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Abstract: Drug target identification and validation are critical steps in the drug discovery pipeline. Hence, predicting 
potential “druggable targets”, or targets that can be modulated by some drug, is very relevant to drug 
discovery. Approaches using structural bioinformatics to predict “druggable domains” have been proposed, 
but they have only been applied to proteins that have solved structures or that have a reliable model 
predicted by homology. We show that available protein annotation terms may be used to explore semantic-
based measures to provide target similarity searching and develop a tool for potential drug target prediction. 
We analysed 1,541 human protein drug targets and 29,580 human proteins not validated as drug targets but 
which share some InterPro annotations with a known drug target. We developed a semantic-based similarity 
measure by using singular value decomposition over InterPro terms associated with drug targets, performed 
statistical analyses and built logistic regression models. We present a probabilistic model summarised in a 
closed mathematical formula that allows human protein drug targets to be predicted with a sensitivity of 
89% and a specificity of 67%. 

1 INTRODUCTION 

The identification and validation of drug targets are 
critical steps in the drug discovery pipeline. Thus, it 
is important to improve the discovery of hidden 
target similarities or off-target similarities that can 
help select “druggable targets”. Here, we consider 
“druggable targets” to be those human or pathogen 
proteins that may be modulated by some orally 
bioavailable compound. Conversely, “undruggable 
targets” are those proteins that are considered too 
difficult to be modulated by some drug. Even 
“undruggable targets” have been addressed, in 
particular in oncology studies (Verdine and 
Walensky, 2007); (Schreiber, 2009), but it is 
valuable to distinguish the “more-druggable” and the 
“less-druggable” targets before incurring substantial 
expenditure and effort (Cheng et al., 2007). To 
identify “druggable” and “undruggable” proteins, 
some researchers have been developing structure-
based approaches to identify “druggable” and 

“undruggable” binding sites and cavities (Haupt and 
Schroeder, 2011; Moriaud et al., 2011; Gao et al., 
2008). However, as the majority of drug targets for 
small molecule therapeutics are formed by proteins 
with unsolved three-dimensional structures, 
structure-based design is not possible. Therefore, 
sequence similarity performs an important role in 
finding novel “druggable” targets. Indeed, current 
public resources containing drug target information 
like the Therapeutic Target Database – TTD (Zhu et 
al., 2010) and DrugBank (Wishart et al., 2008) 
provide target similarity searching based only on the 
BLAST algorithm. 

Although high sequence similarity is a good 
initial guide, it is known that there are also important 
structural similarities and other correlations even for 
proteins with low sequence similarity (Vidovic and 
Schürer, 2009); (Krissinel, 2007); (Gan et al., 2002); 
(Betts et al., 2001). Knowledge-based approaches 
may help develop a classification program. Indeed, 
in an influential paper, Hopkins and Groom (2002) 
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proposed 130 InterPro entries as sufficient to predict 
all the druggable human proteins. This proposal, 
together with studies that evaluate semantic 
similarity measures based on Gene Ontology 
annotations (Lord et al., 2003); (Chagoyen et al., 
2006), suggest an approach based on investigating 
semantic similarity measures of protein targets based 
on their InterPro annotations. 

In this paper, we explore semantic similarity 
across InterPro entries annotated to known drug 
targets as an alternative to sequence similarity for 
target similarity prediction. The validated targets 
were collected from TTD (Zhu et al., 2010); 
DrugBank (Wishart et al., 2008) and KEGG-Drug 
(Kanehisa et al., 2010).We represented the targets in 
a vector space model (VSM) in which targets were 
recoded as column vectors and the descriptors 
(rows) were, initially, all the InterPro terms that 
occur in the target set. The next step was to reduce 
the dimensionality of the problem. The goal is to 
select those descriptors that result in the “best” 
model. The rationale for minimising the number of 
descriptors in the model is that the resultant model 
tends to be more efficient when redundant and 
irrelevant attributes are eliminated (Hosmer and 
Lemeshow, 2000; Chen et al., 2008). We applied the 
cosine similarity measure as described by Chagoyen 
et al. (2006) to compute the pairwise similarity 
among the targets represented in a transformed 
feature space reduced by using Singular Value 
Decomposition (SVD). We showed that our 
annotation-based similarity metric is consistent with 
BLAST and results in better discrimination of the 
target clusters. Afterwards, we projected other 
human proteins in the reduced space, calculated the 
similarity coefficient between each new protein to 
each validated target and then constructed a control 
set approximately five times the size of the original 
validated group. This control set was used in a case-
control study. It was constructed by selecting a 
subset of the proteins that resulted in lower 
maximum similarity coefficients against the drug 
target set. Then, we applied regression models to 
minimise the number of the descriptors from the 
original full data set.  

2 MATERIAL AND METHODS 

We constructed a matrix with 1,541 binary vectors 
that represents known protein drug targets retrieved 
from public databases (TTD (Zhu et al., 2010), 
Drug-Bank (Wishart et al., 2008) and KEGG-Drug 
(Kanehisa et al., 2010). Each protein-representing 

vector is a set of 2,700 binary descriptors, each of 
them representing an InterPro annotation. Therefore, 
protein drug targets were recoded as vectors in m, 
where m is the number of InterPro descriptors 
analysed (2,700). In this way, the target database is a 
sparse matrix M, with dimension m x n, where n is 
the number of proteins in the data set and each row 
of the binary vectors indicates the presence or 
absence of an InterPro annotation: 
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where xij is the presence (1) or absence (0) of the 
InterPro descriptor i on the protein drug target vector 
j. The matrix M was decomposed by using SVD 
(Golub and Kahan, 1965) and factorised as M = 
USVT. The singular values placed in decreasing 
order along the main diagonal of S are directly 
related to the independent characteristics within the 
dataset (Deerwester et al., 1990; Berry et al., 1995; 
Eldén, 2006). To transform the matrix M2700x1541 in 
an information retrieval system, it was necessary to 
determine the best low-rank approximation Mk in 
reduced space: 
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where ue and ve are, respectively, the column vectors 
of U and the row vectors of V both related to the e-
th singular value in decreasing order and k is the 
rank of the matrix Mk. We selected k = 320 factors 
by applying the scree test (Cattell, 1966) to 
determine the low-rank approximation Mk (Figure 
1). The factorisation provided a reduced 
dimensionality space in which relationships among 
the drug targets could be established. The similarity 
between any pair of drug targets was calculated as 
the cosine of the angle between the respective target 
representing vectors on the reduced space. 
Therefore, the similarity measure of a pair of targets 
is equivalent to the dot product between the 
respective rows of the matrix VkSk. 

To validate our semantic-based similarity metric, 
we compared our results with those given by the 
BLAST algorithm. Figure 2 shows the scatter plot of 
a distance-like coefficient given by our methodology 
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versus the bit score given by BLAST. To convert the 
pairwise cosine coefficients into pairwise distance 
coefficients, we applied the transformation formula 
proposed by Stuart et al. (Stuart et al., 2002) dij = -
ln((1 + cosij )/2). The exponential rate of the 
correlation scatter plot illustrates the known 
characteristic of SVD as distances become more 
discriminated – similar entities become more similar 
and dissimilar entities become more dissimilar in the 
reduced space vector. 
 

 

Figure 1: Singular values of M (as obtained by SVD 
factorisation) plotted in decreasing order. The X axis 
corresponds to the singular value index. The first k = 320 
largest were selected by the scree test. 

The second step was to select the control group, 
i.e., protein sequences classified as undruggable 
targets. To do so, we collected from the UniProt 
(The UniProt Consortium, 2010) 29,580 human 
proteins that are not validated as drug targets but do 
share InterPro annotation with any of 1,541 drug 
targets. Each one of the 29,580 non-target candidate 
sequences was recoded as a vector in 2700, where 
the space dimensionality (2,700) is given by the 
number of InterPro descriptors considered to 
generate the query vectors (q). Thus, each query 
vector was projected into reduced space obtained by 
SVD; formally, q*=qTUk. Afterwards, we computed 
the pairwise distance coefficient similarity among 
the reduced vector queries (q*) and all drug target 
vectors in the reduced space (Mk), which generated 
1,541 pairwise distances for each of the 29,580 non-
target candidate sequences. The maximum pairwise 
distance of each candidate sequence was selected, 
and the percentile 75 (p75) of these maximum 
distances was chosen as the cut-off value to classify 
a candidate sequence as a non-target protein. All 
sequences with vector query (q*) with maximum 
pairwise distance less than 1.2821 (p75) were 
classified as non-target sequences, becoming the 

control group, totalling 7,830 proteins. 
 

 

Figure 2: Correlation scatter plot of the pairwise distance 
dij between protein vectors (dij=-ln((1 + cosij)/2)) and 
BLAST bit score. The exponential rate may be explained 
by the known characteristic of SVD as distances becoming 
more discriminate – similar entities become more similar 
and dissimilar entities become more dissimilar in the 
reduced space vector. A negative correlation was expected 
because the higher the similarity between two proteins, 
smaller the related distance and the higher the bit score. 

The third step of this study was to build a model 
to predict new human druggable target proteins. This 
was done by performing a case-control study 
(Schlesselman, 1982). Approximately 20% of the 
1,541 targets (384 sequences) were extracted 
randomly for validation, and the remaining 1,157 
were used as the case set. For the control group, 
7,830 non-target sequences were randomly assigned 
as either the case set (5,821 sequences) or for model 
validation (2,009 sequences). Thus, the final sample 
size was 6978 (5821 + 1157). All InterPro 
annotations were considered as variable candidates 
for the model. During the SVD analysis, we used 
2,700 InterPro annotations of five types: Family (F), 
Domain (D), Region (R), Active Site (A) and 
Binding Site (B). However, to avoid redundancies, 
we considered only InterPro annotations of F, D or 
G types during the predictive model construction. 
Thus, only 2,390 Interpro annotations were 
considered in the model analysis. 

A logistic regression model was developed for 
the case-control study, allowing feature selection. In 
addition to feature selection, the logistic model can 
also be used to predict the probability () that a 
sequence is a druggable target based on a 
combination of the k InterPro annotations selected in 
the model: 

 

(2)
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In Equation (2),  is the probability of a 
sequence belonging to the drug target group, k is the 
number of explanatory features (InterPro 
annotations) significantly selected for the model and 
i is the regression coefficient for each InterPro (i = 
1, 2, 3 …k). The model-building strategy for the 
feature selection was an automatic forward stepwise 
logistic regression performed by SPSS - Statistical 
Package for the Social Sciences (SPSS Inc., 2008). 
Before performing the logistic regression, a 
univariate analysis was performed using Fisher’s 
exact test on a pre-selected subset of the 2,390 
InterPro used in the stepwise logistic regression 
(Altman, 1991). Only InterPro annotations with a p-
value less than or equal to 0.05, by Fisher’s exact 
test (univariate analysis), were used in the 
multivariate analysis. This stringent cut-off was 
chosen because of the excessive number of 
candidate features (2,390).  

After model building,, definition of the best cut-
off for the probabilities calculated by the logistic 
model in order to classify a new sequence as a 
potential drug target was made by ROC – ‘receiver 
operating characteristic’ curve analysis (Altman, 
1991). 

3 RESULTS 

The sample size used in the case-control study was 
composed of 1,157 targets (cases) and 5,821 non-
target sequences (controls), totaling 6,978 proteins. 
Univariate analysis performed by Fisher’s exact test 
selected 587 InterPro entries from 2,390 annotations 
initially involved in the study. Some InterPro 
annotations were selected because their presence 
increases the chance of a sequence to be a druggable 
target (as is the case of IPR001828,Table 1). Other 
InterPro annotations were selected because their 
presence reduced the chance that a sequence would 
be a druggable target (for example IPR001828,Table 
2). 

From the 587 InterPro entries selected from the 
univariate analysis that were automatically 
forwarded to stepwise logistic regression, 66 were 
identified as independently associated with the drug 
target status. Table 3 presents the InterPro 
annotations identified and the  parameters from 
Equation (2) estimated for the logistic regression 
model to predict drug target sequences.  If the beta 
value is negative, the presence of the InterPro 
annotations reduces the chance that a sequence is a 
druggable target. On the other hand, if the beta value 
is positive, the presence of the InterPro annotation 

increases the chance that a sequence is a druggable 
target. 

Table 1: Univariate analysis for InterPro IPR001828 – its 
presence increases the chance that a sequence is a 
druggable target. 

InterPro 
IPR001828 

Sample 
size 

Number of 
target 

sequences 

Percent 
of target 
sequence 

p-value 

Presence 21 19 90% < 0.001 
Absence 6,957 1,138 16%  
 
Total 

 
6,978 

 
1,157 

 
17% 

 

Table 2: Univariate analysis for InterPro IPR016175 – its 
presence reduces the chance that a sequence is a druggable 
target. 

InterPro 
IPR016175 

Sample 
size 

Number of 
target 

sequences 

Percent 
of target 
sequence 

p-value 

Presence 230 0 0% < 0.001 
Absence 6,748 1,157 17%  
 
Total 

 
6,978 

 
1,157 

 
17% 

 

 

Because the results of logistic model in Equation 
(2) provide a probability value ranging from 0.0 to 
1.0, we need to choose a cut-off value to define if a 
sequence is in the drug target group. Actually, 
logistic regression allows us to distinguish those 
sequences likely or unlikely to be a druggable target, 
providing a probability value. Usually the cut-off is 
0.50, meaning that if the probability that the 
sequence is in the drug target group is higher than 
0.50, then the sequence is classified as a potential 
druggable target. However, other cut-offs can be 
used according to the ROC analysis (Figure 3). The 
best cut-off in probability is 0.25, which maximises 
both sensitivity and specificity, being nearest the top 
left-hand corner of ROC curves. 

To validate the model, we reserved 384 known 
targets and 2,009 control sequences, totalling 2,393 
proteins. Classification quality of these sample 
queries is summarised in Table 4. The sensitivity of 
classifying unknown sequences was 89%, and the 
specificity was 67%. Because we used 0.25 as a cut-
off, if the probability model for a query is higher 
than 0.25, the sequence is classified as a potential 
druggable target. 
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Table 3: Logistic regression model built for predicting if a 
sequence is a druggable target. 

InterPro  p-value InterPro  p-value 

IPR016175 -7.3 0.067 IPR001023 -1.9 0.009 

IPR012677 -4.8 0.000 IPR020685 -1.9 0.000 

IPR010993 -4.5 0.004 IPR003593 -1.6 0.000 

IPR004000 -3.7 0.000 IPR003596 -1.4 0.034 

IPR000883 -3.4 0.001 IPR016040 -0.6 0.001 

IPR008973 -3.3 0.000 IPR001452 1.3 0.032 

IPR001173 -2.8 0.006 IPR020683 1.3 0.045 

IPR016137 -2.6 0.011 IPR013099 1.4 0.065 

IPR013783 -2.6 0.000 IPR000980 1.5 0.016 

IPR013766 -2.5 0.012 IPR015421 1.6 0.000 

IPR002213 -2.4 0.001 IPR011029 1.6 0.006 

IPR011009 -2.4 0.000 IPR000472 1.8 0.030 

IPR000873 -2.1 0.003 IPR013816 1.8 0.041 

IPR000010 -2.1 0.040 IPR000889 1.8 0.031 

IPR003597 -2.1 0.001 IPR011348 2.2 0.080 

IPR008753 -2.0 0.052 IPR007698 2.2 0.080 

IPR001353 -1.9 0.008 IPR014756 2.2 0.004 

IPR011497 2.2 0.074 IPR015741 3.3 0.001 

IPR005225 2.3 0.013 IPR017193 3.3 0.023 

IPR001251 2.3 0.028 IPR000626 3.3 0.023 

IPR002035 2.4 0.000 IPR020663 3.3 0.000 

IPR001841 2.5 0.028 IPR008979 3.3 0.002 

IPR011304 2.6 0.028 IPR009130 3.6 0.018 

IPR000157 2.6 0.012 IPR014729 3.8 0.000 

IPR013027 2.7 0.014 IPR001828 3.8 0.000 

IPR002314 2.8 0.034 IPR003116 3.9 0.002 

IPR008957 2.9 0.000 IPR020722 4.0 0.039 

IPR015015 2.9 0.020 IPR020727 4.0 0.023 

IPR011992 3.0 0.000 IPR009134 5.0 0.007 

IPR005834 3.1 0.010 IPR002126 5.2 0.001 

IPR009030 3.2 0.001 IPR008424 5.2 0.000 

IPR005821 3.2 0.000 IPR000353 5.6 0.000 

IPR000001 3.2 0.030 IPR016243 7.7 0.000 

Obs.: 0 = -0.9 
 

 

Figure 3: ROC curve analysis for predicting a druggable 
target. The best cut-off for maximum sensitivity and 
specificity is a probability higher than 0.25 (area under the 
curve = 0.828). 

Table 4: Classification quality of sample queries with the 
logistic regression model for predicting drug targets. 

 

Group 

Classification using a cut-off 
= 0.25 in logistic probability  

Total (+) (-) 

Drug target  340 44 384 

Non-target 661 1,348 2,009 

Total 1,001 1,392 2,393 

4 CONCLUSIONS 

We identified 66 features (InterPro entries) that 
allow retrieval of protein drug targets with a 
sensitivity of 89% and a specificity of 67%. 

The model provided a statistical evaluation over 
the current protein annotation to predict potential 
drug targets or, at least, potential “druggable 
targets”, meaning proteins that potentially can be 
modulated by an orally bioavailable drug. The 
model gives us a closed formula to calculate the 
probability that a given sequence, described by their 
biological annotations, is druggable. 

Though “druggable targets” are different from 
“therapeutic drug targets”, their prediction is a good 
contribution to drug development focusing on drug 
target research. 

Our model differs from the approach of Hopkins 
and Groom (2002) by including not only InterPro 
annotations that contribute positively to classifying a 
protein as druggable, but also by including those 
annotations that contribute negatively. Our model is 
more restrictive and gives results closer to the 
proteins that actually are therapeutic drug targets. 
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