MACHINE LEARNING OF HUMAN SLEEP PATTERNS BASED ON STAGE BOUT DURATIONS

Francis W. Usher\textsuperscript{1}, Chiying Wang\textsuperscript{1}, Sergio A. Alvarez\textsuperscript{2}\textsuperscript{*}, Carolina Ruiz\textsuperscript{1} and Majaz Moonis\textsuperscript{3}
\textsuperscript{1}Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609, U.S.A.
\textsuperscript{2}Department of Computer Science, Boston College, Chestnut Hill, MA 02467, U.S.A.
\textsuperscript{3}Department of Neurology, U. of Massachusetts Medical School, Worcester, MA 01655, U.S.A.

Keywords: Sleep, Bout duration, Sleep dynamics, Data mining, Clustering, Machine learning.

Abstract: This paper explores the discovery of patterns in human sleep data based on the duration statistics of continuous bouts in individual sleep stages during a full night of sleep. Hypnograms from 244 patients are examined. Stage bout durations are described in terms of the quartiles of their stage bout duration distributions, yielding 15 descriptive variables corresponding to wake after sleep onset, NREM stage 1, NREM stage 2, slow wave sleep, and REM sleep. Unsupervised Expectation-Maximization clustering is employed to identify distinct groups of hypnograms based on stage bout durations. Each group is shown to be characterized by bout duration quartiles of specific sleep stages, the values of which differ significantly from those of other groups ({$p < 0.05$}). Among other sleep-related and health-related variables, several are shown to be significantly different among the bout duration groups found through clustering, while multivariate linear regression fails to yield good predictive models based on the same bout duration variables used in the clustering analysis. This provides an example of the successful use of machine learning to uncover naturally occurring dynamical patterns in sleep data that can also provide sleep-based indicators of health.

1 INTRODUCTION

Sleep is a fascinating process that is not yet fully understood. Sleep in mammals has been thought to be controlled by body-wide mechanisms, in order to ensure energy conservation and recovery, but it has also been proposed that sleep may be an emergent property of the networks of neurons in the brain (Krueger et al., 2008). Sleep is known to play a key role in memory consolidation (Diekelmann and Born, 2010). The scientific study of sleep has long used a subdivision of sleep into distinct stages detected through electroencephalography (EEG), supplemented by the measurement of other physiological signals (Loonis et al., 1937) – a technique known as polysomnography. A particular stage associated with dreaming, the so-called Rapid Eye Movement (REM) stage, was subsequently identified (Aserinsky and Kleitman, 1953), (Dement and Kleitman, 1957), leading to currently used staging standards (Rechtschaffen and Kales, 1968), (Iber et al., 2007) that comprise the light sleep non-REM (NREM) stages NREM 1 and NREM 2, a deep sleep (also known as slow-wave sleep (SWS)) stage or stages NREM 3/4, as well as REM sleep. Neuroimaging techniques, including fMRI and PET, have yielded specific information about brain activity in different regions of the brain during each of these sleep stages (Dang-Vu et al., 2010).

Sleep normally progresses through the various stages during the course of a full night, albeit in a manner that is not predictable in detail. A sample diagram of the temporal progression of human sleep stages during the night, known as a hypnogram, is shown in Fig. 1. This particular diagram was generated from one of the 244 polysomnographic recordings used in the present paper. Some typical features to note are: most SWS (stages 3 and 4) occurs earlier in the night, a greater amount of REM sleep occurs later in the night, REM and stage 2 alternate semi-cyclically, and there are brief periods of wakefulness throughout the night, after the initial onset of sleep. Despite some common features across individuals, the detailed structure of sleep is known to vary from person to person, and is affected by a variety of factors, from such fundamental physical attributes as body composition (Rao et al., 2009) and
handedness (Propper et al., 2007), to behaviors such as smoking (Zhang et al., 2006) and the practice of yoga (Sulekha et al., 2006).

Figure 1: Sample hypnogram from the present study.

Sleep structure is frequently described in terms of sleep stage composition, that is, in terms of the collection of percentages of time accounted for by various sleep stages within a night of sleep. For example, see (Danker-Hopfe et al., 2005) and (Khasawneh et al., 2011). While sleep stage composition provides a good global summary of overall sleep stage content, it does not capture any information about the duration and ordering of uninterrupted episodes of different sleep stages during the night. Sleep stage durations have previously been used to describe alterations in sleep dynamics due to health status or ingested neuroactive substances. For example, in (Brezinová, 1976), it is shown that sleep stage durations are affected in specific ways by age, caffeine, and hypnotic drug withdrawal. Obstructive Sleep Apnea (OSA) is shown to alter sleep stage dynamics in (Penzel et al., 2003) and (Bianchi et al., 2010). Differences in mean duration of stage 2 bouts between patients with fibromyalgia and normal control subjects have been described in (Burns et al., 2008). Exponential and power-law functions have been proposed as models for the stage duration distributions (Lo et al., 2002), and the parameter values in these models have been shown to be affected by health conditions such as chronic fatigue syndrome (Kishi et al., 2008).

The work reported in the present paper uses a description of sleep dynamics based on the durations of continuous, uninterrupted bouts in the different sleep stages, as well as in wakefulness episodes after sleep onset. This representation captures temporal features of sleep that are not considered by standard sleep composition variables alone. In addition to the durations of bouts in various sleep stages, it would be desirable to account for the specific stage to which a transition occurs at the end of each stage bout. However, the information in a full night hypnogram appears to be insufficient to adequately model such stage transitions (Bianchi et al., 2010). In the present paper, the machine learning technique of Expectation-Maximization (EM) clustering is used to group hypnograms into families based on the distributions of their stage bout durations. Hypnograms within each family are more similar to one another, in terms of their bout duration statistics, than are hypnograms from different families. The prior work (Khasawneh et al., 2011) also uses clustering to study sleep data, but considers only stage composition, not bout durations nor other aspects of sleep dynamics. In the work presented here, each family is shown to be characterized by bout duration statistics for specific sleep stages, the values of which are shown to be statistically significantly different from those of other families at the level \( p < 0.05 \), even after a suitable correction has been made for the magnification of type I error due to multiple statistical comparisons. Furthermore, several potentially health-related variables which do not enter into the definition of the bout duration families, such as a sensation of muscle weakness or paralysis that occurs in emotional situations, are also shown to differ significantly among the bout duration families identified through machine learning, at the level \( p < 0.05 \). This is particularly noteworthy because, in contrast to machine learning, the widely used statistical technique of multivariate linear regression does not provide a good predictive model of this muscle paralysis variable based on the same bout duration variables. Our results show that machine learning can uncover interesting dynamical patterns in sleep data, and that such patterns may also be used to predict selected aspects of individual patient health based on an all-night sleep study.

2 METHODS

2.1 Human Sleep Data

Fully anonymized human polysomnographic recordings were obtained from the Sleep Clinic at Day Kimball Hospital in Putnam, Connecticut, USA. A total of 244 recordings were used for the work reported here. Summary statistics for this collection of sleep data are as in Table 1. The acronyms that appear in the header row of Table 1 have the following meanings. BMI: Body-Mass Index, the ratio of body weight to height-squared; ESS: Epworth Sleepiness Scale (Johns, 1991), a measure of daytime sleepiness based on responses to a questionnaire; BDI: Beck Depression Inventory (Storch et al., 2004), a questionnaire-based measure of affective depression; Mean SaO\(_2\): mean level of oxygen-saturated hemoglobin in the blood.
Table 1: Summary statistics of sleep dataset.

<table>
<thead>
<tr>
<th></th>
<th>Age (years)</th>
<th>BMI (kg m(^{-2}))</th>
<th>ESS (score)</th>
<th>BDI (score)</th>
<th>Mean SaO(_2) (%)</th>
<th>Heart rate (bpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (n=122) (\mu \pm \sigma)</td>
<td>47.4±15.1</td>
<td>33.7±8.1</td>
<td>7.6±5.4</td>
<td>11.5±8.8</td>
<td>93.5±2.9</td>
<td>68.5±11.3</td>
</tr>
<tr>
<td>Female (n=122) (\mu \pm \sigma)</td>
<td>48.4±14.5</td>
<td>33.7±8.3</td>
<td>7.1±4.8</td>
<td>13.0±7.8</td>
<td>94.6±1.9</td>
<td>70.8±9.6</td>
</tr>
<tr>
<td>Overall (n=244) (\mu \pm \sigma)</td>
<td>47.9±14.8</td>
<td>33.7±8.2</td>
<td>7.4±5.1</td>
<td>12.2±8.3</td>
<td>94.1±2.5</td>
<td>69.7±10.5</td>
</tr>
</tbody>
</table>

2.2 Descriptive Data Features

2.2.1 Staging

The polysomnographic recordings were staged in 30-second epochs by expert sleep technicians following the Rechtschaffen and Kales (R & K) standard (Rechtschaffen and Kales, 1968). R & K NREM stages 3 and 4 were then combined to obtain a single slow wave sleep (SWS) stage, resulting in stage labels that are known (Moser et al., 2009) to provide a good approximation to the more recently proposed AASM staging standard (Iber et al., 2007).

2.2.2 Sleep Stage Bouts and Bout Durations

Next, bout durations in epochs were extracted from each hypnogram. A bout is defined to be a maximal uninterrupted segment of the given stage within a given hypnogram. For example, four distinct REM bouts are visible in Fig. 1. A bout that begins in epoch \(t\) has duration \(T - t\), where \(T\) is the first epoch after \(t\) such that the sleep stages of the given hypnogram in epochs \(t\) and \(T\) are not the same.

2.2.3 Cumulative Distribution Function

The cumulative distribution function (CDF) of the bout durations was then computed for each sleep stage. The CDF of stage \(X\) is the function \(F_X\) defined for each duration, \(d\), as follows (the letter \(P\) denotes probability):

\[
F_X(d) = P(\text{a bout of stage } X \text{ has duration } \leq d)
\]

With an average of 250 possible bout durations per stage, this process yields a feature vector of length approximately 1250 for each data instance.

2.2.4 Bout Duration Quartiles

Selected features of the duration distributions were used to reduce the dimensionality of the data representation. Specifically, only the three bout duration quartile values were used to describe each stage, yielding a 15-dimensional feature vector for each instance. For each stage \(X\), and each index \(i = 1, 2, 3\), the \(i\)-th quartile \(X.Q_i\) is defined as follows:

\[
X.Q_i = \arg\min_d \left\{ F_X(d) \geq 0.25i \right\}
\]

where \(F_X\) is the CDF of stage \(X\). In words, the value of \(X.Q_i\) for a given set of hypnograms is the smallest \(d\) for which at least \(i\) quarters of the stage \(X\) bouts in the input set have a duration of \(d\) or less. As an illustration, the CDF of NREM stage 2 bout durations for the entire set of 244 hypnograms is shown in Fig. 2, together with the compressed quartile representation, visualized as a piecewise constant approximation with jumps at the quartile durations.

Figure 2: Stage NREM 2 bout duration CDF with quartiles visualized as CDF approximation.

2.3 Clustering

2.3.1 Clustering Technique

Unsupervised clustering was applied to the set of 15-dimensional feature vectors described in section 2.2 to seek objectively defined groups of hypnograms associated with distinct bout duration distributions. The technique of Expectation-Maximization (EM) clustering was selected after an experimental comparison with \(k\)-means clustering showed higher stability of the EM clustering results with respect to pseudorandom initial parameter variation (see section 3.1). EM performs iterative maximum likelihood estimation of the cluster parameters (Dempster et al., 1977; Neal and Hinton, 1998). Clustering experiments were carried out using the Weka data mining toolkit (Hall et al., 2009). A mixture of Gaussians is used as the cluster model, and initial parameter values are found through \(k\)-means clustering.
2.3.2 Measuring Clustering Stability

Stability of clustering results in the presence of pseudorandom parameter initialization was assessed by comparing the clusters that result from all pairs of 50 seed values for a given value of \( k \). A measure of clustering agreement based on the fraction of pairs of instances that are grouped together in the same cluster by each of the two clusterings, known as the adjusted Rand Index (Hubert and Arabie, 1985), was computed for all pairs of seed values. As compared with the standard Rand Index (Rand, 1971), the adjusted Rand Index is much more strict, as it accounts for the degree of matching expected by chance. Subsequent experiments were performed with a clustering of maximum mean adjusted Rand Index when compared to the other 49 tested seed values.

2.4 Statistical Significance

Tests of statistical significance are employed here to ensure validity of the findings at the level \( p < 0.05 \), minimizing the inference of apparent patterns that may occur due to chance. Specific statistical hypothesis tests used are described below, together with the methodology employed to control the type I error rate due to multiple statistical comparisons.

2.4.1 Multiway and Pairwise Comparisons

When comparing means or medians of several populations (e.g., clusters), ANOVA or a Kruskal-Wallis test are used. Likewise, statistical significance of differences of means or medians between pairs of populations is tested by using either a \( t \)-test or Wilcoxon rank sum test, respectively. ANOVA and \( t \)-tests presuppose normality of the distribution of the means, a condition that may not hold exactly in all cases. Nearly all of the comparisons performed in the present paper involve populations with several dozen members, and the normality condition is satisfied approximately. In any case, the Kruskal-Wallis and Wilcoxon rank sum tests do not presuppose normality, and provide additional confidence regarding statistical validity. A two-sample Kolmogorov-Smirnov test is used to compare probability distributions without any assumptions of a particular functional form, and without targeting any particular statistic such as the mean or median.

2.4.2 Correction for Increased Type I Error due to Multiple Comparisons

Several of the results described are obtained through exploratory data analysis, involving the simultaneous testing of multiple statistical hypotheses. In any such situation, the risk of a type I inference error – incorrectly rejecting a null hypothesis – increases due to the accumulation of error over multiple comparisons. This issue is addressed in the present paper using the method of (Benjamini and Hochberg, 1995), which provides rigorous control of the false discovery rate, that is, of the expected proportion of multiple null hypotheses that are incorrectly rejected due to multiple comparisons. Control of the false discovery rate is performed at the significance level \( p < 0.05 \).

3 RESULTS

3.1 Clustering Stability

Table 2 contains the mean observed values of the adjusted Rand Index (see subsection 2.3) for EM and \( k \)-means clustering, and \( k = 2, 3, 4 \). As shown, the mean observed value of the adjusted Rand Index for EM is at least 0.87 for all values of \( k \) considered. We note that the values of the standard Rand Index for EM (not shown) are at least 0.94 over the range \( k = 2, 3, 4 \). The adjusted Rand Index accounts for the degree of matching expected by chance, and thus produces more conservative values. The high values obtained for the adjusted Rand Index show that the EM clustering obtained is only slightly influenced by the initial parameter values, and represents a stable grouping of the hypnograms. Furthermore, EM consistently outperforms \( k \)-means as regards clustering stability over the stage bout duration dataset. For this reason, EM was selected as the clustering algorithm for the work discussed in the present paper. The seed value 8 was found to provide an EM clustering of maximum mean adjusted Rand Index as compared to the other 49 seed values considered, for each \( k = 2, 3, 4 \). All results discussed subsequently in this paper utilize the EM clustering resulting from the seed value 8.

In passing, we note that variants of the bout duration quartile data representation described in section 2.2.4, but using more than 4 quantiles, were also considered for the present work. The advantage of using a greater number of quantiles is the ability to describe finer details in the bout duration distributions. However, clustering stability was considerably lower with such representations, and so the decision was made to use quartiles only.
Table 2: Mean adjusted Rand Index stability values.

<table>
<thead>
<tr>
<th>k</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>0.99</td>
<td>0.90</td>
<td>0.87</td>
</tr>
<tr>
<td>k-means</td>
<td>0.51</td>
<td>0.53</td>
<td>0.36</td>
</tr>
</tbody>
</table>

3.2 Cluster Separation

3.2.1 Visualization of Cluster Separability

The visualization technique of multidimensional scaling (MDS) provides a low-dimensional nonlinear projection of a set of dataset in a way that minimizes distortion of the distances between pairs of data instances (Borg and Groenen, 2005). Fig. 3 shows a two-dimensional MDS projection of the set of data instances used in the present paper. The results of EM clustering did not enter into the generation of the MDS projection. The EM cluster labels for $k = 3$ were used only to determine the glyph (marker) used for each instance in the visualization shown. The MDS result shows only moderate separation among the EM clusters in two dimensions, which indicates that more than two variables are likely to be needed in order to achieve high separation. See section 3.2.2.

![Figure 3: Multidimensional scaling cluster visualization.](image)

3.2.2 Measurement of Cluster Separation via Classification

Separation among clusters was further assessed quantitatively by performing a classification task in which the EM cluster labels are viewed as the target class attribute, with the variables used for clustering used as predictive attributes. Classification accuracy, the fraction of instances for which the cluster label is correctly predicted, and the area under the Receiver Operating Characteristic (ROC) plot (Fawcett, 2003), remain consistently above 0.80 in the cases $k = 2, 3, 4$ for widely used classification techniques including C4.5 (J48) decision tree learning, naïve Bayes, and multilayer artificial neural networks (ANN). The area under the ROC plot accounts for prediction errors on a per-class basis, and is a better measure of classification performance in this context because the class (cluster) sizes are very dissimilar. Accuracy can produce overly optimistic results in such situations. Mean values of the area under the ROC plot for selected classifiers appear in Table 3. A 4-fold cross-validation protocol was employed to control variance due to data sampling.

Cluster separation is at best moderate in two-dimensional projections of the bout duration dataset in terms of the bout duration clustering variables, as expected based on the MDS visualization in Fig. 3. An example of moderate cluster separation occurs with the wake.Q3 and SWS.Q1 bout duration quartile variables. Use of the rule induction algorithm RIPPER (Cohen, 1995) (JRIP) over these predictive variables alone, with the $k = 3$ cluster label as the class, yields, after pruning and simplification, the classification rules shown in Fig. 4. The final rule is a default rule that is used when the other rules do not apply. This particular model attains an accuracy of 0.77 and a mean area under the ROC plot of 0.76. Although the classification performance of the model in Fig. 4 is unremarkable, it provides an easily understood rough description of the clusters in the case $k = 3$. In particular, it suggests that cluster 2 is associated with high wake bout durations. More detailed characterizations of the various clusters are discussed in section 3.3.4.

3.3 Statistical Properties of the Bout Duration Clusters

3.3.1 Cluster Sizes and Membership

The sizes of the EM bout duration clusters for $k = 2, 3, 4$ appear in Table 4. There exist relationships among the three families of clusterings, each of which corresponds to a value of $k$ in the range $2, 3, 4$. These relationships are observed by examining the detailed lists of individual instances (not shown) that comprise the various clusters. A simplified description of the relationships among clusterings for different values of $k$ is the following. Additional characteristics of individual clusters are given in Table 5 and discussed in section 3.3.4.

Relationships between $k = 2$ and $k = 3$ Clusters. The cluster labeled 1 in the $k = 2$ family splits into
the two \(k = 3\) clusters labeled 1 and 3. As discussed in section 3.3.4 below, the \(k = 3\) cluster 3 portion is characterized by higher SWS bout duration quartiles than the \(k = 3\) cluster 1 portion. Two-thirds of the \(k = 2\) cluster 2 – with higher wake and lower SWS and REM bout duration quartiles – retains its identity in the \(k = 3\) family; the remaining one-third of the \(k = 2\) cluster 2 joins the \(k = 3\) cluster 3. The only inaccuracy in this description is that 3 of the 33 instances in the \(k = 2\) cluster 2 join the \(k = 3\) cluster 1.

Relationships between \(k = 3\) and \(k = 4\) Clusters.
In the transition between \(k = 3\) and \(k = 4\), cluster 1 remains largely unchanged (with only 12 of 148 instances leaving cluster 1 and joining cluster 4). Cluster 2 remains mainly within cluster 2 (with 4 of 19 instances joining cluster 4, which has higher mean REM bout duration quartiles than cluster 2; see section 3.3.4). Two-thirds of the \(k = 3\) cluster 3 joins the \(k = 4\) cluster 4, and the remaining one-third of the \(k = 3\) cluster 3 remains within the \(k = 4\) cluster 3 (8 instances join \(k = 4\) cluster 4). However, the \(k = 4\) cluster 4 retains the characteristic, shared with \(k = 3\) cluster 3, of having the highest SWS bout duration quartiles among clusters.

### 3.3.2 Cluster Bout Duration Summary Statistics

The mean, standard deviation, median, and mean absolute deviation of the 15 descriptive variables were computed for each of the EM clusters, with a view toward establishing statistical differences among clusters. Table 5 provides numerical values of the bout duration quartiles of the different clusters for \(k = 2, 3, 4\). Fig. 5, 6, 7 show the mean values of the 15 clustering variables in the cases \(k = 2, 3, 4\), respectively. These figures suggest that each cluster is characterized by different bout duration quartiles for one or more of the sleep stages than the other clusters (e.g., cluster 2 by higher wake duration quartiles).

### 3.3.3 Multiway Cluster Comparisons

Statistical significance of the observed differences in the means among clusters was assessed by ANOVA and Kruskal-Wallis tests for multiway comparisons, and by \(t\), and Wilcoxon rank sum tests for pairwise comparisons. A nonparametric two-sample Kolmogorov-Smirnov test was also used to determine differences between pairs of clusters in the overall distributions of the bout duration quartile variables. All \(p\)-values were corrected for multiple comparisons using the Benjamini-Hochberg method on a per-clustering basis, so that reported \(p\)-values are upper bounds on the false discovery rate relative to all findings over the given family of \(k\) clusters. The results are as follows. For all clustering families, \(k = 2, 3, 4\), the wake stage and stage NREM1 duration quartile variables differ significantly among clusters in a multiway comparison using the Kruskal-Wallis test (\(p < 0.05\)). ANOVA results are in agreement with Kruskal-Wallis, with the exception that the inter-cluster difference in the quartile variable REM.Q1 is not found to be significant for \(k = 2, 3\). Additionally, both Kruskal-Wallis and ANOVA find highly significant (\(p < 10^{-6}\)) differences among clusters in the SWS bout duration quartile variables for \(k = 3, 4\). In contrast, the differences in the stage NREM2 bout duration quartiles among clusters are not found to be significant for any of the clustering families, \(k = 2, 3, 4\). Pairwise statistical comparisons provide additional information, and are discussed in section 3.3.4 below.

### 3.3.4 Pairwise Comparisons. Bout Duration Characteristics of Individual Clusters

The following are a few noteworthy statistically significant differences in bout durations. The reader is also referred to Table 5, and Fig. 5, 6, 7 in conjunction with this discussion. Below, the precise family (value of \(k\)) is sometimes omitted, in case in which bout duration characteristics of a particular cluster number are qualitatively similar for different values of \(k\).

**Cluster 1.** Clusters 1 and 3 share the property that their median wake bout duration quartiles are significantly lower than for clusters 2 and 4 (Wilcoxon \(p < 0.05\)). On the other hand, cluster 1 has significantly lower SWS bout duration quartiles than clus-
ter 3. See Fig. 5, Fig. 6, and Fig. 7. The bout duration characteristics of cluster 1 are remarkably stable across values of $k$.

Cluster 2. Cluster 2 consistently has significantly higher wake bout duration quartiles than any other cluster, for $k = 2, 3, 4$ (Wilcoxon $p < 0.02$). The single exception is the variable wake.Q1 in the case $k = 4$. Low sample sizes for $k = 4$ clusters 2 and 4 (15 and 24, respectively) likely contribute to the latter isolated nonsignificance finding. One also observes that, in the progression from $k = 2$ to $k = 3$ to $k = 4$, cluster 2 has monotonically decreasing REM bout duration quartiles.

Cluster 3. As observed in section 3.3.1, 145 of the 148 instances (approximately 98%) in the $k = 3$ version of cluster 3 belong to the $k = 2$ version of cluster 1. The remainder of the $k = 2$ cluster 1 instances form the majority of the $k = 3$ cluster 3. Therefore, it is not surprising that many of the bout duration quartiles for the $k = 3$ version of cluster 3 are similar to those for cluster 1. See Fig. 6 and Table 5. However, there is an immediately noticeable difference between clusters 1 and 3 for $k = 3$, namely the fact that cluster 3 has visibly higher SWS bout duration quartiles than all other clusters, including cluster 1. In other words, cluster 3 for $k = 3$ consists mainly of those $k = 2$ cluster 1 instances with higher SWS bout duration quartiles. This high SWS bout duration description of cluster 3 persists for $k = 4$. However, the observed SWS quartile bout durations for cluster 3, though highest among all clusters, are not significantly higher than those of clusters 2 and 4, again due likely to the small sizes of the latter clusters.

Cluster 4. Cluster 4 is characterized by significantly higher REM bout quartile durations than any other cluster (Wilcoxon $p < 10^{-3}$).

Clustering Description via Classification Rules. One can compare the characterizations of the clusters described in the preceding paragraphs with the model constructed by the JRIP conjunctive rule classifier in the case $k = 3$. The model is as shown in Fig. 8, and achieves a classification accuracy of 0.86 and mean ROC area of 0.88. The rules of this model closely agree with the descriptions provided above.
3.4 Health-related Cluster Differences

3.4.1 Comparisons of Sleep-related and Health-related Variables

The bout duration clusters identified by the EM procedure were examined to determine differences among them in the values of sleep-related and health-related variables not used in the clustering procedure itself. Group comparisons of means and medians were performed using ANOVA and Kruskal-Wallis tests, respectively. Pairwise comparisons of means and medians used a t-test and Wilcoxon rank sum test. For all values of $k = 2, 3, 4$, Kruskal-Wallis and ANOVA determined that mean sleep latency (time elapsed from getting in bed until first non-wake epoch) differs significantly among bout duration clusters ($p < 0.05$). The highest mean value of sleep latency occurs in cluster 2. The pairwise difference in mean and median sleep latency between cluster 2 and all other clusters is also significant ($p < 0.05$). As observed in Table 5 and discussed in section 3.3.4, cluster 2 has the highest mean wake bout duration quartiles of all of the clusters. It is entirely possible that the high sleep latency contributes to the increased wake bout durations in cluster 2. Certain variables that correspond to individual items in the Epworth Daytime Sleepiness questionnaire are also significantly different in a multi-way comparison among clusters, and are significantly different in pairwise comparisons between cluster 2 and the others in particular: a sensation of muscular weakness or paralysis during laughter, anger, or emotional situations, and the recollection of vivid dreams and nightmares, differ significantly among clusters for $k = 2, 3$, and are highest in cluster 2 for $k = 2, 3$ ($p < 0.05$); an uncomfortable crawly sensation in the legs that is relieved by walking differs significantly ($p < 0.05$) among clusters for $k = 3, 4$, and is lowest in cluster 2.

3.4.2 Comparison with Multivariate Linear Regression

Based on the finding of significant differences in health variables in section 3.4.1, it is natural to ask whether standard linear regression can provide good predictions of one of these variables, such as a muscle weakness or paralysis in emotional situations, based on bout duration statistics. In the case $k = 3$, least squares linear regression yields the model in Fig. 9 (coefficients shown to two significant digits).
(wake.Q3 >= 44) => cluster=cluster2 (12.0/1.0)
(wake.Q2 >= 6) and (SWS.Q1 <= 5) => cluster=cluster2 (5.0/1.0)
(NREM1.Q2 >= 3) and (NREM2.Q2 <= 9) => cluster=cluster2 (5.0/1.0)
(SWS.Q1 >= 30) => cluster=cluster3 (41.0/2.0)
(NREM1.Q3 >= 4) => cluster=cluster3 (22.0/1.0)
(SWS.Q3 >= 79) => cluster=cluster3 (15.0/3.0)
(SWS.Q2 >= 49) => cluster=cluster3 (5.0/2.0)
=> cluster=cluster1 (139.0/0.0)

Figure 8: JRIP conjunctive rule model of the clusters for k = 3.

paralys = -0.015 wake.Q1 + 0.012 wake.Q2 + 0.0037 wake.Q3
-0.22 NREM1.Q1 + 0.07 NREM1.Q3
+0.03 NREM2.Q1 + 0.018 NREM2.Q2
-0.0045 REM.Q1 - 0.012

Figure 9: Least squares linear regression model of paralysis ($r^2 < 0.01$).

the linear correlation between paralysis and the predictions of the least squares linear regression model is less than 0.06. Thus, this model explains a fraction that is less than 0.06^2, which is much less than 1% of the variance in paralysis. Nonlinear predictive models obtained through regression based on the machine learning technique of Support Vector Machines (SVM) provide slightly improved performance here. In any case, the fact that paralysis differs significantly among the bout duration-based groupings found through clustering, already shows that machine learning can uncover structure in health-related data that is not clearly identified by more traditional statistical techniques such as linear regression.

4 CONCLUSIONS AND FUTURE WORK

This paper has applied unsupervised machine learning to the discovery of patterns in human sleep data based on the duration distributions of continuous bouts in the various sleep stages. The results presented identify groups of hypnograms with distinct bout duration properties. The differences in bout durations among groups are shown to be statistically significant ($p < 0.05$), even after a correction to prevent increased type 1 error due to multiple comparisons. Each group is characterized by bout duration features for specific sleep stages, the values of which differ significantly from those of other groups.

Several sleep-related and health-related variables not used in the grouping procedure have been compared across groups. Of these variables, several display significantly different statistics in different bout duration groups, including sleep latency and several variables corresponding to items on the Epworth Daytime Sleepiness questionnaire, such as muscular weakness or paralysis associated with emotional situations, the recollection of vivid dreams or nightmares, and an uncomfortable “crawly” sensation in the legs that is relieved by walking. It is found that these variables are significantly different in the bout duration group characterized by the highest mean duration of wake bouts. This finding provides a specific manner in which sleep dynamics reflects the values of variables that are not specific to sleep. It is of interest to further explore the importance within sleep medicine of these bout duration groups in future work.

The results presented in this paper are based on a highly compressed representation of the bout duration distributions, utilizing only the three quartile values of the cumulative bout duration distribution for each sleep stage. It is possible that this compression limits the capacity of the clustering technique to identify important dynamical features. Increasing the number of quantiles provides greater representational accuracy, but was found to also reduce stability of the clustering results. Future work should investigate alternative representations of sleep dynamical information that simultaneously provide important detail in the distributions and stability of the machine learning results.

Additionally, the current work only considers the duration of each bout in a given stage, without regard for what stage occurs immediately afterwards. It would be desirable to also consider the statistics of specific stage transitions in future work. However, accurate modeling of the sleep stage transition statistics may require the use of multiple nights’ sleep data, or ambulatory monitoring of key physiological signals.

REFERENCES


