feature ¢an pe extremely time-consuming if the search space is
vectors (i.e.Df in our case). Figure 3 shows MSE re- {qq |arge.
sults when varying the number of zero entries by con- Figyre 4 shows the MSE performance and the asso-
structing variations on the signals. We see when the cjated values for the four levels of noise using the CS-
recovery algorithm received sufficient measurements, type\w. It is interesting to see that our fully automated
for example when M=250 in Figure 2, the role of the parameter estimation turns out to be superior to 5-folds

proposedsimilarity prior gradually reduces. In other  cross validation and it has fast convergence and much
words, thissimilarity prioris usefulin massively under-  |ower execution time.

determined problems and provided that the given extra
information has the characteristics described previously.
A widely used alternative way to set hyperparame-
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Figure 4: (a) Comparing the MSE performance of the fully

tested in all experiments are set to a smaller range in
order to tally the general noise in real data.

Figures 5 and 6 show examples of vastly under-
determined problems using the extra information for re-
covery in comparison with the previous prior devised
in (A. Kaban and S. AliPitchay, 2011). The MSE per-
formance results are given in Figure 7, and we see the
MSE drops rapidly with increasing the measurement
size. Figure 8 shows examples of recovered images
from this process. We observe that the quality of the re-
covered image increases rapidly for all 5 levels of noise
tested. This is in contrast with the recovery results from
the general prior, which needs a lot more measurements
to perform well.

From these findings, the degree of similarity of the
available extra information has a significant impact on
the recovery from insufficient measurements. We find
that without informative extra information the recovery
algorithm does not perform well with such few mea-
surements. The recovered signal and the MSE using the
artificial Phantom data in figures 5 and 7 demonstrate
that the fewer the edges in the difference infage bet-
ter the recovery, or the smaller the number of measure-
ments needed for good recovery. This result validates
our second hypothesis.

In the remainder of the experiments, we will now
focus on image recovery using real image data of mag-
netic resonance imaging (MRI). We obtained this data
from the Matlab database and we created the additional
similarity information from it by changing the lighting
of an area on the image.

Next we validate our second hypothesis on a variety

automated Pearson type VIl based MRF approach with the of MRI images and its lighting changes. The recovery

5-folds cross validation, tested with four levels of noige (

0.005, 0.05, 0.5, 1). (b) Cpu time performance against the
same four levels of noise. We see that our automated esti-
mation and recovery is significantly faster than the 5-folds
cross validation method. The error bars are over 10 repeate
trials for each level of noise. Three sets of measurements

results for both types of W are presented in figures 10
and 11. The MSE performance for the CS-type W is
shown in figure 9. Interestingly, we observe that the log

dscale in that figure is in more direct correspondence with

our visual perception rather than using the standard lin-

(M=100, 240, 300) have been tested for this accuracy com- €ar scale, and this will be seen by comparison to figures

parison.

4.2 2D Experiments

10 and 11.

We observed that more than 6000 measurements are
required for a good recovery without the extra informa-
tion in this example. However, from these results we
see that our similarity prior achieves high quality recov-

Following the thorough understanding gained in the pre- ery from an order of magnitude less measurements. The
vious section about when the extra information is help- recovered images are presented in figures 10 and 11 for
ful on the spike signal test cases, we conducted ex- visual comparison. Finally, we also show an example
periments with both compressive sensing (CS) matrices run of our automated parameter estimation algorithm in
where W contains random entries and also the classi- Figure 12 for completeness. As one would expect, the
cal super-resolution matrices where W consists of blur speed of convergence varies with the difficulty of the
and down-sampling. In this set of experiments, we con- problem.
sider a motionless scene as the extra information. More  In closing, we should comment on the possibility of
precisely, the extra information that we employ in our using other types of extra information for signal recov-
similarity-prior consists of a change in the lighting of ery. Throughout this paper we exploited the similarity
some area in the image. created by a lighting change. Depending on the appli-
We start by conducting the recovery algorithm on cation domain, one might consider a small shift or rota-
a synthetic data of size [50x50]. The noise variagce tion instead. However, we have seen that the key for the
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Ground truth a)MSE=1e-001 b)MSE=4e-002 d)MSE=2e-002 e)MSE=6e-012
IIII-lll_‘--"'\-,',h1

Sample image recovery without extra information.

a)MSE=1e-002 b)MSE=6e-013 d)MSE=3e-013 e)MSE=2e-013

Sample image recovery using extra information of lightihgrege 1.

Extra info. a)MSE=2e-002 c)MSE=4e-013 d)MSE=3e-013 e)MSE=3e-013

Sample image recovery using extra information of lightihgrege 2.

Figure 5: Example recovery of 2D synthetic data of size [®)xA the case of using SR-type W, and given two slightly
different light changes as extra similarity informationheTnumber of measurements (M) are: a) M=60, b) 460, c) 510, d)
960, e) 1310. The additive noise level was3e-5.

Ground truth a)MSE=9e-002 b)MSE=4e-002 d)MSE=2e-002 e)MSE=1e-002

Sample image recovery without extra information.

a)MSE=1e-002 b)MSE=8e-004 c)MSE=5e-004 d)MSE=4e-005

Sample image recovery using extra information of lightihgrge 1.

Extra info. a)MSE=1e-002 b)MSE=1e-003 c)MSE=7e-004 d)MSE=2e-005

Sample image recovery using extra information of lightihgrege 2.

Figure 6: Example recovery of 2D synthetic data of size [R)xB the case of using SR-type W, and given two slightly
different light changes as extra similarity informationhefnumber of measurements (M) are: a) M=9, b) 441, c) 784, d)
1296, e) 1849. The additive noise level wasBe-7.
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Figure 7: MSE performance of synthetic data [50x50] in Figure 8: Recovery of a 50x50 size image from random
comparison with the two types of extra information. Here, measurements (top) and blurred and down-sampled mea-
both types of W were tested and the noise standard deviationsurement (bottom). The MSE is shown on log scale against
waso=8e-5. varying the number of measurements, in 5 different levels

of noise conditions. The noise levels were as follows. Top:
extra information to be useful in our similarity prior is 0 € {01=0.005,0,=0.05, 03=0.5, 04=1, 05=2}; Bottom:
that the difference image must have fewer edges than the{91=8e-5,0,=8e-4,03=8e-3,04=0.016,04=0.03% — that
original image. This is not the case with shifts or rota- IS the previous noise levels were divided by 'R to make
tions. Therefore to make such extra information useful the signal-to-noise ratios roughly the same for the two mea-
we would need to include an image registration model Surément matrix types.
into the prior. This is subject to future work.

ACKNOWLEDGEMENTS
5 CONCLUSIONS

The first author wishes to thartniversiti Sains Islam
In this paper, we have formulated and employesira- MaJaysia(_USIM) and the Ministry of Higher E_o_IL_Jcation
ilarity ;:?rigr based Pearson type VII Mark%vyRandom O.f Malaysia (MOHE) for the support and facilities pro-
Field to include the similarity information between the Vided-
scene of interest and a consecutive scene that has a light-
ing change. This prior enables us to recover the high res-
olution scene of interest from fewer measurements than
a general-purpose prior would, and this can be applied,
e.g. in medical imaging applications.

130



SINGLE-FRAME SIGNAL RECOVERY USING A SIMILARITY-PRIOR BASED ON PEARSON TYPE VII MRF

Ground truth a)MSE=1e-002 d)MSE=4e-003 g)MSE=6e-009
1 . . [_]
w 107
g - Sample image recovery of size [70x57] without extra infotiora
Extra info. a)MSE=2e-008 d)MSE=5e-009 g)MSE=9e-012
10°F 4 A \
—+—Real data 1-Without extra info. \ %
1078 —<— Real data 1-Extra info.
100 200 300 400 500 600 700 800 900 . . . / ;
@ Number of Measurements Sample image recovery of size [70x57] using extra inforomati
Ground truth Cc)MSE=7e-003
107t
10 f _
o Sample image recovery of size [100x80] without extra infation.
= 10° L | Extra info. C)MSE=2e-008 e)MSE=1e-008 h)MSE=3e-011
10°
—#— Real data 2-Without extra info.
—<— Real data 2-Extra info.
(b) 100 200 3°°Nun:82r ofsl\%asuig?nenéoo 800 0B Sample image recovery of size [100x80] using extra inforomat
i i i ; ; Ground truth b)MSE=9e-003 e)MSE=5e-003 i)MSE=2e-007
107F —#— Real data 3-Without extra info. T < ¥ | ] N
—<— Real data 3-Extra info. ¥ - B 3 f \
107} x g [ ga N
10°F - - ' -
3 \‘-.
u 10 Sample image recovery of size [100x80] without extra infation.
= - Extra info. b)MSE=4e-008 e)MSE=2e-008 f)MSE=1e-009
107} . -
10° l aln ) " = I
107t L ol o ol
100 200 300 400 500 600 700 800 900 Sample image recovery of size [100x80] using extra infoiomat
(c) Number of Measurements

. . . Figure 10: Examples of MRI image recovery in the case
Figure 9: MSE performance of real MRI images of size cs.type W, given a motionless consecutive frame with
(a)[70x57], (b) and (c) [100x80], in comparison with three  some contrast changes. The number of measurements (M)
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