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Abstract: Workflow is a formal description of a process or processes. There exist tools for interactive and visual 
editing of workflows such as the FlowOpt Workflow Editor. During manual editing of workflows, it is 
common to introduce flaws such as cycles of activities. Hence one of the required features of workflow 
management tools is verification of workflows, which is a problem of deciding whether the workflow 
describes processes that can be realized in practice. In this paper we deal with the theoretical complexity of 
verifying workflows with a nested structure and with extra constraints. The nested structure forces users to 
create valid workflows but as we shall show, introduction of extra causal, precedence, and temporal 
synchronization constraints makes the problem of deciding whether the workflow represents a realizable 
process hard. In particular, we will show that this problem is NP-complete. 

1 INTRODUCTION 

Workflow optimization is an important aspect of 
many problems including project management and 
manufacturing scheduling. There exist many formal 
models to describe the workflows (van der Aalst and 
Hofstede, 2005) typically using temporal networks 
where the nodes correspond to activities and arcs are 
annotated by the temporal relations between the 
activities. In this paper we focus on the models 
describing optional ways how to realize the 
workflow. We mean that the workflow describes 
alternative processes and a particular process is 
selected based on specified criteria such as 
availability of resources or required completion 
times. Optional (alternative) activities were 
introduced to the scheduling workflows in (Beck and 
Fox, 2000) and in this paper we use the formal 
model of such workflows called Temporal Networks 
with Alternatives (TNA) (Barták and Čepek, 2007). 
This model is based on parallel and alternative 
splitting and joining of processes that is also known 
as AND-split and OR-split (and AND-join, OR-join) 
in traditional workflow management systems (van 
der Aalst and Hofstede, 2005) (Bae et al., 2004). It 
has been shown in (Barták and Čepek, 2007) that the 
problem whether it is possible to select a process 
from a TNA such that the process contains a specific 

node and satisfies the branching constraints (defined 
by splitting and joining of processes) is NP-complete 
even if no temporal constraints are imposed (the arcs 
describe the precedence constraints only). This 
implies that verifying general TNA workflows, 
which is the task of deciding whether for any node 
(activity) there exists a valid process, is NP-
complete. When a TNA is restricted to a nested 
structure – we are talking about a Nested TNA – then 
the above decision problem is solvable in 
polynomial time provided that only the precedence 
constraints are used between the nodes (Barták and 
Čepek, 2008). Unfortunately, when the simple 
temporal constraints are allowed in a Nested TNA 
then the problem of deciding about the existence of a 
valid process becomes NP-complete again (Barták, 
Čepek, Hejna, 2008). 

This paper addresses the problem of verifying a 
Nested TNA with precedence constraints and some 
extra constraints. We will first give necessary 
background on Nested TNAs and explain the 
semantics of custom constraints added to these 
workflows to simplify modeling of real-life 
processes. Then, we will look separately on the 
problems of verifying workflows with causal, 
precedence, and synchronization constraints. We 
will show that the problem whether there exists a 
valid process where these extra constraints are 
enforced is NP-complete in general. 
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2 BACKGROUND 

A Temporal Network with Alternatives (Barták and 
Čepek, 2007) is a directed acyclic graph where the 
nodes describe the activities and the arcs specify the 
precedence constraints between the activities (in 
general, simple temporal constraints are allowed, but 
we restrict to the precedence constraints which 
seems enough for the description of most processes). 
When there are more arcs going from (to) a node, 
then the type of branching must be specified. 
Parallel output (input) branching means that the 
node is present in the process if and only if all 
directly following (preceding) nodes are present. 
Alternative output (input) branching means that the 
node is present in the process if and only if exactly 
one of the directly following (preceding) nodes is 
present. If the node is not present in the process then 
none of the directly following (preceding) nodes is 
present. Figure 1 gives an example of TNA with one 
selected valid process. 

 
Figure 1: A Temporal Network with Alternatives with a 
single selected valid process. 

Obviously, the branching constraints restrict 
which nodes can be present together in a valid 
process. An empty process is always valid, but if a 
particular node must be included in the process then 
the problem of deciding whether such a process 
exists or not is NP-complete (Barták and Čepek, 
2007). Therefore a restricted form of a TNA, called 
a Nested TNA, was proposed in (Barták and Čepek, 
2008) to make this decision problem tractable. The 
idea is that a Nested TNA is obtained by a sequence 
of arc decomposition operations starting with a 
trivial TNA consisting of a single arc. Briefly 
speaking, an arc is decomposed by adding several 
new nodes and connecting them to the original end 
nodes of the arc as Figure 2 shows. Each such 
decomposition is marked either as a parallel or an 
alternative decomposition which corresponds to the 
branching constraints from the TNA. The obtained 
structure called a nest enforces each output 
branching to be “closed” by an input branching of 

the same type downstream the graph. The TNA in 
Figure 1 is actually a Nested TNA. 

 
Figure 2: Arc decompositions to obtain a Nested TNA. 

The nested structure is quite typical for real-life 
processes (Bae et al., 2004). It naturally forces the 
workflow to be always valid meaning that for each 
node (activity) there exists a valid process 
containing it. That is the reason why this model was 
adapted in the FlowOpt system developed for 
modeling and optimizing manufacturing processes 
(Barták et al., 2011). To increase flexibility, the 
FlowOpt workflow model allows adding extra 
constraints to the core nested structure. 

2.1 Nested Workflows with Extra 
Constraints 

The FlowOpt system adapted the idea of a Nested 
TNA where instead of decomposing the arcs the 
tasks are being decomposed (decomposing tasks 
seems more natural for the end users). Basically the 
nested workflow is obtained from a single (root) task 
by repeated application of the decomposition 
operations. Three decomposition operations can be 
applied, namely serial, parallel, and alternative 
decompositions (Figure 3). There is obvious 
similarity to the arc-decomposition operations in a 
Nested TNA (compare Figures 2 and 3). These 
decomposition operations are applied repeatedly 
until non-decomposable base activities are obtained. 
By building the workflows using the above 
decomposition operations only, a specific nested 
structure of the workflow is forced. Such workflows 
are always valid because any activity can be a part 
of some process defined by the workflow. Moreover, 
as we discussed above, it is easy (in polynomial 
time) to verify whether a process containing specific 
activities exists or not (Barták and Čepek, 2008). 
This is not surprising as the nested structure has 
inherently a hierarchical (tree) structure describing 
how the top task decomposes into sub-tasks and 
activities. This simplifies reasoning significantly 
because the activities in different nests are related 
only through a common ancestor task in the 
hierarchical structure. 

The base nested structure is not always enough to 
describe  the  peculiarities  of  real-life processes and 

parallel branching alternative branching

...
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Figure 3: Serial, parallel, and alternative decompositions 
of nested workflows as they appear in the FlowOpt 
Workflow Editor. 

hence the FlowOpt system supports additional 
constraints beyond the nested structure. These 
constraints express binary relations between the 
tasks and activities in the workflow. For example, 
the users can connect alternatives in different tasks 
and describe that selecting a particular alternative 
branch forces (or forbids) selecting a specific 
alternative branch in a different task. This is a form 
of causal relation between the tasks. Three types of 
additional constraints are supported in the FlowOpt 
system: 

 precedence constraints between any pair of 
tasks meaning that if both tasks are selected in 
the process then the specified ordering must 
hold, 

 temporal synchronization constraints 
describing that two tasks start or end at the 
same time or that one task must start exactly 
when another task finishes, 

 logical constraints describing causal relations 
between the tasks beyond the nested structure 
(mutual exclusion, equivalence, and 
implication are supported). 

We will now study the problem of verifying such 
workflows. 

2.2 Workflow Verification 

When the user specifies the workflow structure, it is 
important to ensure that this structure is “correct”. 
This process is called workflow verification and it 
should be an integral part of workflow management 
systems (Giro, 2007). Workflow verification means 
checking that for any activity in the workflow there 
is a valid process containing this activity. By the 
valid process we mean a process selected from the 
workflow and satisfying all the workflow and extra 
constraints. If some activity cannot be included in 

any valid process then it indicates a flaw in the 
workflow – such activity should not be a part of the 
workflow specification at all. Note that during the 
workflow verification, we treat each workflow 
separately and we do not assume resource 
constraints. We only deal with the temporal and 
causal relations between the tasks and activities and 
we assume that the activities have non-negative 
duration. In particular, we study a sub-problem of 
the workflow verification where we verify whether 
or not it is possible to select a process from the 
workflow satisfying all the workflow constraints and 
the extra constraints. This is a verification problem 
where only the presence of the root task in the 
workflow is checked. 

Workflow verification has been studied for some 
time. Various methods of verification have been 
proposed, for example using Petri Nets (van der 
Aalst and Hofstede, 2000), graph reductions (Sadiq 
and Orlowska, 2000), or logic-based verification (Bi 
and Zhao, 2004). These methods deal with complex 
workflow structures that are used for example to 
model business processes. A Nested TNA can be 
seen as a subset of the workflow models such as 
YAWL though using the extra constraints increases 
the modeling power of a Nested TNA in some sense 
beyond the traditional workflow models. Our 
approach to verification is close to logic-based 
verification as for example presented in (Bi and 
Zhao, 2004). However, in this paper we study 
merely the theoretical complexity of the verification 
problem rather than proposing a novel verification 
technique. Nevertheless, we will also describe some 
easily verifiable cases at the end of the paper. 

3 NESTED WORKFLOWS WITH 
CAUSAL CONSTRAINTS 

Let us first formally introduce the causal relations 
supported by the FlowOpt system. Causal relations 
are binary logical relations between the tasks and 
activities in the workflow that describe how the 
tasks or activities may appear in the solution. 
Because the activities are just a special case of the 
tasks (a task that is not decomposed is filled by an 
activity), we will be using the word task further. In 
the paper we will describe two types of causal 
relations, namely implication and mutual exclusion. 
If tasks A and B are connected by the implication 
relation A ⇒ B then if task A appears in the process 
then also task B must appear in the same process. 
The mutual exclusion relation, shortly mutex, 
between tasks A and B means that these two tasks 
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cannot appear together in a single process. It means 
that either task A appears in the process, but not task 
B, or task B appears in the process, but not task A, 
or none of these tasks appear in the process. Notice 
that the mutex relation looks similar to classical 
XOR relation, but it is slightly different as XOR 
requires that exactly one of the tasks appears in the 
process. 

In the rest of this section we will show that if the 
implication or mutex relations appear in a nested 
workflow then the problem of checking validity of 
the workflow is NP-complete. We will show that the 
problem of deciding satisfiability of a Boolean 
formula in a conjunctive normal form where each 
clause contains three literals – this is a well known 
3SAT problem that has been shown to be NP-
complete (Garey and Johnson, 1979) – can be 
converted in polynomial time to a problem of 
deciding whether the nested workflow with some 
additional constraints has a solution. Briefly 
speaking, we will present how to convert any 3SAT 
formula to a nested workflow that uses either the 
implication constraints or the mutex constraints. 
Then we will prove that the solutions to this nested 
workflow correspond to the solutions of the original 
Boolean formula.  

Proposition 1: The problem of deciding validity of a 
nested workflow with additional implication 
constraints is NP-complete. 

Proof: If we have a selection of activities belonging 
to the solution then it is easy to check in polynomial 
time whether the workflow and implication 
constraints are satisfied. Hence the problem belongs 
among the NP problems. 

Let us assume that we have a 3SAT formula, 
which is a conjunction of clauses, where each clause 
is a disjunction of three literals and a literal is a 
variable or a negation of the variable. We will 
represent this formula as a nested workflow 
consisting of a sequence of tasks where first there 
are tasks for the variables followed by a single task 
for the formula. For each variable there is exactly 
one task (the order of the tasks does not matter) 
which decomposes to two activities, one 
representing value true and the other one 
representing value false – let us call them value 
activities. The task representing the formula 
decomposes into parallel tasks where each task 
represents one clause in the formula – we will call 
them clause tasks. Figure 4 shows this 
representation. Notice that using serial or parallel 
decomposition does not matter here and it is possible 
to use any of these types of task decomposition. We  

 
Figure 4: The core concept of representing a 3SAT 
formula as a nested workflow. 

will now show on a single example how to represent 
the clause, in particular how clause X ∨ Y ∨ ¬ Z is 
represented using an alternative decomposition of 
the clause task. There are seven possible 
assignments of variables X, Y, and Z satisfying this 
clause; X = true, Y = true, Z = true is one of them. 
To satisfy the clause exactly one of these satisfying 
assignments must be used. To model this feature we 
decompose the clause task into seven alternative 
activities, each one representing one satisfying 
assignment – let us call them assignment activities. 
Now we need to ensure that these assignment 
activities are selected only when the corresponding 
value activities are selected. This is achieved by 
using the implication constraints going from the 
assignment activities to the value activities. Let the 
assignment activity correspond to assignment 
X = true, Y = true, Z = true. Then we include the 
implication constraints from the assignment activity 
to the corresponding value activities of tasks 
representing variables X, Y, and Z as Figure 5 
shows. By this construction we obtain a nested 
workflow whose size is polynomial in the size of the 
3SAT formula. In particular if we have a formula 
with n variables and m clauses then we obtain a 
nested workflow with 2n + 7m activities (the number 
of tasks is 3n + 8m + 2) and 21m additional 
implication constraints. 

The last step of the proof is to show that the 
nested workflow has a solution if and if only the 
formula is satisfiable. We will show that each 
satisfying assignment of the variables corresponds to 
one solution of the workflow. If we have a satisfying 
assignment then we select in the workflow the value 
activities corresponding to the values in the 
assignment and the assignment activities compatible 
with the assignment. Obviously the implication 
constraints are satisfied by this selection. Moreover 
from   each   task   corresponding  to  a  variable  we 
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Figure 5: Selected custom implication constraints 
connecting the assignment and value activities in the 
model of a 3SAT formula. 

selected exactly one activity (the variable is 
instantiated to some value) and from each task 
corresponding to a clause, exactly one activity is 
selected because the clause is satisfied by the 
assignment. Together the selected activities form the 
process satisfying the workflow constraints as well 
the additional causal constraints. Vice versa, let us 
have a process selected from the workflow. Then 
exactly one value activity is selected for each task 
representing a variable – this activity determines the 
value of that variable. For each task corresponding 
to a clause, one assignment activity is selected. As 
implication constraints from this assignment activity 
must be satisfied, the value activities corresponding 
to the assignment must also be selected which means 
that the values assigned to the variables satisfy the 
clause. Together, the selected process defines an 
assignment of variables that satisfies all clauses in 
the formula and hence the formula is satisfiable. 

We have shown that the solutions of the nested 
workflow with additional implication constraints 
correspond to the solutions of the 3SAT formula. 
Hence the problem to decide whether the nested 
workflow with implication constraints has a solution 
is NP-complete. 

We will now use similar arguments to show that 
the problem of verifying nested workflows with 
additional mutex constraints is also NP-complete. 

Proposition 2: The problem of deciding validity of a 
nested workflow with additional mutex constraints is 
NP-complete. 

Proof: We will again use the transformation of a 
3SAT formula to a nested workflow.  In fact, we 
will use exactly the same core structure of the nested 
workflow as in the proof of proposition 1 (also 
shown in Figure 4), we shall only introduce mutex 
constraints instead of the implication constraints. 

Let us assume that for a given 3SAT formula we 
generated a nested workflow with the structure 
shown in Figure 4, that is, with the pairs of value 
activities for the propositional variables and with the 
clause tasks each containing seven assignment 
activities. We shall introduce the mutex constraints 
as follows. Assume that an assignment activity 
corresponds to a satisfying assignment X = true, 
Y = true, Z = true. Then we introduce the mutex 
constraints between this activity and the value 
activities for X = false, Y = false, and Z = false. 
These mutex constraints ensure that the assignment 
activity cannot be selected together with the 
incompatible value activities. In other words 
selection of an assignment activity forces selection 
of compatible value activities (recall that for each 
propositional variable exactly one value activity is 
selected). Figure 6 shows these additional mutex 
constraints. Like before, for a formula with n 
variables and m clauses we obtain a nested workflow 
with 2n + 7m activities (the number of tasks is 
3n + 8m + 2) and 21m additional mutex constraints 
so the size of the nested workflow is polynomial in 
the size of the 3SAT formula. 

Now, it is straightforward to show that the 
satisfying assignments to a given 3SAT formula 
correspond one-to-one to the solutions of the 
constructed nested workflow. If we have a satisfying 
assignment of the propositional variables then we 
select the value and assignment activities 
corresponding to this assignment. Consequently, for 
each task describing a variable exactly one value 
activity is selected and for each clause task exactly 
one assignment activity is selected. As described in 
the previous paragraph this selection satisfies the 
mutex constraints. Vice versa, the selection of 
activities satisfying the workflow and the mutex 
constraints defines a satisfying assignment of the 
3SAT formula. 

 
Figure 6: Selected custom mutex constraints connecting 
assignment and value activities in the model of a 3SAT 
formula. 
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We have shown that the solutions of the nested 
workflow with additional mutex constraints 
correspond to the solutions of the 3SAT formula. 
Hence the problem to decide whether the nested 
workflow with mutex constraints has a solution is 
NP-complete.  

The problem of deciding whether a given 
workflow has a solution, that is, finding whether it is 
possible to select a subset of activities satisfying the 
workflow constraints, is NP-complete if additional 
causal constraints are added. Consequently the 
problem of verifying the nested workflows with 
causal constraints is also NP-complete. 

4 NESTED WORKFLOWS WITH 
PRECEDENCE CONSTRAINTS 

Let us now look at the nested workflows where 
additional precedence constraints are added. Recall 
that the nested workflows already include implicit 
precedence constraints. Namely each arc in the 
graphical representation of the workflow represents 
a precedence relation between the tasks and 
activities. These precedence relations are introduced 
during the task decomposition. To check consistency 
of the precedence relations, it is enough to ensure 
that the graph is acyclic (we assume that the 
activities have positive duration). This is always the 
case for implicit precedence relations introduced 
during task decomposition as the decomposition will 
never introduce a cycle. If we allow adding extra 
precedence constraints then directed cycles may be 
introduced to the workflow. This does not 
necessarily mean inconsistency of the workflow 
because not all tasks/activities are present together in 
valid processes selected from the workflow. We just 
need to ensure that every directed cycle of the 
precedence constraints can be broken by omitting at 
least one of the activities from the cycle in the 
solution. We will show now that the problem of 
detecting whether breaking the cycles is possible is 
an NP-hard problem. We will again use the 
conversion of a 3SAT formula to a nested workflow 
as shown in Figure 4. In fact we will use a similar 
idea to exploiting the mutex constraints. Notice that 
a cycle of two activities is semantically identical to a 
mutex relation between the same activities – these 
two activities cannot be present in the solution 
together. 

Proposition 3: The problem of deciding validity of a 
nested workflow with additional precedence 
constraints is NP-complete. 

Proof: The proof is identical to the proof of 
Proposition 2 where mutex constraints are used. The 
only difference is that the precedence constraints are 
used instead of the mutex constraints as Figure 7 
shows. Let us also set the duration of all activities to 
one to highlight that the loops are forbidden because 
the activities in the loop cannot be allocated 
consistently to time in such a way that the 
precedence constraints are satisfied (a TNA expects 
a unique appearance of each activity in the process 
which differentiates it from workflow formalisms 
such as YAWL (van der Aalst and Hofstede, 2005)). 

 
Figure 7: Selected custom precedence constraints 
connecting assignment and value activities in the model of 
a 3SAT formula. 

Assume that an assignment activity corresponds 
to a satisfying assignment X = true, Y = true, 
Z = true. Then we introduce the precedence 
constraints leading from this activity to the value 
activities for X = false, Y = false, and Z = false. 
Because the value activities are before all the 
assignment activities in the workflow, the added 
precedence constraints introduce directed cycles to 
the workflow. These directed cycles consist of tasks 
encapsulating the value activities (these tasks must 
always be in the solution process) and two activities 
connected by the extra precedence constraints. 
Hence one of these two activities must be omitted 
from the process to break the cycle so the semantic 
of such precedence constraints is identical to the 
mutex constraints between the same pair of 
activities. Therefore the arguments from the proof of 
Proposition 2 can be re-used there. We should only 
show that the problem belongs to the NP class which 
is easy to realize as checking validity of the solution 
means checking the workflow constraints as before 
and checking that there is no directed cycle between 
the selected activities which can be done in 
polynomial time for example by topological sorting.   

ON COMPLEXITY OF VERIFYING NESTED WORKFLOWS WITH EXTRA CONSTRAINTS

351



 

5 NESTED WORKFLOWS WITH 
SYNCHRO CONSTRAINTS 

Finally, we will study the workflows with additional 
temporal synchronization constraints. Temporal 
synchronization constraints are useful to express 
relations such as that two activities should start or 
finish at the same time or that an activity should start 
exactly at the time when the preceding activity 
finished. Some of these relations are hidden in the 
core structure of the nested workflow. In particular, 
we assume that the task starts exactly at the time 
when the earliest of its sub-tasks starts and the task 
finishes exactly when the latest of its sub-tasks 
finishes (note that we assume only those sub-tasks 
that are selected in the solution). Naturally, when 
working with the temporal relations, we assume that 
all activities have non-negative duration (zero 
duration is allowed to model milestone activities). 

It is practically useful to express some temporal 
synchronization constraints explicitly even between 
the tasks that do not belong to the same nest in the 
workflow. In particular, the FlowOpt system 
supports temporal synchronization constraints that 
are known as start-start, end-end, end-start, and 
start-end. Unfortunately, as we shall show adding 
these extra constraints to nested workflows makes 
the problem of deciding whether or not the 
workflow has a solution intractable. Differently from 
the previous sections, we will now use a subset-sum 
problem to prove the above claim. This is motivated 
by a similar approach used in (Barták, Čepek, Hejna, 
2008). A subset-sum problem is a known NP-
complete problem (Garey and Johnson, 1979) that is 
formulated as follows. Given a set of positive 
integers Zi and integer K, does the sum of some 
subset of {Zi | i= 1,…,n} equals K? We shall show 
that this problem can be represented as a nested 
workflow with extra synchronization constraints. 

Proposition 4: The problem of deciding validity of a 
nested workflow with additional synchronization 
constraints is NP-complete. 

Proof: The structure of the proof is similar to the 
proofs of previous propositions in the paper. First, it 
is easy to verify in a polynomial time that a given 
selection of activities allocated to time satisfies the 
workflow constraints as well as the additional 
temporal synchronization constraints. Hence the 
problem belongs to the NP class. 

We shall show now that a subset-sum problem 
can be modeled as a nested workflow with 
synchronization constraints. Assume the numbers K, 
Z1,…, Zn from the subset-sum problem. We use a 

workflow with two parallel tasks. One task contains 
a single activity with duration K – let us call it a 
bound activity – and the other task is a serial 
decomposition with n value tasks. Each of the value 
tasks decomposes further into two alternative 
activities – we call them value activities. One of 
these activities has zero duration and the other 
activity has duration Zi in the i-th value task. The 
idea is that we need to select the value activities 
such that the sum of their durations equals the 
duration of the bound activity. To ensure this feature 
we introduce the following synchronization 
constraints. The bound activity must start exactly at 
the same time as the first value task (start-start 
synchronization) and it must finish exactly when the 
last value task finishes (end-end synchronization). 
Moreover, the i-th value task must finish exactly 
when the (i+1)-th value task starts (end-start 
synchronization). Figure 8 gives an example of such 
a nested workflow with above described 
synchronization constraints. 

 
Figure 8: Representation of the subset-sum problem as a 
nested workflow with synchronization constraints. 

Obviously, each solution to the subset-sum 
problem corresponds to a selection of certain value 
activities and this selection satisfies the 
synchronization constraints. Vice versa, a set of 
activities satisfying the workflow and 
synchronization constraints defines a solution of the 
subset-sum problem. The bound activity is always 
selected and from each value task exactly one value 
activity is selected. The sum of durations of selected 
value activities equals the duration of the bound 
activity which complies with the specification of the 
subset-sum problem. Hence the subset-sum problem 
can be formulated as the problem of selecting 
activities from the nested workflow which proves 
that verification of nested workflows with 
synchronization constraints belong among the NP-
hard problems. 

6 CONCLUSIONS 

In   this   paper   we   showed   that   the   problem of 
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verifying whether or not there exists a feasible 
process selected from a nested workflow with 
additional constraints is NP-complete. We used 
workflows modeling 3SAT and subset-sum 
problems in the proofs and these workflows have a 
structure that is not typical for real-life workflows. 
Hence, there is a hope that real-life workflows can 
still be verified in a reasonable time in practice. The 
next step is to find such a procedure that can do 
verification of nested workflows with additional 
constraints efficiently in practice. Note that this 
verification procedure should work with constraints 
of all types mentioned in the paper together. 

 
Figure 9: A tree representation of nested workflows. 

Some of the extra constraints can be verified 
easily. Notice that a Nested TNA can be represented 
as a tree showing how the root task is decomposed 
into sub-tasks and so on until activities  are obtained 
in the leafs (Figure 9). There are basically two 
different locations where the binary custom 
constraint can be placed in this tree. Either the 
constraint connects two tasks on the same 
path/branch to the root task (for example the 
constraint between tasks A and B in Figure 9) or the 
constraint connects the tasks from different sub-trees 
with a common ancestor task (for example the 
constraint between tasks C and D in Figure 9). The 
constraints along the path to the root are those 
constraints that are easy to verify as they are 
frequently redundant (entailed by the workflow 
constraints) or inconsistent. The constraints between 
tasks from different sub-trees are easy to verify if 
their common ancestor (task E in Figure 9) 
decomposes alternatively. The only situation which 
makes verification non-trivial is when task E is a 
serial or parallel decomposition as in Figure 9. This 
is exactly the case of the nested workflows used in 
the proofs of NP-completeness in this paper. For 
these cases a straightforward approach is using a 

search procedure that finds for each activity a valid 
process containing this activity. If no valid process is 
found, the activity is reported to the user as a 
problematic activity. In such a case, it is not always 
clear which custom constraints cause the problem. 
Providing the most accurate explanation is an 
interesting open problem. 
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