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Abstract: This paper describes a stochastic discrete event simulation model for scheduling of joint military force 
structures. The model employs capability-based methods to link scenario requirements to force structure 
assets. Assignment of assets to scenarios is designed to attempt to mimic the decisions of a military 
scheduler. Force structure performance is evaluated based on how well and how often scenario capability 
requirements are met. The model output permits options analysis, capability gap analysis, determination of 
optimal force structure composition, and evaluation of force structure performance in the face of changing 
requirements and policies (such as readiness and sustainment, operations tempo, and personnel tempo 
constraints).  

1 INTRODUCTION 

Determining the size and composition of a future 
military force structure1 is a problem that can be 
approached from many different directions, and is 
often driven by nation-specific policies, processes, 
and objectives. It is also a question of the depth and 
breadth of exploration required; depth in terms of 
the level of fidelity that is used to model the force 
structure, and breadth across military services.  

In practice, quantitative evaluation of force 
structures range from “back-of-the-envelope” type 
calculations (e.g., with two bases, two ships are 
required at each so that one is always available when 
one is in maintenance) or subject matter expert 
(SME) opinion, to detailed theatre level combat 
modelling (e.g., Bulut, 2001, Gallagher and Kelly, 
1991) or campaign analysis (Taylor and Lane, 
2004). Low fidelity models are easy to generate, but 
tend to rely on broad-ranging assumptions and are 
subject to significant criticism regarding objectivity. 
Ideally, high fidelity models would be used to 
determine the performance of the total force against  
high-fidelity models are very data intensive and/or 

use physics-based approaches that are time-various 
threats across multiple scenarios (Farr et al., 1994). 
While they are significantly less subjective, 
consuming to evaluate and difficult to extrapolate 
for future capability. Taking a moderated approach, 
medium fidelity models focus on resource allocation 
(how many are needed) rather than resource 
effectiveness (how likely the mission can be 
accomplished). This is a specialized application of 
general scheduling and routing problems, for which 
many customized models have been developed. 

Service-specific scheduling models abound. 
Logistic problems such as sealift (Salmeron et al., 
2009), airlift (Wu et al., 2009, Wesolkowski and 
Billyard, 2008, Baker et al., 2002) – to name but a 
few, or a combined mobility problem (Mattock et 
al., 1995) are well developed, but difficult to expand 
for use across services. If not focused on airlift, air 
force structure models tend to be driven by 
maintenance requirements and facilities (Mattila et 
al., 2008). Army force structure analysis is highly 
separated between personnel-driven models 
(Klerman et al., 2008) and vehicle fleet mixes 
(Whitacre et al., 2008, Abbass et al., 2007, 
Walmsley and Hearn, 2004, Brown et al., 1991). 
Naval deployment scheduling applications are 
common (Zadeh, 2009, Horn et al., 2007, Dugan, 
2007, and others). Five naval fleet planning 
applications (Gauthier et al., 2008, Fildes, 2006, 
Greer et al., 2005, Crary et al., 2002, Cortez and 

1 “Force structure” is a term used to designate the set of
assets within a military unit and the inter-dependence
between these assets, as well as their home base. For
example, a naval force structure could include all the ships
and crews, as well as the infrastructure supporting them. 
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Kaiser, 1991) exhibit properties that may be useful if 
applied to joint force structure scheduling. Only two 
references (Davis, 2002, Farr et al., 1994) were 
found that attempt to tackle joint force structure 
problems. The first leaves much of the methodology 
undefined, and the second is a deterministic model 
that does not optimize over a range of requirements. 

Selection of a force structure must balance 
strategic policies and objectives, while maintaining 
realism at the operational and tactical levels – and 
still provide answers in a timely fashion. To achieve 
a measure of balance among these conflicting 
drivers, Defence R&D Canada’s Centre for 
Operational Research and Analysis (DRDC CORA) 
has developed a strategic level simulation tool, 
known as Tyche. Tyche takes a moderate-fidelity 
approach to joint force structure analysis that utilizes 
capability-based planning. The next section 
describes the Tyche model, including novel features 
and modelling limitations. Section 3 provides a 
sample joint force structure case study. Conclusions 
are given in Section 4. 

2 THE SIMULATION MODEL 

Tyche is a stochastic simulation model that 
schedules the deployment of assets within a force 
structure to address a set of missions. The 
assignment of assets to missions is based on a set of 
predefined rules that attempt to reproduce the 
decisions made by a military scheduler. Scheduling 
assignment is capability-based; meaning each 
mission requires a set of capabilities for success, and 
each asset type provides a set of capabilities that 
may or may not overlap with the required mission 
capabilities. The force structure measure of 
performance (MOP) is evaluated based on how well 
and how often the missions’ capability requirements 
are met.  

When it was originally developed in 2004, Tyche 
was designed to model naval force structures. It was 
later adapted to accommodate joint asset types; 
however, a number of assumptions within the 
program affect the range of detailed joint military 
applications. These limitations will be discussed in 
the following subsections, and are slated for future 
development. 

Tyche is divided into three interconnected 
environments: a data entry environment where the 
data required to perform simulations are entered; a 
run environment where the specifics of the desired 
simulations are entered; and a data exploration 
environment where the MOP and run output can be 

visualized and further investigated. The function of 
these three environments is described. 

2.1 Data Structure 

There are five fundamental data structures employed 
within the Tyche model to build a simulation: 
capabilities, asset types, bases/theatres, scenarios, 
and force structures. 

2.1.1 Capabilities 

While capabilities simply refer to any ability to 
perform a task, they provide a flexible way to link 
mission requirements to force structures. Most force 
structure analysis models are either platform-based 
(meaning requirements are defined in terms of the 
number and type of platforms for mission success) 
or physics-based (specifying physical characteristics, 
such as dimensional capacity for air or sea lift). 
Tyche is unique in that the user can define 
capabilities to suit the simulation model 
requirements. Typical capabilities used for military 
simulations simulation include command and control 
(C2), surveillance, firing, jamming, transportation, 
etc. Quality and quantity factors are associated with 
each capability. Quality is a scale on (0,1] for 
relative comparison; quantity is a positive integer 
( Z∈ ). This permits objective comparison of often 
subjective evaluations (e.g., the higher C2 capability 
of a destroyer compared to a frigate is modelled 
model by a higher numerical quality), as well as 
encompassing the physical characteristics in a 
single, broader definition of capability (e.g., lane 
meters of sea lift is associated to a numerical 
quantity).  

2.1.2 Asset Types 

Asset types are defined to allow for modelling of 
equipment, personnel, weapons, modules, etc., and 
include both dynamic and static assets (static assets 
cannot travel to theatre on their own, such as 
maritime helicopters). Various levels of fidelity in 
the modelling of assets are possible, which positions 
the tool well to cross between coarse strategic-level 
studies and more detailed operational-level analysis. 
One limitation that the user must bear in mind when 
defining asset types is the timescale within Tyche. 
The smallest unit of time is one day, and simulations 
are intended to run over multiple years (an 
assumption that was suitable for naval applications). 
A user-selectable timescale is planned for future 
versions of the software to accommodate force 
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structures that commonly operate on smaller 
timescales. 

Tyche also allows for modelling of external 
assets; those that could be chartered or assumed 
available (based on a given probability) from 
another source. This allows for simple modelling of 
assets about which little knowledge is available.  

The concept of “level” is introduced as a key 
element in the modelling of assets. Levels are used 
to model the different states or working conditions 
of the assets such as the readiness states, 
breakdowns, maintenance, training, and leave. In 
essence, the levels allow the modelling of variations 
of the capability supplied by the assets under user-
defined circumstances. An asset type’s levels are 
prioritized, so that critical tasks can override (or 
bump) less important tasks. Associated with each 
prioritization instruction between two given levels 
are a bump time, a bump penalty, and rescheduling 
instructions for the bumped level.  

In addition, levels are characterized by type, a set 
of capability supply and demand, and the optional 
inclusion of constraints with regards to the possible 
asset assignment. Level types include random (e.g., 
to model unforeseen breakdowns), scheduled (e.g., 
to model maintenance periods), on-demand (e.g., to 
model mission assignment), and follow-on (e.g., to 
model a quality of life break following a long 
mission assignment). The set of capability supply 
and demand associated with the asset type is specific 
to each level. For example, a user may model levels 
of readiness with different degrees of capability and 
response time associated with each. Synergistic 
effects can also be captured; as when two assets are 
assigned together to produce a higher level 
capability of either alone (e.g., a helicopter 
embarked on a frigate to increase the effectiveness 
of the frigate’s surveillance capability). 

The association of capability demand to assets 
leads to the ability to model multi-layer and co-
dependent capability demand chains. An asset may 
demand capability, just as a scenario would. This is 
common with static assets requiring transportation 
into theatre. Co-dependent demand arises when a 
demanded asset requires capability supplied by the 
asset requiring it. For example, a helicopter requires 
transportation to theatre which can be provided by a 
frigate, and in reverse the frigate requires a 
helicopter to provide surveillance.  

A distinction between capability supply and 
capability demand is in the number of associated 
attributes. Capability supplies have only an assigned 
quantity and quality which specify the number and 
the degree to which the capability is provided. On 

the other hand, in addition to a quantity, capability 
demands have two quality values specified: the 
required and marginal quality levels. The required 
quality determines the degree of desired quality for 
satisfactory performance, and the marginal quality 
provides the degree needed for minimum 
performance standards. The quantity determines the 
number of requested capabilities to support a single 
asset type at the level being defined. In addition to 
the quality and quantity, the capability demand also 
requires a weight, which is used to quantify the 
importance of this capability demand with regard to 
other capability demands. Finally, a capability 
demand can be deemed “essential”. If an essential 
capability demand cannot be satisfied at the required 
quality with a capability supply from another asset, 
then this asset will not be able to go to this level. For 
example, for a ship to leave a port, it needs to be 
manned by a crew. If there is no crew available, then 
the ship will stay alongside. Thus, the crew provides 
a capability that is essential to the ship when it is 
requested to leave the port.  

Constraints on maximum or minimum duration 
or on the number of occurrences of one or more 
levels over a given period of time can also be 
imposed to mimic scheduling limitations such as 
maximum time used (e.g., annual flight hours for 
aircraft), or frequency of usage in long-term high-
intensity missions to maintain personnel tempo. 

2.1.3 Bases and Theatres 

Bases are locations where assets are stationed when 
not assigned to a mission and theatres are locations 
where missions occur. Neither is given physical 
coordinates, merely relative distances to one 
another. No units of distance are specified, allowing 
the user to determine a physical route for travel that 
is compatible with the speed unit that will be 
associated with the assets using these locations. For 
example, two bases could be used to represent a 
single location from which air and sea assets depart. 
An over-land great circle arc distance would be used 
for the distance that air assets travel, while an over-
water distance (often much larger, when taking into 
account land mass detours) would be used for the 
sea assets. 

In this formulation, a simple model of one home 
base for each asset, which then travels to a single 
theatre for a scenario, is used. Waypoints for 
intermediate activities (such as resupply), and 
forward stationing of assets, are more complex 
behaviours that are under consideration to better 
model aspects of joint force operation.  
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2.1.4 Scenarios 

Scenarios represent missions (or a group of 
missions) to which assets are assigned. A scenario is 
defined in terms of phases, which represent the 
variation of capability demand required over time 
(e.g., pre-crisis a scenario might require more 
diplomatic and economic intervention and a show of 
force, while later phases may demand combat 
capabilities and non-combatant evacuation). Each 
scenario also has a number of possible theatres, each 
having a probability of assignment. Each phase can 
be independent, or linked to one or more other 
phases. Consequently, activities of varying 
capability demand, duration, and location can be 
modelled. 

In terms of associated attributes, the phases of a 
scenario show many similarities with the levels of an 
asset. There are three types of phases: scheduled, 
random, or follow-on. As with the level, a scheduled 
phase requires a start date and frequency that set the 
precise dates the phase will occur. For the random 
phases, only the frequency must be specified; a 
Poisson distribution is used to determine the 
occurrence of these scenarios (see Section 2.2.1).  

The main difference between levels and phases is 
the absence of the timing constraints and capability 
supply for the latter, as well as the appearance of 
more complex scoring criteria. The scoring criteria 
determine how to select assets for the phase, by 
means of a cost function for various choices of 
assets and selecting the best additive score of all the 
possibilities.2 The cost function will be defined in 
Section 2.2.2.  

2.1.5 Force Structures 

A force structure stores all the assets from the 
different asset types that would be used for a given 
simulation run, including possible external assets. 
The term “fleet” was used but the assets are not 
limited to naval types. Assets are defined by 
specifying type, home base, and a scheduling offset. 
The offset is a number that specifies the number of 
days by which the start date of the scheduled levels 
of the asset will be shifted with respect to other 
assets of the same type. Currently, many force 
structures can be defined, but each must be run 
individually. The possibility of incorporating the 
model inside an optimization routine is under 

consideration, so as to determine the optimal force 
structure to meet a set of requirements. 

2.2 Simulation Procedure 

At its core, Tyche is a discrete-event scheduling 
program. For every iteration, the force structure data 
are initialized, a list of events is generated where 
each event requires assets to be assigned, and the 
“best” available assets are then assigned to these 
events. Data is then output in the form of an 
operational schedule for each iteration. Data for 
reinitializing the random number generator are also 
output to allow for continuation of simulation runs at 
a subsequent time (this can be useful in the event of 
computer issues). 

2.2.1 Event Generation 

The list of events is generated at the start of every 
iteration, and updated as the clock progresses in the 
simulation. An event occurs every time a scenario 
phase begins or an asset changes level. To build the 
list of events, Tyche first selects a random date, 
which is the initial date at which the simulation 
starts. All scheduled events are created in relation to 
this date (where day 0 is the first day of the calendar 
year). Random phases and levels are determined 
from a Poisson distribution with a frequency of 
occurrence per year of λ. For an iteration of n years, 
the number of events (N) is determined by selecting 
a random number, r uniformly distributed on [0,1], 
and applying Eq. (1).  
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Note that the sum over the integer j from 0 to i-1 
is set to 0 in the case i=0. The start date of each 
random event is then selected from the set of days 
inside the time window using a uniform distribution. 

The duration of events that cross the number of 
years simulated are reduced to fit completely inside 
the time window. Events that are too short to have 
any assets assigned (based on minimum preparation 
and travel time) are removed from the simulation. 
As a result, the first and last year of all simulation 
iterations are not counted in the statistics generation 
(see Section 2.3.1) to eliminate this burn-in effect. 

There are times during the simulation run when 
the event list can be modified. While follow-on 
phases are generated immediately after their 
preceding phase, follow-on levels are only added to 
the event list when the asset goes to the level that 
precedes the follow-on level. In addition, 

2 The reader might wonder why scoring criteria are required for
the phases, but not for the levels. In fact, Tyche employs hard
coded scoring criteria for the levels. The capability and conflict
criterion, with constant weights, scales, and thresholds, are used
to assign assets to meet the level’s capability demands. 
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rescheduling of an asset from one event to another 
(bumping) alters the event list. Based on the 
rescheduling rules selected with the bumped event, it 
may be added again later in the event list.  

Once a list of events for the iteration has been 
built, Tyche will assign assets to each event in a 
chronological order. The flow chart in Figure 1 
illustrates how Tyche processes each Nth event in 
the event list. 

 
Figure 1: Event logic flow chart. 

2.2.2 Asset Scoring Criteria 

The method by which assets are selected for 
assignment is based on an additive cost function. 
While this is a myopic policy for meeting a single 
requirement by selecting from a list of assets based 
on information that is known now and actionable 
now (MP:R-AL/KNAN) (Wu et al., 2009), it 
provides a great deal of flexibility to mimic the 
decisions made by a military scheduler. Additional 
model development is planned to include 
optimization of asset assignment over the entire 
requirements list (events) at a given point in time 
and implementing a rolling time-horizon policy for 
forecasted demand. 

The cost function is calculated for a set of assets 
using four scoring criteria that are described in Table 

1; each criterion is defined separately for every 
scenario phase (for events with an asset source, 
levels use a predefined subset of these criteria). The 
first set of assets computed that has the highest score 
based on the scoring criteria is assigned to the 
mission. In the case of a tied score, the first 
computed with the score is selected – hence, entry 
order is important. 

Table 1: Scoring criteria composition. 

Criteria Description 
Capability 

(mandatory) 
Number of capability demands that are met at 
the required or marginal level. 

Capability 
Excess 

(optional) 

Sum of the quality of the capabilities 
supplied by the assigned assets that exceed 
the capability demand of the scenario phase. 

Timeliness 
(optional) 

Sum of the time delay for all capabilities 
provided after the desired response time. 

Conflict 
(optional) 

Sum of the penalties for every asset bumped 
to go to the scenario phase. 

The cost function for a single asset is simply the 
weighted sum of the scores obtained for all selected 
scoring criteria. Weights for each criterion are 
subjectively established by the user and can be 
tailored to try to reproduce the asset selections made 
by a military scheduler. A tool is included in the 
software to allow the user to preview the ideal asset 
selections (assuming unlimited assets and no 
timeliness or scheduling conflict) to tune the weights 
before a simulation is run. Consider a scenario (s) 
with a set of capability demands {D}. An asset with 
a set of capability supply {S} will have the cost (C) 
components defined in Eqs. (2)-(5), with the 
subsequent scaling factors (Sc). The scaling factors 
are also weights that are subjectively established by 
the user, different from the cost component weights 
used in the overall cost function. 
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The capability score (Eq. 2) is obtained by 
summing over the capability demands that are met at 
the required level (D(R)) and over those met only at 
the marginal level (D(M)). The arbitrary factor 0.5 
multiplying the second sum indicates that the 
capability met at the required level provides a higher 
contribution to the capability score than those only 
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met at the marginal level. Furthermore, since the 
capability score is obtained from the sum of the 
capability weights (W(D), indicating the importance 
of the capability to the success of the scenario 
phase), capabilities with higher weights will 
contribute more to the score. 

The excess capability score in Eq. (3) is obtained 
by summing over all the capability supplies (S) that 
are not requested by the capability demand (∉D). 
This excess score prevents Tyche from sending too 
much capability (too many assets or too capable 
assets) to the scenario phase. Excess quality of a 
capability that is required by a scenario and provided 
by an asset is not taken into account (i.e., if two 
assets supply the same capability at different 
qualities, both greater than the required quality level, 
there is no penalty for selection of the one asset that 
exceeds the required level more than the other). 

Eq. (4) defines the timeliness score, where TR is 
the desired response time and Θ(T(S)-TR) is the 
Heaviside step function. The timeliness score is 
obtained by computing the overall delay (T(S)-TR) 
required to get all of the capability supplies (S) that 
are requested by the capability demand (∈D) into 
theatre. The summation is normalized by the number 
of supplied capabilities. 

Finally, the conflict score is obtained by 
summing the penalties of all bumped assets in Eq. 
(5). The penalty given for bumping the asset is 
specified by the user in the asset type definition for 
bumping the asset from its current level (Lc) to the 
desired level (LD). The sum is over all selected assets 
(A) for which the current level (Lc(A)) is not the 
default level. This conflict score favours the 
selection of available assets rather than bumping 
non-available ones. 

The cost function for a group of assets is then the 
additive score for each individual asset; it is also a 
function of the order in which the assets are 
assigned. This will be discussed further in Section 
2.2.3. 

In addition, a threshold is also established for 
each scoring criteria. The threshold is used to reject 
poor groups of assets. In other words, if the best 
group of assets has an unacceptably low score 
component, it is possible to reject it and not send any 
assets at all. The threshold allows the user, for 
example, to prevent assets from being sent to a six-
month mission to arrive only two days before the 
end of the mission.  The effect of the thresholds 
(Thr) can be summarized as follows. If, for a given 
mission, the set of assets with the highest cost 
function is a set of k assets, σ(A1,…,Ak), then the set 

of assets assigned to the mission, σ*, is given in Eq. 
(6). 
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Where “0” is the empty set of assets and “Sign” 
is a function that returns -1, 0, or 1 based on the 
value of the argument (<0,=0,>0).  

2.2.3 Asset Assignment Algorithm 

The assignment problem consists of matching the 
capability demand with the capability supply in an 
optimal way, with the objective of maximizing the 
cost function. This problem is thus equivalent to 
finding an optimal matching on a bipartite weighted 
graph. This equivalence follows from the following 
definitions (Diestel, 2005): 

 A graph is a set of nodes and a set of edges 
between nodes. For the assignment problem, 
the nodes are given by the set of capability 
supplies and capability demands while the 
edges are determined from the search domain; 

 A weighted graph has a scalar value associated 
with every edge. For the assignment problem, 
the weight associated with the edge is 
computed using the capability and timeliness 
scoring criteria as described in Eqs. (2) and 
(4); 

 A bipartite graph is a graph for which the set of 
nodes can be divided into two subsets such 
that there is no edge between nodes pertaining 
to the same group. For the assignment 
problem, the nodes can be divided into the set 
of capability demand and the set of capability 
supply. Since every edge is between a 
capability and a capability demand, the graph 
is bipartite; 

 A matching on a graph is obtained by selecting 
a subset of edges such that no selected edge 
has a common node. The assignment of assets 
is done by matching each capability demand 
with one, and only one, capability supply. It 
thus corresponds to selecting a matching on 
the graph. Every asset for which at least one 
capability supply is adjacent to an edge 
pertaining to the matching belongs to the set 
of selected assets. 

Only the capability score and timeliness score 
can be assigned as a weight associated with the 
edges. This is possible because these two scores are 
given as a sum over the capability demands that are 
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matched. The excess and conflict score cannot be 
obtained through a distributed sum along the edges 
pertaining to the matching. Thus, if the excess and 
conflict score do not belong to the selected scoring 
criteria then the optimal matching corresponds 
directly to the highest weight matching, which is a 
well-known problem in graph theory (Diestel, 2005). 
In particular, the backtracking and backjumping 
algorithm has been applied successfully to this type 
of problem (Wolf, 2006). Because the weights for 
the excess and conflict scoring criteria are typically 
small, this algorithm should produce solutions that, 
while not optimal, are “good enough”. 

Because there are typically few asset types that 
can satisfy a given set of capabilities, the user can 
exploit this information to define a restricted search 
domain. An enumerated search is then performed to 
determine which assets to assign. Tailoring of the 
search domain adds a significant amount of 
flexibility for assignment selection, increasing the 
capability of the program. The enumerated search is 
guaranteed to select the best available asset when 
only one asset is required for a scenario. If more 
than one asset is required, it is possible that the 
highest ranked combination of available assets is not 
assigned, because the search is conducted on an 
asset-by-asset basis. The next asset that adds the 
most to the total score, based on the remaining 
capability demand, is assigned. 

The selection of assets is also done in a multi-
layered way. At each layer, assets are selected to 
meet the capability demands that were introduced at 
the previous layer. If, at some layer, the capability 
demands cannot be met, then the algorithm 
backtracks to the previous layer and selects a 
different group of assets. At each layer, after a group 
of assets has been selected, the algorithm checks for 
redundancy. If redundant assets are found, then the 
redundant asset is removed and replaced by the new 
asset that can provide the capability that the 
redundant asset was providing and the algorithm 
backjumps to the layer where the redundant asset 
was selected.  

2.3 Output and MOP 

The results of the Monte Carlo simulation are output 
so that operational schedules from individual 
iterations can be viewed in text or graphical format. 
This allows for detailed examination of asset 
assignment, scheduling conflicts, and mission 
timing. Upon completion of the simulation run, 
statistics are generated for asset usage, scenario 
assignments, and capability fulfillment. A 

capability-based risk measure is introduced to 
aggregate the results into a single MOP for force 
structure comparisons. 

2.3.1 Statistical Information 

Asset statistics collect information on the 
assignment of individual force structure assets in 
terms of average duration and standard deviation of 
the duration spent at a given level. While the user 
must reconstruct which levels correspond to which 
scenario phases, the data output is generalized for 
use across all military services.  

Scenario statistics indicate the average frequency 
of occurrence of scenario phases and the percentage 
of time that particular combinations of assets (or no 
assets) are being sent.  

Capability statistics are the primary indicator of 
the ability of a force structure to meet scenario 
demand. For each scenario phase, the percentage of 
time that capabilities are not met at the required and 
marginal levels are reported.  

2.3.2 Capability-based Risk Assessment 

Maintaining the focus on capability-based planning, 
an assessment of the risk associated with a particular 
force structure can be derived using the probability 
that capabilities are not met, and frequency of 
scenario occurrence. The risk is defined in Eq. (7), 
where the mean yearly political risk (R) for a given 
scenario (s) is defined as the product of the annual 
frequency of occurrence (f), the impact (I) of failure 
to provide capability, and the probability the 
capability supply deployed is inadequate (P). The 
risk is then summed over all scenarios. 

∑=
s

sss PIf  R  
(7)

The first factor is assessed by averaging the 
number of times the scenario occurs yearly across all 
iterations. The second factor, known as impact 
score, can be provided as a subjective input by 
SME’s. This allows the risk assessment to 
incorporate military judgement, often critical to 
balance the perceived effect of low impact-high 
frequency and high impact-low frequency scenarios. 
The third and final factor (Ps) is calculated from Eq. 
(8). The probability that the capability supply is 
inadequate can be defined in several ways, 
depending on how risk-averse the assessment should 
be. In general, it is a weighted summation of the 
percentage of time (PTyche) that the scheduler fails to 
provide capability to a scenario with a given asset 
assignment (A).  
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Given that the Tyche scheduler can assign assets 
to meet capability at different levels, one highly risk-
averse method would be to utilize three categories: 
where, due to force structure limitations, Tyche fails 
to assign assets altogether (A=0), and where at least 
one capability demand is not met at the required 
(A=R’) and marginal level (A=M’). The weights for 
each of the categories of capability failure can also 
be provided by SME input. In the case study, it will 
be assumed that w0 = 1.0, wR’ = 0.5 and wM’ = 0.1. 

The statistical nature of the risk measure also 
implies that there is an error on the estimation of the 
average. It is reported as twice the standard 
deviation (σ) of the mean distribution, where σ is 
estimated by the square root of the sample variance 
of the risk distribution divided by the number of 
iterations.  

3 A CASE STUDY 

Utilizing a simple case study, it is possible to 
illustrate the kinds of results Tyche can produce, as 
well as the types of problems that can be analysed. 
The case study is built around hypothetical asset 
types and scenarios, and the capabilities attributed to 
these assets are not intended to model capabilities of 
real force assets.  

In this example, five generic capabilities (A, B, 
C, D, E) were created, along with two crewing and 
one transport capabilities for modelling 
dependencies. Five asset types (Air Asset, Air Crew, 
Sea Asset, Sea Crew, and Special Operations Force) 
can supply these capabilities, at various levels 
shown in Table 2. The Air Asset requires an Air 
Crew with a quantity of 3 persons, and can provide 
transport for up to 10 persons. The Sea Asset 
requires a Sea Crew, with a quantity of 70, and can 
provide transport for 100 persons. The Special 
Operations Force (SOF) is composed of 6 persons, 
and can be transported on either Air or Sea Assets.  

Table 2: Asset capability supply. 

Asset Type Capability Quality Quantity 
Air Asset A 

B 
C 

0.8 
0.7 
0.2 

1 
6 
1 

Sea Asset A 
C 
D 

0.7 
0.6 
0.9 

1 
1 
1 

SOF E 1.0 1 

Air Assets were modelled to have a 50% chance 
of requiring maintenance after use in a scenario, 

with a duration determined from a triangular 
distribution with minimum, most likely and 
maximum values of 1, 2, and 10 days. They were 
also restricted for use in 100 of every 365 days. The 
Sea Asset has a Short Work Period of 18-20-25 days 
5 times per year. It also has a Docking Work Period 
of 100-180-365 days once every 5 years. Both Air 
and Sea Crews were constrained to take a quality-of-
life break after every scenario for 5-5-10 days.  

There were two bases: Air 1 and Sea 1, 
collocated together. There were four possible 
theatres, some favouring the assignment of air assets 
and others that are unbiased. Three scenarios (S1-
S3) were defined to occur at two or more possible 
theatres, with requirements from Table 3. The 
scenario search domain was the same for all, 
including Air Assets from Air 1, Sea Assets from 
Sea 1, and SOF from Air 1. 

Six force structures were tested. It was assumed 
that there was one crew per platform, and force 
structures are labelled according to the number of 
[Air Assets, Sea Assets, SOF]. The first three 
structures, [6,4,6], [3,2,3] and [1,1,1] looked at 
decreasing fleet sizes across all assets. Three 
additional structures reduced a single asset type from 
the largest, [6,2,6], [3,4,6], and [6,4,3]. The risk 
measure was computed using three for impact score, 
with values of 1.0 for S1, 1.5 for S2, and 5.0 for S3, 
and is shown in Figure 2. 

 
Figure 2: Case study results. 

As illustrated, the risk of not being able to fulfil 
scenario capability requirements increases with 
decreasing fleet size. The simple parametric 
decrease in assets of a given type indicates that force 
structure [6,2,6] and [6,4,3] do not have a 
statistically significant difference in performance, 
and are near the large [6,4,6] structure. However, 
when Air Assets are removed [3,4,6], the risk 
increases sharply.  

This  case  study  is  representative  of  the force 
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Table 3: Scenario timing and capability demand. 

Scenario: 
Phase 

Type, 
Frequency 

Theatre, 
Probability 

Duration, 
Response 

Time (Days) 

Capability, 
Quantity 

Required, 
Marginal 
Quality 

Weight (All 
Non-

Essential) 

Scoring Criteria, 
Weight, Scale, 

Threshold 
S1:P1 Random 

3.0 / year 
1, 0.2 
2, 0.8 

20-30-60 
25 

A, 1 
B, 15 
C, 2 

0.8, 0.4 
0.7, 0.2 
0.4, 0.1 

2 
4 
1 

Capability,10,1,1 
Conflict,1,1,100 

S2:P1 Scheduled 
1.0 / year 

Starting on 
Day 30 

1, 0.25 
2, 0.25 
3, 0.25 
4, 0.25 

30-60-90 
15 

A, 1 
C, 2 
E, 2 

0.6, 0.4 
0.4, 0.1 
1.0, 1.0 

2 
1 
2 

Capability,10,1,1 
Conflict,1,1,100 

Timeliness,1,1,20 

S3:P1 Random 
0.33 / year 

3, 0.8 
4, 0.2 

90-150-180 
30 

A, 1 
B, 15 
C, 2 
E, 4 

0.9, 0.4 
0.7, 0.2 
0.4, 0.1 
1.0, 1.0 

2 
4 
1 
2 

Capability,10,1,1 
Conflict,1,1,100 
Timeliness,5,1,8 

S3:P2 Follow-on, 
With P1 

duration ≥ 
150 days 

Same as P1 90-150-180 
30 

No overlap 
with P1 

A, 1 
B, 15 
C, 2 
D, 1 
E, 4 

0.9, 0.4 
0.7, 0.2 
0.4, 0.1 
0.5, 0.3 
1.0, 1.0 

2 
4 
1 
1 
2 

Capability,10,1,1 
Conflict,1,1,100 
Timeliness,5,1,8 

 

structure analysis that can be performed with Tyche, 
as well as options analysis around force structures of 
interest. While Tyche is not integrated into an 
optimization framework, simulation optimization to 
determine the optimal fleet with respect to some 
objective (minimum risk, structure size, cost, etc.) 
can still be performed, albeit in a less efficient way. 

Tyche is also useful for performing options 
analysis, capability gap analysis, testing new 
capability architectures, and evaluating force 
structure performance in the face of changing 
requirements. As well, the rate of usage of assets can 
be examined to determine the effects of readiness 
and sustainment policies on performance in 
operations. For example, in the case study, the Sea 
Asset goes through a number of work periods. The 
length and frequency can be varied to determine the 
effect on risk. Similarly, with crews, operations and 
personnel tempo constraint policies can be varied. 

4 CONCLUSIONS 

This paper described a Monte Carlo discrete event 
simulation for joint force structure analysis. The 
Tyche tool is currently used by DRDC CORA and, 
while it has not yet been employed for a formal joint 
force structure study, it exhibits potential advantages 
for strategic level capability-based planning. 
Development is already underway to rectify known 
modelling limitations. Additional research avenues 
include optimization of asset assignment over the 
entire requirements list at a given point in time and 
implementing a rolling time-horizon policy for 
forecasted demand. 
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