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Abstract: Chronic obstructive pulmonary disease (COPD) and coronary artery disease are severe diseases with 
increasing prevalence. They cause dyspnoea, physical inactivity, skeletal muscle atrophy and are associated 
with high costs in health systems worldwide. Physical training has many positive effects on the health state 
and quality of life of these patients. Heart Rate (HR) is an important parameter that helps physicians and 
(tele-) rehabilitation systems to assess and control exercise training intensity and to ensure the patients’ 
safety during the training. On the basis of 668 training sessions (325 F, 343 M), demographic information 
and weather data, we created a model that predicts the training HR for these patients. To allow prediction in 
different use cases, we designed five application scenarios. We used a stepwise regression to build a linear 
model and performed a cross validation on the resulting model. The results show that age, load, gender and 
former HR values are important predictors, whereas weather data and blood pressure just have minor 
influence. The prediction accuracy varies with a median root mean square error (RMSE) of ≈11 in scenario 
one up to ≈3.2 in scenario four and should therefore be precise enough for the application scenarios 
mentioned above. 

1 INTRODUCTION 

1.1 Background 

Patients with chronic obstructive pulmonary disease 
(COPD) are suffering from the consequences of a 
chronic inflammation of their pulmonary system. 
This leads to an obstruction of the bronchi that 
causes airflow limitation and shortness of breath. 
Often, immobility and social isolation are the 
consequences, which in turn reinforce the 
degeneration of muscle mass and aggravate the 
symptoms. The Global Initiative for Chronic 
Obstructive Lung Disease (GOLD) summarizes: 
“COPD is the fourth leading cause of death in the 
world and further increases in its prevalence and 
mortality can be predicted in the coming decades” 

(Rodriguez-Roisin and Vestbo, 2009). Just the direct 
medical costs attributable to COPD were estimated 
at $49.5 billion in the US (Lung Institute, 2009) and 
€38.6 billion in the European Union (Simon et al., 
1990) for 2010. 

Beside the pharmacological treatment, an 
important part of therapy is regular endurance 
training. Pulmonary rehabilitation training improves 
physical capacity, reduces breathlessness, reduces 
the number of hospitalizations and increases the 
quality of life (Rodriguez-Roisin and Vestbo, 2009). 

1.2 Related Work 

Achten and Jeukendrup summarized current research 
achievements in the field of heart rate monitoring in 
2003 and state: “…the most important application of 
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HR monitoring is to evaluate the intensity of the 
exercise performed” (Achten and Jeukendrup, 2003). 
They conclude that the important influence factors 
on HR are age, gender, environmental temperature, 
hydration and altitude. They estimated the day-to-
day variance under controlled conditions to be 2-4 
beats per minute (bpm). 

Velikic et al. used data from an accelerometer for 
a comparison of different models (linear, non-linear, 
Kalman filter) for HR prediction of healthy subjects 
and such with congestive heart failure (Velikic et al., 
2010). The two linear models delivered the best 
results for a short term prediction of 20 minutes. Su 
et al. introduced a model to control HR during 
treadmill exercise (Su et al., 2006). Further 
approaches for the same application were provided 
by Cheng et al. (Cheng et al., 2008) and Mazenc et 
al. (Mazenc et al., 2010). Neither have any of these 
models been checked for their applicability to 
cardiopulmonary patients nor do specialized HR 
models exist for these. 

1.3 Aim and Scope 

Heart rate is an important vital parameter and 
thereby an important indicator of a patients physical 
state during rehabilitation trainings (Song et al., 
2010). The knowledge about factors that have an 
influence on the exercise physiology might help 
physicians to take this information into account 
when deciding how much load a patient can undergo 
during a training session. Hence it could be used to 
support creation and optimization of training 
schedules and during the current training session 
itself to derive the future course. 

A difference between the predicted trend of a 
normal training and a measured heart rate may give 
a hint on a potentially abnormal development and 
thereby help to detect critical states before they 
occur. This is especially important in tele-
rehabilitation settings, when patient’s train under 
unsupervised conditions at home (see (Helmer et al., 
2010); (Lipprandt et al., 2009)). Integrating 
predictive models in systems for the planning and 
execution of individualized trainings has the 
potential to increase patient’s security during 
rehabilitation. 

The aim of our research, which is presented in 
this paper, is to introduce a model which predicts the 
patients HR on the basis of given information about 
the patient and the environment. 

2 METHODS 

2.1 Population, Data Acquisition and 
Preparation 

The data was obtained during outpatient 
rehabilitation from cardiopulmonary patients with 
NYHA 1-2 and COPD level 2-3. The only exclusion 
criterion was the inability to perform training. 

We started with an original dataset of 164 
patients (82 W, 82 M) and 1201 training sessions, 
which were collected between July and September 
2009 in the exercise training center of the Medical 
School Hannover in addition to regular ambulatory 
training sessions. Patients performed their sessions 
twice a week, whereas in mean each patient 
performed ~8 training sessions (± 7.7). HR was 
obtained on the basis of electrocardiogram (ECG) 
data. The following additional data were available: 
 Patient demographics: age, sex 
 Training data: date and time, duration, load  
 Vital signs data: resting HR before training, 
recovery HR after training, blood pressure (BP) 
(rest, load, recovery – systolic and diastolic), Borg 
value (Borg, 1970) (used scale 6-20), HR during the 
whole training (sample rate ≈ 1 Hz.). 

 

Figure 1: Sample training session with heart rate, training 
load and distinction into the four training phases. 

We also included environmental variables, which 
could have a possible influence. For this purpose we 
procured data from the German weather service that 
was recorded by a weather station in Hannover 
(station id: 2014), where the training took place. We 
chose temperature, humidity and air pressure as 
main descriptors for weather and added them to the 
training data. 

Only fully completed training sessions with a 
specific phase and full duration and a typical load 
course showing the characteristics of a successful 
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four-phase rehabilitation training (see figure 1) were 
included into the dataset. The first phase (warm up) 
consists of a load plateau at a certain level. This load 
increases stepwise over time in the second phase. 
The third phase (load phase) shows a constant load 
for at least 10 minutes. In the fourth phase (cool 
down) the load is reduced stepwise until it reaches 
null. We also excluded sessions, where a monitoring 
physician interfered by de- or increasing the training 
load, because the reasons of such changes were not 
documented in our data. This could also be an 
indicator for training under suboptimal conditions, 
e.g. the training load was too high or low for the 
patient due to an inadequately adapted training 
schedule.  

To automatically and robustly extract the 
sessions from the dataset matching the previously 
mentioned criteria, we calculated the difference 
derivate of the load values over time to detect 
whether the load was in- or decreasing during a 
training session. Additionally, a session had to last 
from 12 to 26 minutes in total. After discarding all 
training sessions not fulfilling these criteria, we 
reduced the above mentioned number of 1201 to 668 
(325 F, 343 M) training sessions from 115 patients 
(in mean 5.8± 4.5 trainings per patient). 

2.2 Model Creation 

For the integration of the predictive model into 
existing training systems the set of potential 
predictors (input variables which explain a 
significant part of the response variable) varies 
depending on the point in time and the use case. 

We designed five different scenarios with 
expanding/extending datasets, which take place in 
settings of telerehabilitation training and during live 
training in clinics. The first scenario describes a 
situation before training when the schedule is 
created, but no reliable weather forecast is available 
(approximately three days before the training day). 
The second scenario includes the weather forecast. 
In the third scenario the patient already wears the 
sensors, but the training has not yet been started. The 
fourth scenario depicts an ongoing training and the 
prediction includes data that was gathered during 
previous completed training phases. To provide an 
example, the average heart rate of the warm up 
plateau phase can be included into the dataset for the 
load phase. The fifth scenario describes the situation 
after the training and does also include data like the 
subjective perceived exertion of the patient 
expressed on the Borg scale. 

 

 

Figure 2: Sample training session for scenario four with 
measured and predicted heart rate. The RMSE is 
calculated for the four training phases. 

The following list is sorted in ascending order by 
the number of predictors available and the time in 
relation to the training session. Each scenario 
expands the predictor set of the previous one:  
 Scenario S1 (training plan creation): patient 
demographics and training plan data (load, duration 
of each phase)  
 Scenario S2 (training plan creation few days 
before the training day): weather data 
 Scenario S3 (at the beginning of the training): 
resting HR, resting BP 
 Scenario S4 (during the training): average HR of 
the former phase, HR at the end of the former phase, 
BP during the load phase (phase three) 
 Scenario S5 (after the training): average HR of 
current training phase, average HR of load phase, 
average HR of all phases, recovery pulse, recovery 
BP, average of all BP values, Borg value 

The final list of predictors for scenario five included 
24 items (see table 1).  

To build a hypothesis about which values have a 
relevant influence on the HR, we used a stepwise 
regression analysis (Hair et al., 2006). This 
algorithmic approach performs a multilinear 
regression and determines a model, by adding or 
removing the variable with the highest or lowest 
correlation of the model’s F-statistics stepwisely. 

So the variable with the highest chance of 
explaining the variance of the given normally 
distributed data set is added to the model, when the 
correlation is big enough to reject the null 
hypothesis. This is done until all variables with 
significant influence (predictors) have been added 
and all variables with non-significant influence have 
been removed from the final model. We used the 
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standard entrance and exit tolerances of p ≤ 0.05 and 
p ≥ 0.10 for the model. Additionally, we performed 
chi-square tests to confirm the normal distribution of 
the HR dataset. 

The stepwise regression determines a set of 
coefficients (Bi) and an intercept (also called 
constant term) (c) as result. Together with a number 
of given predictor values (Xi) it yields a linear 
combination of the following form to calculate the 
response variable (Y): 
 

Y =  c + b1 x1 + b2 x2 ... + bi xi (1)
 

We created such a submodel for each training phase 
(warm up plateau, warm up ramp, training and cool 
down) to reflect the different physiological targets. 
These four submodels were then concatenated to a 
complete model for one training session (see figure 
2). This also simplified the comparison to the real 
HR of the training sessions used for validation. 

2.3 Model Evaluation 

To determine the quality of our model and to prevent 
overfitting, we performed a 2-fold cross-validation. 
We divided the dataset into two parts d0 and d1. Both 
parts were of the same size and contained randomly 
selected training sessions (n=334) from the dataset. 

First, we used d0 to train the model and validated it 
against the d1 dataset then we performed this 
procedure vice versa. 

We calculated the root mean square error 
(RMSE) which quantifies the deviation between 
measured and predicted heart rate over a whole 
training. 

It is not easy to determine, which predictor of the 
resulting model explains which part of the response 
variable, as each added predictor depends on the 
former one. To make a statement about the influence 
of the predictors, we measured the percental 
improvement of the RMSE when a predictor is 
added to the model in relation to the former one. 

3 RESULTS 

We modeled the four stages of a training session 
(one for each training phase) for the five different 
scenarios and determined the weighted RMSE to 
quantify the error of each model (see figure 2). 

Table 1 shows the contribution of different 
predictors to the model and their effect on the 
RMSE. Because of their naturally high correlation 
(also known as multicollinearity) it is no surprise

Table 1: Mean contribution of the predictors on the scenario (S1-S5) model. All values represent the improvement of the 
former RMSE in percent by addition of a predictor during stepwise regression. The “-” symbol denotes that a predictor is 
not available in the given scenario. The calculated average influence of a predictor is shown in column “Overall”. The order 
of these values is additionally illustrated by a rank order in the last column. 

Predictor S1 S2 S3 S4 S5 Overall Rank 
Age 11.032 11.032 11.1115 9.002 8.018 10.0391 3 

Gender 0.754 0.754 0.745 0.1555 0 0.4817 8 
Load 0.368 0.368 5.5555 0.646 0.0775 1.403 6 

Overall training duration 0.0645 0.0645 0 0 0 0.0258 12 
Duration of current training phase 0.0395 0.0395 0.015 0.019 0.0105 0.0247 13 

Air pressure - 0.0265 0.0125 0.141 0.1355 0.078875 11 
Temperature - 0 0 0 0 0 - 

Humidity - 0 0 0.0585 0 0.014625 14 
Resting HR - - 40.9895 7.1535 5.268 17.8036667 2 

Resting BP systolic  - - 0.494 0.118 0.119 0.24366667 9 
Resting BP diastolic - - 0 0 0.0855 0.0285 11 

Average HR of former phase - - - 57.0635 54.3 55.68175 1 
Load phase BP systolic - - - 0 0.005 0.0025 16 

HR at the end of former phase - - - 0 0.0265 0.01325 15 
Load phase BP diastolic - - - 0 0 0 - 

Average HR of current phase - - - - 5.648 5.648 4 
Average HR of load phase - - - - 3.5475 3.548 5 

Recovery pulse - - - - 0.6825 0.683 7 
Recovery BP diastolic - - - - 0.122 0.122 10 

Borg value - - - - 0 0 - 
Average HR of all phases - - - - 0 0 - 

Average of all BP values systolic - - - - 0 0 - 
Average of all BP values diastolic - - - - 0 0 - 

Recovery BP systolic - - - - 0 0 - 
Total number of predictors 5 8 11 15 24 
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that four of the first five predictors have a high 
impact on the model. Important other predictors are 
age and load (Overall>1.4). The only predictor from 
the weather data is the air pressure with just a very 
small influence of ≈0.08%. Most of the different 
blood pressure values and the Borg value have no 
impact on the model. 

Table 2 shows the accuracy of the prediction. For 
the calculation of average and median over the 
complete training the phases are weighted by their 
duration. 

The RMSE for scenario S1 and S2 is similar 
(mean ≈12.3 and median ≈11.1). This also shows 
that the available weather data has nearly no effect 
on HR prediction. With an average HR of ≈98.4 
bpm over all training sessions, this is equivalent to a 
relative mean error of ≈12.5%. The third scenario 
shows an average and median error of ≈8.5 and ≈6.1 
which corresponds to a relative mean error of 
≈8.6%. The difference between the average and 
mean error suggests that there are some outlier 
trainings that have a strong influence on the average 
error. 

Due to the additional predictors in S3, the 
median error is almost reduced to 50% compared to 
S2. The main reason for this strong improvement is 
one dominating predictor: the resting heart rate (see 
table 1). The overall ranking of this predictor is 
dominated by its S3 value of ≈41%. This strongly 
increases the average value where the values are 
much lower in S4 (≈7.2%) and S5 (≈5.3%). This 
might be caused by the dependence between resting 
HR and the average HR of the former phase. The 
latter seems to be the better predictor. 

S3 is also the scenario in which the training load 
has by far the highest influence (≈5.6%) with a 
distance of 5% to the next smaller value in S4 
(≈0.6%). A plausible explanation for this value 
might be that training sessions with 
cardiopulmonary patients are generally conducted at 
a very low load of ≈35 watt on cycle ergometers. 
Therefore the leg movement might have a stronger 
influence on the real training load, than the selected 
load of the bicycle ergometer. 

S4 / S5 are further increasing the precision of the 
prediction (mean ≈4.7 / ≈4.9, median ≈3.2 / ≈3.5 in 

table 2) with an average relative error of ≈4.8% / 
≈5%. This is mainly caused by time-near HR-based 
values (average HR of former ≈55.7% and current 
phase ≈5.6%). 

Although more predictors contribute to scenario 
S5 a higher prediction error is calculated compared 
to S4, whereas it was vice versa during the model 
building process (≈1.56 improvement for the mean 
and ≈0.93 for the median RMSE). This is an 
indicator for overfitting of the S5 model, which 
might occur due to the usage of too many 
explanatory variables. 

4 DISCUSSION 

The stepwise regression algorithm leads to a local 
optimum which is not necessarily the global 
optimum. A stepwise addition of variables decreases 
the models’ RMSE. When using only the RMSE as 
an indicator for the degree of influence for each 
individual predictor this has the disadvantage, that a 
later added predictor may have less influence, 
because a part of his improvement is already 
explained by the previously added variable. Thereby 
the result depends on the order of the steps and 
could lead to a suboptimal model when applied to 
highly correlated variables (like systolic and 
diastolic BP).  

Therefore a stepwise regression can never 
replace expert knowledge. On a statistical level, we 
want to improve the model by performing a factor 
analysis that will reduce the number of predictors 
and provide a better knowledge about their 
correlation to each other. This might also eliminate 
the potential overfitting of S5 and enable the transfer 
to other training modalities. 

The accuracy of our model strongly depends on 
the scenario and the associated data items. The first 
scenario takes place during the training plan creation 
and the calculated model shows the highest error. 
This result might still be good enough to gain an 
impression about HR development of a common 
cardiopulmonary patient during training time. We 
believe that the error of this scenario can be 
improved by adding further predictors related to the 

Table 2: Mean error of the prediction. All values refer to the RMSE of the model in relation to the real HR. 

Scenario Phase 1 Phase 2 Phase 3 Phase 4 Average Median

S1 11.448 10.267 12.079 12.954 12.254 11.069 

S2 11.443 10.267 12.079 12.986 12.260 11.084 

S3 5.528 6.514 8.528 9.561 8.498 6.068 

S4 4.347 3.636 4.637 6.572 4.733 3.266 

S5 4.762 2.940 4.734 5.281 4.906 3.542 
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patients metabolic response like weight, medication 
and information about the current training state. 

The available weather data only had a minor 
influence and lowers the precision of the model. 
This may reflect the fact that weather has no direct 
influence on the patient when he trains in a tempered 
environment. However, that does not mean that the 
direct environment has no influence at all. We want 
to examine this by the measurement of the 
conditions inside the training area. Furthermore we 
are going to examine if the weather indirectly affects 
the Borg value, another very important value to 
control the intensity of the rehabilitation training. 

The influence of the resting HR at the beginning 
of a training in S3 leads to a good precision of the 
model during the training itself. This predictor is 
probably influenced by many other, hard to measure 
variables like medical treatment, stress, dehydration 
and coffee consumption, which might have a strong 
impact on the metabolic system. This leads to the 
unexpected observation that the given blood 
pressure values show only a very small effect on the 
HR. Blood pressure kinetics are in close relationship 
to HR, but not to absolute values, due to 
antihypertensive treatment in most patient’s. 

The prediction can be used to estimate the 
patient’s physical state on the day of testing and 
thereby help to define an appropriate training 
intensity before the training starts. 

The phase-wise prediction in S4 during the 
runtime of the training shows a relative error below 
5%. This should be precise enough to robustly detect 
abnormal HR developments and calculate the 
optimal load for the next phase. In future we will 
focus on the analysis of other time dynamic 
predictors that might increase the model accuracy 
and also facilitate high refresh rates without the 
abstract distinction between training phases. 

5 CONCLUSIONS 

We created a statistical model to predict HR as an 
important vital parameter for the rehabilitation 
training of cardiopulmonary patients. We considered 
demographic data, training plan information, other 
vital parameters and weather information as 
potential predictors and classified them into five 
aim-specific scenarios. The validation of the model 
revealed that weather and the measured blood 
pressure have nearly no direct influence on HR. Age 
and previously measured HR based variables like the 
resting HR strongly influence the responding HR. 

The model exhibits an overall low error of ≈11 
bpm in median, when used for the creation of a 
training schedule (scenario 1). The error is reduced 
by about 50%, when the model is used for prediction 
at the beginning of a training session. The error 
decreases below a significance level when the model 
is used during a training to predict HR at the 
beginning of each of the four training phases. This 
makes it potentially suitable to detect critical 
situations before they appear. 

The precision of the prediction might be 
improved by additionally including expert 
knowledge and further statistical methods, but it 
already serves as a good basis for the integration of 
HR predictive mechanisms into training related 
systems and might potentially increase the safety 
and efficiency during the rehabilitation training of 
cardiopulmonary patients. 
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