
ON COMPLEXITY OF VERIFYING NESTED WORKFLOWS
WITH EXTRA CONSTRAINTS

Roman Barták
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

Keywords: Workflow, Verification, Complexity, Scheduling.

Abstract: Workflow is a formal description of a process or processes. There exist tools for interactive and visual
editing of workflows such as the FlowOpt Workflow Editor. During manual editing of workflows, it is
common to introduce flaws such as cycles of activities. Hence one of the required features of workflow
management tools is verification of workflows, which is a problem of deciding whether the workflow
describes processes that can be realized in practice. In this paper we deal with the theoretical complexity of
verifying workflows with a nested structure and with extra constraints. The nested structure forces users to
create valid workflows but as we shall show, introduction of extra causal, precedence, and temporal
synchronization constraints makes the problem of deciding whether the workflow represents a realizable
process hard. In particular, we will show that this problem is NP-complete.

1 INTRODUCTION

Workflow optimization is an important aspect of
many problems including project management and
manufacturing scheduling. There exist many formal
models to describe the workflows (van der Aalst and
Hofstede, 2005) typically using temporal networks
where the nodes correspond to activities and arcs are
annotated by the temporal relations between the
activities. In this paper we focus on the models
describing optional ways how to realize the
workflow. We mean that the workflow describes
alternative processes and a particular process is
selected based on specified criteria such as
availability of resources or required completion
times. Optional (alternative) activities were
introduced to the scheduling workflows in (Beck and
Fox, 2000) and in this paper we use the formal
model of such workflows called Temporal Networks
with Alternatives (TNA) (Barták and Čepek, 2007).
This model is based on parallel and alternative
splitting and joining of processes that is also known
as AND-split and OR-split (and AND-join, OR-join)
in traditional workflow management systems (van
der Aalst and Hofstede, 2005) (Bae et al., 2004). It
has been shown in (Barták and Čepek, 2007) that the
problem whether it is possible to select a process
from a TNA such that the process contains a specific

node and satisfies the branching constraints (defined
by splitting and joining of processes) is NP-complete
even if no temporal constraints are imposed (the arcs
describe the precedence constraints only). This
implies that verifying general TNA workflows,
which is the task of deciding whether for any node
(activity) there exists a valid process, is NP-
complete. When a TNA is restricted to a nested
structure – we are talking about a Nested TNA – then
the above decision problem is solvable in
polynomial time provided that only the precedence
constraints are used between the nodes (Barták and
Čepek, 2008). Unfortunately, when the simple
temporal constraints are allowed in a Nested TNA
then the problem of deciding about the existence of a
valid process becomes NP-complete again (Barták,
Čepek, Hejna, 2008).

This paper addresses the problem of verifying a
Nested TNA with precedence constraints and some
extra constraints. We will first give necessary
background on Nested TNAs and explain the
semantics of custom constraints added to these
workflows to simplify modeling of real-life
processes. Then, we will look separately on the
problems of verifying workflows with causal,
precedence, and synchronization constraints. We
will show that the problem whether there exists a
valid process where these extra constraints are
enforced is NP-complete in general.

346 Barták R..
ON COMPLEXITY OF VERIFYING NESTED WORKFLOWS WITH EXTRA CONSTRAINTS.
DOI: 10.5220/0003748003460354
In Proceedings of the 4th International Conference on Agents and Artificial Intelligence (ICAART-2012), pages 346-354
ISBN: 978-989-8425-95-9
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

2 BACKGROUND

A Temporal Network with Alternatives (Barták and
Čepek, 2007) is a directed acyclic graph where the
nodes describe the activities and the arcs specify the
precedence constraints between the activities (in
general, simple temporal constraints are allowed, but
we restrict to the precedence constraints which
seems enough for the description of most processes).
When there are more arcs going from (to) a node,
then the type of branching must be specified.
Parallel output (input) branching means that the
node is present in the process if and only if all
directly following (preceding) nodes are present.
Alternative output (input) branching means that the
node is present in the process if and only if exactly
one of the directly following (preceding) nodes is
present. If the node is not present in the process then
none of the directly following (preceding) nodes is
present. Figure 1 gives an example of TNA with one
selected valid process.

Figure 1: A Temporal Network with Alternatives with a
single selected valid process.

Obviously, the branching constraints restrict
which nodes can be present together in a valid
process. An empty process is always valid, but if a
particular node must be included in the process then
the problem of deciding whether such a process
exists or not is NP-complete (Barták and Čepek,
2007). Therefore a restricted form of a TNA, called
a Nested TNA, was proposed in (Barták and Čepek,
2008) to make this decision problem tractable. The
idea is that a Nested TNA is obtained by a sequence
of arc decomposition operations starting with a
trivial TNA consisting of a single arc. Briefly
speaking, an arc is decomposed by adding several
new nodes and connecting them to the original end
nodes of the arc as Figure 2 shows. Each such
decomposition is marked either as a parallel or an
alternative decomposition which corresponds to the
branching constraints from the TNA. The obtained
structure called a nest enforces each output
branching to be “closed” by an input branching of

the same type downstream the graph. The TNA in
Figure 1 is actually a Nested TNA.

Figure 2: Arc decompositions to obtain a Nested TNA.

The nested structure is quite typical for real-life
processes (Bae et al., 2004). It naturally forces the
workflow to be always valid meaning that for each
node (activity) there exists a valid process
containing it. That is the reason why this model was
adapted in the FlowOpt system developed for
modeling and optimizing manufacturing processes
(Barták et al., 2011). To increase flexibility, the
FlowOpt workflow model allows adding extra
constraints to the core nested structure.

2.1 Nested Workflows with Extra
Constraints

The FlowOpt system adapted the idea of a Nested
TNA where instead of decomposing the arcs the
tasks are being decomposed (decomposing tasks
seems more natural for the end users). Basically the
nested workflow is obtained from a single (root) task
by repeated application of the decomposition
operations. Three decomposition operations can be
applied, namely serial, parallel, and alternative
decompositions (Figure 3). There is obvious
similarity to the arc-decomposition operations in a
Nested TNA (compare Figures 2 and 3). These
decomposition operations are applied repeatedly
until non-decomposable base activities are obtained.
By building the workflows using the above
decomposition operations only, a specific nested
structure of the workflow is forced. Such workflows
are always valid because any activity can be a part
of some process defined by the workflow. Moreover,
as we discussed above, it is easy (in polynomial
time) to verify whether a process containing specific
activities exists or not (Barták and Čepek, 2008).
This is not surprising as the nested structure has
inherently a hierarchical (tree) structure describing
how the top task decomposes into sub-tasks and
activities. This simplifies reasoning significantly
because the activities in different nests are related
only through a common ancestor task in the
hierarchical structure.

The base nested structure is not always enough to
describe the peculiarities of real-life processes and

parallel branching alternative branching

...

ON COMPLEXITY OF VERIFYING NESTED WORKFLOWS WITH EXTRA CONSTRAINTS

347

Figure 3: Serial, parallel, and alternative decompositions
of nested workflows as they appear in the FlowOpt
Workflow Editor.

hence the FlowOpt system supports additional
constraints beyond the nested structure. These
constraints express binary relations between the
tasks and activities in the workflow. For example,
the users can connect alternatives in different tasks
and describe that selecting a particular alternative
branch forces (or forbids) selecting a specific
alternative branch in a different task. This is a form
of causal relation between the tasks. Three types of
additional constraints are supported in the FlowOpt
system:

 precedence constraints between any pair of
tasks meaning that if both tasks are selected in
the process then the specified ordering must
hold,

 temporal synchronization constraints
describing that two tasks start or end at the
same time or that one task must start exactly
when another task finishes,

 logical constraints describing causal relations
between the tasks beyond the nested structure
(mutual exclusion, equivalence, and
implication are supported).

We will now study the problem of verifying such
workflows.

2.2 Workflow Verification

When the user specifies the workflow structure, it is
important to ensure that this structure is “correct”.
This process is called workflow verification and it
should be an integral part of workflow management
systems (Giro, 2007). Workflow verification means
checking that for any activity in the workflow there
is a valid process containing this activity. By the
valid process we mean a process selected from the
workflow and satisfying all the workflow and extra
constraints. If some activity cannot be included in

any valid process then it indicates a flaw in the
workflow – such activity should not be a part of the
workflow specification at all. Note that during the
workflow verification, we treat each workflow
separately and we do not assume resource
constraints. We only deal with the temporal and
causal relations between the tasks and activities and
we assume that the activities have non-negative
duration. In particular, we study a sub-problem of
the workflow verification where we verify whether
or not it is possible to select a process from the
workflow satisfying all the workflow constraints and
the extra constraints. This is a verification problem
where only the presence of the root task in the
workflow is checked.

Workflow verification has been studied for some
time. Various methods of verification have been
proposed, for example using Petri Nets (van der
Aalst and Hofstede, 2000), graph reductions (Sadiq
and Orlowska, 2000), or logic-based verification (Bi
and Zhao, 2004). These methods deal with complex
workflow structures that are used for example to
model business processes. A Nested TNA can be
seen as a subset of the workflow models such as
YAWL though using the extra constraints increases
the modeling power of a Nested TNA in some sense
beyond the traditional workflow models. Our
approach to verification is close to logic-based
verification as for example presented in (Bi and
Zhao, 2004). However, in this paper we study
merely the theoretical complexity of the verification
problem rather than proposing a novel verification
technique. Nevertheless, we will also describe some
easily verifiable cases at the end of the paper.

3 NESTED WORKFLOWS WITH
CAUSAL CONSTRAINTS

Let us first formally introduce the causal relations
supported by the FlowOpt system. Causal relations
are binary logical relations between the tasks and
activities in the workflow that describe how the
tasks or activities may appear in the solution.
Because the activities are just a special case of the
tasks (a task that is not decomposed is filled by an
activity), we will be using the word task further. In
the paper we will describe two types of causal
relations, namely implication and mutual exclusion.
If tasks A and B are connected by the implication
relation A ⇒ B then if task A appears in the process
then also task B must appear in the same process.
The mutual exclusion relation, shortly mutex,
between tasks A and B means that these two tasks

ICAART 2012 - International Conference on Agents and Artificial Intelligence

348

cannot appear together in a single process. It means
that either task A appears in the process, but not task
B, or task B appears in the process, but not task A,
or none of these tasks appear in the process. Notice
that the mutex relation looks similar to classical
XOR relation, but it is slightly different as XOR
requires that exactly one of the tasks appears in the
process.

In the rest of this section we will show that if the
implication or mutex relations appear in a nested
workflow then the problem of checking validity of
the workflow is NP-complete. We will show that the
problem of deciding satisfiability of a Boolean
formula in a conjunctive normal form where each
clause contains three literals – this is a well known
3SAT problem that has been shown to be NP-
complete (Garey and Johnson, 1979) – can be
converted in polynomial time to a problem of
deciding whether the nested workflow with some
additional constraints has a solution. Briefly
speaking, we will present how to convert any 3SAT
formula to a nested workflow that uses either the
implication constraints or the mutex constraints.
Then we will prove that the solutions to this nested
workflow correspond to the solutions of the original
Boolean formula.

Proposition 1: The problem of deciding validity of a
nested workflow with additional implication
constraints is NP-complete.

Proof: If we have a selection of activities belonging
to the solution then it is easy to check in polynomial
time whether the workflow and implication
constraints are satisfied. Hence the problem belongs
among the NP problems.

Let us assume that we have a 3SAT formula,
which is a conjunction of clauses, where each clause
is a disjunction of three literals and a literal is a
variable or a negation of the variable. We will
represent this formula as a nested workflow
consisting of a sequence of tasks where first there
are tasks for the variables followed by a single task
for the formula. For each variable there is exactly
one task (the order of the tasks does not matter)
which decomposes to two activities, one
representing value true and the other one
representing value false – let us call them value
activities. The task representing the formula
decomposes into parallel tasks where each task
represents one clause in the formula – we will call
them clause tasks. Figure 4 shows this
representation. Notice that using serial or parallel
decomposition does not matter here and it is possible
to use any of these types of task decomposition. We

Figure 4: The core concept of representing a 3SAT
formula as a nested workflow.

will now show on a single example how to represent
the clause, in particular how clause X ∨ Y ∨ ¬ Z is
represented using an alternative decomposition of
the clause task. There are seven possible
assignments of variables X, Y, and Z satisfying this
clause; X = true, Y = true, Z = true is one of them.
To satisfy the clause exactly one of these satisfying
assignments must be used. To model this feature we
decompose the clause task into seven alternative
activities, each one representing one satisfying
assignment – let us call them assignment activities.
Now we need to ensure that these assignment
activities are selected only when the corresponding
value activities are selected. This is achieved by
using the implication constraints going from the
assignment activities to the value activities. Let the
assignment activity correspond to assignment
X = true, Y = true, Z = true. Then we include the
implication constraints from the assignment activity
to the corresponding value activities of tasks
representing variables X, Y, and Z as Figure 5
shows. By this construction we obtain a nested
workflow whose size is polynomial in the size of the
3SAT formula. In particular if we have a formula
with n variables and m clauses then we obtain a
nested workflow with 2n + 7m activities (the number
of tasks is 3n + 8m + 2) and 21m additional
implication constraints.

The last step of the proof is to show that the
nested workflow has a solution if and if only the
formula is satisfiable. We will show that each
satisfying assignment of the variables corresponds to
one solution of the workflow. If we have a satisfying
assignment then we select in the workflow the value
activities corresponding to the values in the
assignment and the assignment activities compatible
with the assignment. Obviously the implication
constraints are satisfied by this selection. Moreover
from each task corresponding to a variable we

ON COMPLEXITY OF VERIFYING NESTED WORKFLOWS WITH EXTRA CONSTRAINTS

349

Figure 5: Selected custom implication constraints
connecting the assignment and value activities in the
model of a 3SAT formula.

selected exactly one activity (the variable is
instantiated to some value) and from each task
corresponding to a clause, exactly one activity is
selected because the clause is satisfied by the
assignment. Together the selected activities form the
process satisfying the workflow constraints as well
the additional causal constraints. Vice versa, let us
have a process selected from the workflow. Then
exactly one value activity is selected for each task
representing a variable – this activity determines the
value of that variable. For each task corresponding
to a clause, one assignment activity is selected. As
implication constraints from this assignment activity
must be satisfied, the value activities corresponding
to the assignment must also be selected which means
that the values assigned to the variables satisfy the
clause. Together, the selected process defines an
assignment of variables that satisfies all clauses in
the formula and hence the formula is satisfiable.

We have shown that the solutions of the nested
workflow with additional implication constraints
correspond to the solutions of the 3SAT formula.
Hence the problem to decide whether the nested
workflow with implication constraints has a solution
is NP-complete.

We will now use similar arguments to show that
the problem of verifying nested workflows with
additional mutex constraints is also NP-complete.

Proposition 2: The problem of deciding validity of a
nested workflow with additional mutex constraints is
NP-complete.

Proof: We will again use the transformation of a
3SAT formula to a nested workflow. In fact, we
will use exactly the same core structure of the nested
workflow as in the proof of proposition 1 (also
shown in Figure 4), we shall only introduce mutex
constraints instead of the implication constraints.

Let us assume that for a given 3SAT formula we
generated a nested workflow with the structure
shown in Figure 4, that is, with the pairs of value
activities for the propositional variables and with the
clause tasks each containing seven assignment
activities. We shall introduce the mutex constraints
as follows. Assume that an assignment activity
corresponds to a satisfying assignment X = true,
Y = true, Z = true. Then we introduce the mutex
constraints between this activity and the value
activities for X = false, Y = false, and Z = false.
These mutex constraints ensure that the assignment
activity cannot be selected together with the
incompatible value activities. In other words
selection of an assignment activity forces selection
of compatible value activities (recall that for each
propositional variable exactly one value activity is
selected). Figure 6 shows these additional mutex
constraints. Like before, for a formula with n
variables and m clauses we obtain a nested workflow
with 2n + 7m activities (the number of tasks is
3n + 8m + 2) and 21m additional mutex constraints
so the size of the nested workflow is polynomial in
the size of the 3SAT formula.

Now, it is straightforward to show that the
satisfying assignments to a given 3SAT formula
correspond one-to-one to the solutions of the
constructed nested workflow. If we have a satisfying
assignment of the propositional variables then we
select the value and assignment activities
corresponding to this assignment. Consequently, for
each task describing a variable exactly one value
activity is selected and for each clause task exactly
one assignment activity is selected. As described in
the previous paragraph this selection satisfies the
mutex constraints. Vice versa, the selection of
activities satisfying the workflow and the mutex
constraints defines a satisfying assignment of the
3SAT formula.

Figure 6: Selected custom mutex constraints connecting
assignment and value activities in the model of a 3SAT
formula.

ICAART 2012 - International Conference on Agents and Artificial Intelligence

350

We have shown that the solutions of the nested
workflow with additional mutex constraints
correspond to the solutions of the 3SAT formula.
Hence the problem to decide whether the nested
workflow with mutex constraints has a solution is
NP-complete.

The problem of deciding whether a given
workflow has a solution, that is, finding whether it is
possible to select a subset of activities satisfying the
workflow constraints, is NP-complete if additional
causal constraints are added. Consequently the
problem of verifying the nested workflows with
causal constraints is also NP-complete.

4 NESTED WORKFLOWS WITH
PRECEDENCE CONSTRAINTS

Let us now look at the nested workflows where
additional precedence constraints are added. Recall
that the nested workflows already include implicit
precedence constraints. Namely each arc in the
graphical representation of the workflow represents
a precedence relation between the tasks and
activities. These precedence relations are introduced
during the task decomposition. To check consistency
of the precedence relations, it is enough to ensure
that the graph is acyclic (we assume that the
activities have positive duration). This is always the
case for implicit precedence relations introduced
during task decomposition as the decomposition will
never introduce a cycle. If we allow adding extra
precedence constraints then directed cycles may be
introduced to the workflow. This does not
necessarily mean inconsistency of the workflow
because not all tasks/activities are present together in
valid processes selected from the workflow. We just
need to ensure that every directed cycle of the
precedence constraints can be broken by omitting at
least one of the activities from the cycle in the
solution. We will show now that the problem of
detecting whether breaking the cycles is possible is
an NP-hard problem. We will again use the
conversion of a 3SAT formula to a nested workflow
as shown in Figure 4. In fact we will use a similar
idea to exploiting the mutex constraints. Notice that
a cycle of two activities is semantically identical to a
mutex relation between the same activities – these
two activities cannot be present in the solution
together.

Proposition 3: The problem of deciding validity of a
nested workflow with additional precedence
constraints is NP-complete.

Proof: The proof is identical to the proof of
Proposition 2 where mutex constraints are used. The
only difference is that the precedence constraints are
used instead of the mutex constraints as Figure 7
shows. Let us also set the duration of all activities to
one to highlight that the loops are forbidden because
the activities in the loop cannot be allocated
consistently to time in such a way that the
precedence constraints are satisfied (a TNA expects
a unique appearance of each activity in the process
which differentiates it from workflow formalisms
such as YAWL (van der Aalst and Hofstede, 2005)).

Figure 7: Selected custom precedence constraints
connecting assignment and value activities in the model of
a 3SAT formula.

Assume that an assignment activity corresponds
to a satisfying assignment X = true, Y = true,
Z = true. Then we introduce the precedence
constraints leading from this activity to the value
activities for X = false, Y = false, and Z = false.
Because the value activities are before all the
assignment activities in the workflow, the added
precedence constraints introduce directed cycles to
the workflow. These directed cycles consist of tasks
encapsulating the value activities (these tasks must
always be in the solution process) and two activities
connected by the extra precedence constraints.
Hence one of these two activities must be omitted
from the process to break the cycle so the semantic
of such precedence constraints is identical to the
mutex constraints between the same pair of
activities. Therefore the arguments from the proof of
Proposition 2 can be re-used there. We should only
show that the problem belongs to the NP class which
is easy to realize as checking validity of the solution
means checking the workflow constraints as before
and checking that there is no directed cycle between
the selected activities which can be done in
polynomial time for example by topological sorting.

ON COMPLEXITY OF VERIFYING NESTED WORKFLOWS WITH EXTRA CONSTRAINTS

351

5 NESTED WORKFLOWS WITH
SYNCHRO CONSTRAINTS

Finally, we will study the workflows with additional
temporal synchronization constraints. Temporal
synchronization constraints are useful to express
relations such as that two activities should start or
finish at the same time or that an activity should start
exactly at the time when the preceding activity
finished. Some of these relations are hidden in the
core structure of the nested workflow. In particular,
we assume that the task starts exactly at the time
when the earliest of its sub-tasks starts and the task
finishes exactly when the latest of its sub-tasks
finishes (note that we assume only those sub-tasks
that are selected in the solution). Naturally, when
working with the temporal relations, we assume that
all activities have non-negative duration (zero
duration is allowed to model milestone activities).

It is practically useful to express some temporal
synchronization constraints explicitly even between
the tasks that do not belong to the same nest in the
workflow. In particular, the FlowOpt system
supports temporal synchronization constraints that
are known as start-start, end-end, end-start, and
start-end. Unfortunately, as we shall show adding
these extra constraints to nested workflows makes
the problem of deciding whether or not the
workflow has a solution intractable. Differently from
the previous sections, we will now use a subset-sum
problem to prove the above claim. This is motivated
by a similar approach used in (Barták, Čepek, Hejna,
2008). A subset-sum problem is a known NP-
complete problem (Garey and Johnson, 1979) that is
formulated as follows. Given a set of positive
integers Zi and integer K, does the sum of some
subset of {Zi | i= 1,…,n} equals K? We shall show
that this problem can be represented as a nested
workflow with extra synchronization constraints.

Proposition 4: The problem of deciding validity of a
nested workflow with additional synchronization
constraints is NP-complete.

Proof: The structure of the proof is similar to the
proofs of previous propositions in the paper. First, it
is easy to verify in a polynomial time that a given
selection of activities allocated to time satisfies the
workflow constraints as well as the additional
temporal synchronization constraints. Hence the
problem belongs to the NP class.

We shall show now that a subset-sum problem
can be modeled as a nested workflow with
synchronization constraints. Assume the numbers K,
Z1,…, Zn from the subset-sum problem. We use a

workflow with two parallel tasks. One task contains
a single activity with duration K – let us call it a
bound activity – and the other task is a serial
decomposition with n value tasks. Each of the value
tasks decomposes further into two alternative
activities – we call them value activities. One of
these activities has zero duration and the other
activity has duration Zi in the i-th value task. The
idea is that we need to select the value activities
such that the sum of their durations equals the
duration of the bound activity. To ensure this feature
we introduce the following synchronization
constraints. The bound activity must start exactly at
the same time as the first value task (start-start
synchronization) and it must finish exactly when the
last value task finishes (end-end synchronization).
Moreover, the i-th value task must finish exactly
when the (i+1)-th value task starts (end-start
synchronization). Figure 8 gives an example of such
a nested workflow with above described
synchronization constraints.

Figure 8: Representation of the subset-sum problem as a
nested workflow with synchronization constraints.

Obviously, each solution to the subset-sum
problem corresponds to a selection of certain value
activities and this selection satisfies the
synchronization constraints. Vice versa, a set of
activities satisfying the workflow and
synchronization constraints defines a solution of the
subset-sum problem. The bound activity is always
selected and from each value task exactly one value
activity is selected. The sum of durations of selected
value activities equals the duration of the bound
activity which complies with the specification of the
subset-sum problem. Hence the subset-sum problem
can be formulated as the problem of selecting
activities from the nested workflow which proves
that verification of nested workflows with
synchronization constraints belong among the NP-
hard problems.

6 CONCLUSIONS

In this paper we showed that the problem of

ICAART 2012 - International Conference on Agents and Artificial Intelligence

352

verifying whether or not there exists a feasible
process selected from a nested workflow with
additional constraints is NP-complete. We used
workflows modeling 3SAT and subset-sum
problems in the proofs and these workflows have a
structure that is not typical for real-life workflows.
Hence, there is a hope that real-life workflows can
still be verified in a reasonable time in practice. The
next step is to find such a procedure that can do
verification of nested workflows with additional
constraints efficiently in practice. Note that this
verification procedure should work with constraints
of all types mentioned in the paper together.

Figure 9: A tree representation of nested workflows.

Some of the extra constraints can be verified
easily. Notice that a Nested TNA can be represented
as a tree showing how the root task is decomposed
into sub-tasks and so on until activities are obtained
in the leafs (Figure 9). There are basically two
different locations where the binary custom
constraint can be placed in this tree. Either the
constraint connects two tasks on the same
path/branch to the root task (for example the
constraint between tasks A and B in Figure 9) or the
constraint connects the tasks from different sub-trees
with a common ancestor task (for example the
constraint between tasks C and D in Figure 9). The
constraints along the path to the root are those
constraints that are easy to verify as they are
frequently redundant (entailed by the workflow
constraints) or inconsistent. The constraints between
tasks from different sub-trees are easy to verify if
their common ancestor (task E in Figure 9)
decomposes alternatively. The only situation which
makes verification non-trivial is when task E is a
serial or parallel decomposition as in Figure 9. This
is exactly the case of the nested workflows used in
the proofs of NP-completeness in this paper. For
these cases a straightforward approach is using a

search procedure that finds for each activity a valid
process containing this activity. If no valid process is
found, the activity is reported to the user as a
problematic activity. In such a case, it is not always
clear which custom constraints cause the problem.
Providing the most accurate explanation is an
interesting open problem.

ACKNOWLEDGEMENTS

The research is supported by the Czech Science
Foundation under the contract P202/10/1188. The
author would like to thank Vladimír Rovenský for
implementing the FlowOpt Workflow Editor;
screenshots from this software are used in the paper.

REFERENCES

Bae, J., Bae, H., Kang, S.-H., Kim, Z., 2004. Automatic
Control of Workflow Processes Using ECA Rules.
IEEE Transactions on Knowledge and Data Enginee-
ring, vol. 16, no. 8, pp. 1010-1023.

Barták, R., Čepek, O., 2007. Temporal Networks with
Alternatives: Complexity and Model. In Proceedings
of the Twentieth International Florida AI Research So-
ciety Conference (FLAIRS), AAAI Press, pp. 641–646.

Barták, R., Čepek, O., 2008. Nested Temporal Networks
with Alternatives: Recognition, Tractability, and
Models. In Artificial Intelligence: Methodology, Sys-
tems, and Applications (AIMSA 2008), LNAI 5253,
Springer Verlag, pp. 235-246.

Barták, R., Čepek, O., Hejna, M., 2008. Temporal
Reasoning in Nested Temporal Networks with Alter-
natives. In Recent Advances in Constraints, LNAI
5129, Springer Verlag, pp. 17-31.

Barták, R., Cully, M., Jaška, M., Novák, L., Rovenský, V.,
Sheahan, C., Skalický, T., Thanh-Tung, D., 2011.
FlowOpt: A Set of Tools for Modeling, Optimizing,
Analyzing, and Visualizing Production Workflows. In
Proceedings of the ICAPS 2011 System Demonstra-
tions, pp. 6-9.

Beck, J. Ch., Fox, M. S., 2000. Constraint-directed
techniques for scheduling alternative activities. Arti-
ficial Intelligence, vol. 121, pp. 211-250.

Bi, H. H., Zhao, J. L., 2004. Applying Propositional Logic
to Workflow Verification. Information Technology
and Management, vol. 5, no 3-4, pp. 293-318.

Garey, M. R., Johnson, D. S., 1979. Computers and Intra-
ctability: A Guide to the Theory of NP-Completeness,
W. H. Freeman and Company.

Giro, S., 2007. Workflow Verification: A New Tower of
Babel. In AIS-CMS International Modeling and Simu-
lation Multiconference, Buenos Aires, Argentina.

Sadiq, W., Orlowska, M. E., 2000. Analyzing Process
Models using Graph Reduction Techniques.
Information Systems, vol. 25, no. 2, pp. 117–134.

A

B C

D

E

ON COMPLEXITY OF VERIFYING NESTED WORKFLOWS WITH EXTRA CONSTRAINTS

353

van der Aalst, W., Hofstede, A. H. M. t., 2000.
Verification of Workflow Task Structures: A Petri-
Net-Based Approach. Information Systems, vol. 25,
no. 1, pp. 43–69.

van der Aalst, W., Hofstede, A. H. M. t., 2005. Yawl: Yet
another workflow langure. Information Systems, vol.
30, no. 4, pp. 245–275.

ICAART 2012 - International Conference on Agents and Artificial Intelligence

354

