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Abstract: There is a significant interest in studying stem cells, to learn about the biological functions during 
development and adulthood as well as to learn how to utilize them as new sources of specialized cells for 
tissue repair. Modeling of stem cells not only describes, but also predicts, how a stem cell’s environment 
can control its fate. The first stem cell populations discovered were Hematopoietic Stem Cells (HSCs). In 
this paper, we present a biologically feasible deterministic model of bone marrow that hosts HSCs. Our 
model demonstrates that a single HSC can populate the entire bone marrow. It almost always produces 
sufficient number of differentiated cells (RBCs, WBCs, etc.). It also overcomes the biological feasibility 
limitations of previously reported models.  
We have performed agent-based simulation of the model of bone marrow system proposed in this paper. We 
have included the details and the results of this validation using simulation in the Appendix. The simulation 
also demonstrates that a large fraction of stem cells do remain in the quiescent state. The program of the 
agent-based simulation of the proposed model is made available on a public website. 

1 INTRODUCTION 

Stem cells and their descendents are the building 
blocks of life. How stem cell populations guarantee 
their maintenance and self-renewal, and how 
individual stem cells decide to transit from one cell 
stage to another to generate different types of mature 
differentiated cells are long standing and fascinating 
questions (Roeder and Radtke, 2009). There is a 
significant interest in studying stem cells, both to 
elucidate their basic biological functions as well as 
to learn how to utilize them as new sources of 
specialized cells for tissue repair (O'Neill and 
Schaffer, 2004). There are several major challenges 
within the field, such as the identification of new 
signals and conditions that regulate and influence 
cell function, and application of this information 
towards the design of stem-cell bioprocesses and 
therapies. Both of these efforts can significantly 
benefit from the synthesis of biological data into 
quantitative and increasingly mechanistic models 
that describe and predict how stem cell can control 
its fate. 

Blood is the life preserving fluid, whose major 

functions are supply of nutrients and oxygen to the 
tissues, self-immunity and defense against 
pathogens. In order to carry out these tasks, human 
blood contains a variety of cells, each precisely 
adapted to its specific objective. All the different 
blood cells develop from a kind of a master cell, 
called the Hematopoietic (blood forming) Stem Cell 
(HSC). HSCs are stem cells that give rise to all the 
differentiated blood cell types including White 
Blood Cells (WBC), Red Blood Cells (RBC) and 
Platelets. HSCs are primarily present in the bone 
marrow. Fully mature differentiated cells migrate 
into the blood stream leaving back an empty space in 
the bone marrow. The transition of HSCs from 
quiescence (not undergoing any cell cycle) into 
proliferation, or differentiation, is governed by their 
cell-cycling status and by hormones secreted by 
neighboring cells in their immediate 
microenvironment. 

It is believed that one HSC is sufficient to 
reconstitute the entire blood system (De Haan, 
Dontje and Nijhof, 1996). This extraordinary 
regenerative ability of the bone marrow is not 
surprising, considering that it has a vital role that 
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must remain unaffected by stem cells depletion, e.g. 
as a result of chemotherapy, radiation or disease. It 
should be emphasized that though the supply of 
blood cells in the periphery is steady, the bone 
marrow, considered as a physical entity is not static. 
It is dynamic in the sense that it constantly changes 
in its constitution and arrangement, and these 
changes occur at varying rates. The bone marrow is 
in the state of homeostasis that can be considered as 
a dynamic equilibrium between its constituents.  

Theise and Harris (2006) in their paper describe 
how stem cells and their lineages are examples of 
complex adaptive systems. Profound understanding 
of a complex adaptive system can be gathered by 
generating computer models using computational 
techniques. Agent based modeling is a way to 
represent such complex adaptive systems in 
software. An agent is a high-level software 
abstraction that provides a convenient and powerful 
way to describe a complex software entity in terms 
of its behavior within a contextual computational 
environment. Agents are flexible problem-solving 
computational entities that are reactive (respond to 
the environment), autonomous (not externally 
controlled) and interact with other such entities.  

To understand the behavior of the blood system, 
modeling of HSCs and their behavior in different 
circumstances is an area of active research. One of 
the significant contributions to stem cell modeling 
was a paper by Agur, Daniel and Ginosar (2002). 
The main aim of their paper was to provide a 
mathematical basis for the bone marrow 
homeostasis. More precisely, they wanted to define 
simple properties that enabled the bone marrow to 
rapidly return to a steady supply of blood cells after 
relatively large perturbations in stem-cell numbers. 
Their model is represented as a family of cellular 
automata on a connected, locally finite undirected 
graph. Their model can be briefly described as 
follows. It has three types of cells, stem cells, 
differentiated cells and null cells. Each cell has an 
internal counter. Stem cells differentiate when their 
immediate neighborhood is saturated with stem cells 
and their internal counter reaches a certain threshold. 
A differentiated cell converts to a null cell after its 
internal counter crosses the required threshold – a 
process that denotes the passing of a differentiated 
cell to blood stream leaving empty the place it had 
earlier occupied in the bone marrow. A null cell, 
with a stem cell neighbor, is converted to a stem cell 
when its internal counter reaches a particular 
threshold. 

d’Inverno and Saunders (2005) have listed the 
following drawbacks of Agur et al.’s (2002) model. 

1. The specification of Agur et al’s model reveals 
that the null cells must have counters. In a sense, an 
empty space has to do some computational work. 
This lacks biological feasibility and is against what 
the authors state about modeling cells, rather than 
empty locations, having counters. 

2. Stem cell division is not explicitly represented; 
instead, stem cells are brought into existence in 
empty spaces. 

3. A stem cell appears when a null cell has been 
surrounded by at least one stem cell for a particular 
period. However, the location of the neighboring 
stem cell can vary at each step.  

4. In the model, if a stem cell is next to an empty 
space long enough then it divides so that its 
descendent occupies this space. However, an empty 
cell might be a neighbor of more than one stem cell. 
The rule does not state that a particular neighboring 
stem cell must be present for every tick of the 
counter. Biologically it would be more intuitive to 
have the same stem cell next to a null cell for the 
threshold length of time in order for division to 
occur into the null cell space but the model lacks any 
directional component. 

5. The state of a stem cell after division is not 
defined. Nothing is said about what happens to a 
stem cell after a new stem cell appears in the null 
cell space. For example, should the counter of the 
stem cell be reset after division? Neither does it give 
any preconditions on the particular neighboring stem 
cell S that was responsible for converting the null 
cell space to a stem cell. For example, should S’s 
local counter have reached an appropriate point in its 
cycling phase for this to happen? 

In order to overcome the limitations, d’Inverno and 
Saunders (2005) introduced the concept of a 
controlling microenvironment that links a null cell 
that has reached a threshold with a stem cell that can 
differentiate. All the cells send and receive signals 
from the microenvironment and act on its 
suggestions. They also performed an agent based 
implementation with the incorporation of Agur et 
al.’s model in two dimensions. However, the 
improvement suggested by them does not have any 
biological basis. Moreover, there are additional 
limitations of the model described by Agur et al., 
which have not been considered by d’Inverno and 
Saunders (2005). The additional limitations are 
discussed below. 

 

1. There are no intermediate cells or transitive cells 
in the model proposed in Agur et al. (2002). 
Transitive cells are intermediate cells that have 
limited stem cell like properties and they are 
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eventually converted to mature differentiated cells. 
For Hematopoietic system, common lymphoid 
progenitor (CLP) and common myeloid progenitor 
(CMP) are transitive cells (Gordon, 2007). 
2. As an effect of the fourth drawback mentioned 
above, a stem cell can potentially differentiate more 
than once in the same time instant since it might be 
surrounded by more than one empty cell. Hence, it 
can potentially convert more than one of its 
neighboring empty cells into stem cells. Clearly, this 
lacks biological feasibility. 

In this paper, we have addressed all the limitations 
by augmenting the model proposed by Agur et al. 
(2002), thereby making the model closer to 
biological reality. The model we present is aimed to 
simulate a situation in which a cell’s behavior is 
determined only by a combination of the types and 
states of cells in its proximity and its own cell cycle 
represented by its internal counter. The main 
assumptions of our model are: 

• Cell behavior is determined by the number and 
type of its neighbors. This assumption is aimed at 
describing the fact that cytokines, secreted by cells 
into the microenvironment are capable of activating 
cells into changing their types (De Haan et al., 1996) 
(Roeder and Radtke, 2009).  

• Each cell has internal counters, which determine 
the time required by the cells to change its type, as 
well as the transit time of a differentiated cell before 
it migrates to the blood stream. 

To validate the model, we have performed an agent-
based simulation of the model of bone marrow stem 
cell system proposed in this paper. The program for 
the same is available on the website: 
http://sites.google.com/site/stemcell 
model. We have included the results of validation of 
the proposed model using agent-based simulation in 
the Appendix. 

The paper is organized as follows. In the next 
section, we describe our model and the rules that 
govern it. Later we show how a single stem cell can 
populate the bone marrow. In section 3, we show 
that the model almost always provides a steady 
supply of differentiated cells to the blood stream. In 
section 4, we show the steady states and death and 
we conclude the paper in section 5. The results of 
the agent-based simulations are included in the 
Appendix. 

2 DESCRIPTION OF THE 
MODEL 

Our model contains three basic types of cells and a 
notation for an empty space: 

• Stem cell (S), either can proliferate generating 
new stem cells or can convert to a transitive cell. 

• Transitive cell (T), either can convert to a 
differentiated cell or can convert back to a stem cell 
when there are no stem cells in its near 
neighborhood.  

• Differentiated cell (D), is the final product of a 
stem cell. After maturation, these cells leave the 
bone marrow and circulate in the blood, leaving 
back empty space. 

• Empty space (E), represents vacant space in the 
bone marrow. 

 

In our model, the bone marrow is represented as a 
connected, locally finite undirected graph. This 
describes the neighborhoods of bone marrow cells. 

Let G = (V, L) be a connected, locally finite 
undirected graph that denotes the bone marrow. Its 
vertex set V denotes the cells and the set of edges L 
describes the neighboring cells to which a cell is 
connected to in the bone marrow (Figure 1). 
 

 

Figure 1: Example graph showing part of bone marrow 
system in 2-Dimension. Each vertex is a cell and it has 
eight neighbors. The label of vertex denotes its type. 

Diagrammatically, the transitions of different 
types of cells in Agur et al.’s (2002) model and our 
proposed model are depicted in Figure 2 (N denotes 
a null cell in Agur et al.’s model). 

For every u, v ∈ V we denote by ρ(u, v) the 
distance between these vertices in the shortest-path 
metric induced by G.  N(v) = {u ∈ V |ρ(u, v) = 1} 
denotes the immediate neighborhood of a vertex v ∈ 
V, i.e. the set of vertices joined to v by an edge. B(v, 
n) denotes the ball of radius n centered in v ∈ V. It is 
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Figure 2: Comparison of Agur et al.'s (2002) model and the model proposed in this paper. 

the set of all vertices such that their distances from v 
do not exceed n. We write B(v, n) = {u ∈ V |ρ(u, v) ≤ 
n}. B(v, n) defines the near neighborhood of size n 
of vertex v. 

If U ⊆ V is a nonempty subset of vertices then 
for every v ∈ V let ρU(v) = minu∈U ρ(u, v) be the 
minimum distance between v and another vertex u 
contained in set U. 

A state of a vertex is a 1-tuple, a 2-tuple or a 3-
tuple depending on the cell type. The first coordinate 
denotes the cell’s type (S, T, D or E denoting a stem 
cell, a transitive cell, a differentiated cell or an 
empty space respectively). For a stem cell, the 
second coordinate denotes the direction of 
proliferation and the third coordinate denotes the 
simulated time τ as an internal counter. For a 
transition cell, the second coordinate denotes its 
generation (progeny) while the third coordinate 
denotes the simulated time. A differentiated cell has 
only two coordinates and the second coordinate 
denotes the simulated time. Finally, an empty space 
does not have any counter or any other property, 
thus it has a single coordinate that denotes the type. 

Let µ be the maximum number of immediate 
neighbors possible for any cell.  µ also denotes the 
number of directions for a stem cell to proliferate. A 
stem cell, when it proliferates, can occupy an empty 
space, if available, in its immediate neighborhood.  

A transitive cell can go through several 
generations (progeny) before it converts to a 
differentiated cell. A transitive cell moves from one 
generation to another after its internal counter 
reaches a certain threshold. There are M generations 
for a transitive cell, where M is greater than or equal 
to 1. When a transitive cell has moved into its last 
generation (i.e. Mth generation) and when its internal 
counter reaches a threshold, it converts to a 
differentiated cell. In circumstances when there is 
not even a single stem cell in the near neighborhood 
of a transitive cell, a transitive cell converts back to 
a stem cell. The rules given below also capture the 
fact that a transitive cell’s ability to convert back to 
a stem cell diminishes with each subsequent 
generation. Let η denote the distance multiple for a 
transitive cell to convert back to a stem cell. Thus, 
the conversion from a transitive cell to a stem cell 
depends on the distance multiple η and its current 

generation.  
 

Let Ω be the set of states of a vertex. 
 

A map x: V → Ω is the state of the entire graph. The 
set of all the states of the bone marrow graph G is 
denoted by ΩV. A state x ∈ ΩV of the bone marrow 
graph G at time t is denoted by xt. The state of a 

vertex v at time t is denoted by xt(v). 
With the above definitions, we are now ready to 

define the rules of an iterative operator on all states 
ΩV. It depends on three positive nonzero integers Φ, 
Ψ, and Θ. The rules for the state changes can be 
regarded as describing a family of cellular automata. 

The first sub-rule of rule (1) states that a stem 
cell converts to a transitive cell, if its internal 
counter representing its cycling phase has reached a 
threshold Ψ and its immediate neighborhood consists 
only of stem cells. This corresponds to receiving a 
signal that the microenvironment is saturated with 
stem cells. The evidence for such a feedback is 
provided by De Haan et al. (1996), where the 
authors show that Hemopoietic cell amplification in 
vivo is regulated by various mechanisms that appear 
to be under control of many Hemopoietic growth 
factors, including the activation and deactivation of 
the quiescent stem cells into the cell cycle. The 
second sub-rule within this rule specifies that if a 
stem cell’s internal counter has reached a threshold 
Ψ but its immediate neighborhood is not saturated by 
stem cells, then the stem cell enters into a quiescent 
state, i.e. it retains the same state. The third sub-rule 
states that when a stem cell’s internal counter 
reaches a threshold Ψ and there exists an empty 
space in its neighborhood, then it proliferates such 
that one of its descendants occupies the empty space 
and the other remains in the original location. The 
sub-rule also defines that the new stem cell as well 
as the stem cell at original location receive the 
renewed biological time. With this sub-rule, we also 
denote a systematic way of choosing the empty 
space for proliferation. The method we propose is by 
adding a directional component d in the state of 
every stem cell and by arranging all the possible 
directions µ in a circular (round-robin) order. A stem 
cell proliferates in the empty space in the direction 
of the directional component d of its state. If the 
direction given by the directional component d of 
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the state is occupied by any cell, then the stem cell 
continues to choose the next direction, in the round-
robin order, for availability of the empty space. 
After proliferation, the directional component of 
stem cell is incremented to point to the next 
direction. The last sub-rule states that if the internal 
counter of a stem cell has not reached a threshold Ψ 
then it is just incremented.  

Transitive cells are intermediate cells that can 
convert back to stem cells if there are not enough 
stem cells in their near neighborhood, a situation that 
can occur following radiation or organ damage. 
Theise and Harris (2006) detail the dedifferentiation, 
i.e., reversion of an intermediate cell into a stem cell. 
Rule (2) states that when a transitive cell’s internal 
counter reaches a threshold Θ it moves on to the 
next generation unless it is not in its last (Mth) 
generation. If a transition cell’s counter has reached 
the threshold Θ and it is in its last generation then it 
gets converted to a differentiated cell. In certain 
circumstances when a transitive cell does not have 
any stem cell in its near neighborhood then it gets 
converted back to a stem cell. The near 
neighborhood is governed by a constant η and the 
generation of the transitive cell. The stem cell like 
property of a transitive cell goes on decreasing with 
subsequent generations. The near neighborhood size 
to find a stem cell keeps on increasing with each 
subsequent generation of a transitive cell, implying 
its reduced capacity to regenerate and the 
requirement of an even stronger signal to convert 
back to a stem cell.  

Rule (3) states that when a differentiated cell’s 
internal counter reaches a threshold time Φ, it 
maturates. After maturation, the cell migrates to the 
blood stream leaving the original space occupied by 
the differentiated cell as empty space. 

Rule (4) specifies that an empty space does not 
change by itself. It does not have any internal 
counter nor is involved in any computation. 

We show next that the proposed model has 

strong homeostatic properties, similar to Agur et 
al.’s model. 

3 HOMEOSTASIS PROPERTY OF 
THE BONE MARROW MODEL 

We begin by investigating the property of stem cells 
to expand throughout the bone marrow. The 
following lemma shows that any point in the bone 
marrow graph gets occupied by a stem cell, given 
that initially there is at least one stem cell in the 
bone marrow graph. 
 

Lemma 1. For any Φ, Ψ, Θ if there exist two vertices 

u, v ∈ V such that at some time t, vertex v is not 
occupied by a stem cell and u is, then there exists an 
s > 0 such that v will be occupied by a stem cell at 
time t + s. 
 

Proof: From rule (1), we conclude that if u and v are 
neighbors then u remains a stem cell as long as v is 
not a stem cell. The vertex v itself turns into a stem 
cell in no more than Φ+μΨ time steps. This is the 
maximum time required including the time required 
for cell at vertex v to migrate to the blood stream (in 
case it was a differentiated cell), turn into an empty 
space and as it is a neighbor of a stem cell, become a 
stem cell after a maximum μΨ time steps. We can 
use induction on the distance ρ(u, v) to obtain a 
bound on the time that is needed for v to turn into a 
stem cell: 

s ≤ Φ + μ ρ(u, v) Ψ (5)
 

The proof above conveys that the distance ρU(t)(v) 
between a vertex v, which is not occupied by a stem 

cell at time t, to the subset U(t) ⊆ V of vertices 
which includes a stem cell vertex at time t is a non-
increasing function. Furthermore, there exists s ≤ Φ 
+ μρU(t)(v)Ψ such that ρU(t+s)(v) = 0. 

We now show that if r ≥ t + s then ρU(r)(v) ≤ Mη 
in any two consecutive time slots. This means that 
from the time t + s onwards there always is a stem 
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cell not farther than Mη edges from v in any two 
consecutive time slots. 
 

Lemma 2. Suppose that a vertex v becomes a stem 
cell at time t0, then for every t ≥ t0 there is a vertex u 

∈ B(v, Mη) which is occupied by a stem cell at time t 

or t+1. 
 

Proof: A necessary condition for the production of a 

stem cell at a vertex v at time t0 is that ∃v’ ∈ N(v), 

xt0−1(v’) = (S,*, Ψ). Now, the cell at vertex v remains 
a stem cell until last three conditions of rule (1) hold. 
Therefore, if the cell at vertex v becomes a transitive 
cell at time t1 > t0, either it still has a stem cell 
neighbor at time t1 or all of its neighbors become 
transitive cells simultaneously with v. If it is the first 
scenario then we are done. The second scenario can 
happen only if all the stem cells have their internal 
counters synchronized and reach the threshold Ψ 
simultaneously at time t1. In such a case, either there 
is a stem cell in the near neighborhood of size Mη or 
the vertex v will again convert from a transitive cell 
to a stem cell at time t1 + 1 as all its near neighbors 
are not stem cells. Thus if v is not a stem cell, there 
is a stem cell in B(v, Mη) at time t1 or t1+1. Applying 
Lemma (1) ensures that until the next time the vertex 
v is occupied by a stem cell, the distance from v to 
the closest stem cell will not exceed Mη in any two 
given consecutive time instances.  

A direct conclusion from Lemma (2) is the 
estimation for the density of stem cells in bounded 
vicinity. We state the same in the following lemma 
for graphs with bounded degree. The bone marrow 
can be described as a graph of bounded degree with 
each vertex connected only to its adjacent vertices. 

We need two more notations: 
If the graph G has the property that there exists Δ 

such that |N(v)| ≤ Δ, ∀v ∈ V, we say that G has 

bounded degree, and write deg(G) ≤ Δ. 

The density of stem cells in a given finite subset of 

vertices U ⊂ V at time t is the proportion at time t of 
the number of stem cells S in U and the total number 
of vertices in U. It is denoted by δt (U). 
 

Lemma 3. Let G be a graph of bounded degree. 
Suppose that at some time t0 a vertex v is occupied 

by a stem cell, then for every ball B = B(v, Mη) ⊂ G, 

limt→∞ δt (B) ≥ 1/(2*(ΔMη + 1)). 
 

Proof: By Lemma (1) and Lemma (2), any ball of 
radius Mη admits a stem cell from a certain moment 
on for any two consecutive time slots. The size of 
such a ball contains less than or equal to ΔMη + 1 

vertices.  

In essence Lemma (1), Lemma (2) and Lemma (3) 
show that not only is it true that one stem cell is 
sufficient to bring back the bone marrow system 
homeostasis, it is also true that the bone marrow has 
a built-in mechanism guaranteeing that stem cells do 
not become too scattered. Every ball of radius Mη is 
occupied by at least one stem cell at any two 
consecutive time steps from the moment it was 
occupied by a first stem cell. 

4 STEADY PRODUCTION OF 
DIFFERENTIATED CELLS 

We have seen that stem cells do fill the bone marrow 
graph nicely. In this subsection, we show that the 
system almost always generates enough mature 
differentiated blood cells. Before proving the same, 
we mention some observations: 

• When a transitive cell is created and if it has a 
stem cell neighbor, then it would always proceed to 
create a differentiated cell. The stem cell neighbor 
will remain a stem cell at least till the time a 
transitive cell becomes a differentiated cell, the 
differentiated cell becomes an empty space and the 
empty space is occupied by another stem cell. 

• Starting from non-saturated, if the complete 
available space is to be saturated with stem cells 
then every stem cell should divide into two stem 
cells and any stem cell should not convert to a 
transitive cell. If any stem cell converts to a 
transitive cell, then the condition above will ensure 
that it becomes a differentiated cell. 
 

An extreme situation can occur, when the system 
contains only stem cells at a time t and the internal 
counters of all stem cells are synchronized. In such a 
case, all the stem cells will convert to transitive cells 
on or before t + Ψ. At the next time instant, all these 
transitive cells will convert back to stem cells, as 
there will not be a single stem cell in their near 
neighborhood. This system would not produce any 
differentiated cells, but will also not die out. We can 
call such a state as resonant state as the cells will 
resonate between stems cells and transitive cells 
without producing any differentiated cells. 

A resonant state can occur for a block of holding 

capacity of 2
μ
 cells if it is occupied completely by 

stem cells starting from a single stem cell in μΨ 
number of time steps. The physical occupancy of 
stem cells in a given block depends largely on the 
round-robin way of choosing the directions and 

BIOINFORMATICS 2012 - International Conference on Bioinformatics Models, Methods and Algorithms

20



initial stem cell population. If the manner in which 
the round-robin arrangement of directions is 
clockwise or counter-clockwise then the resonant 
state would not occur, if starting with a single cell in 

two dimensional space as 2
μ
/μ2 is greater than 1 

when μ is greater than 4. For example, with μ = 8 in 
a two dimensional space, 28 = 512 thus in 8Ψ time 
steps 512 cells would be generated, but the ball of 
radius 8 from the vertex v can hold only (8+1+8)2 = 
289 number of cells. Thus, some stem cell would be 
surrounded by stem cells within 8Ψ time steps and it 
would convert to a transitive cell. The possibility of 
reaching a resonant state drops further after 
considering the co-ordination of a similar event in 
neighboring blocks. 

A resonant state would occur if all the cell 
positions are occupied by stem cells and their 
internal time is also synchronized. This is an 
extreme case. Thus, there are very few resonant 
states out of the total number of states and hence, 
there is a very low possibility that the model will be 
in a resonant state. 
 

Lemma 4. Suppose that a vertex v ∈ V is occupied by 

a stem cell or a transitive cell at time t. Then either v 
or one of its near neighbors in B(v, Mη) will be 
occupied by a differentiated cell within (μ+1)Ψ + 
(M+1)Θ + 1 iterations unless the system is in a 
resonant state. 
 

Proof: Assume that at vertex v there is a stem cell 
that has no differentiated neighbors, otherwise we 
are done. N(v) will consist only of stem cells by at 
most μΨ time steps. Then v or one of its neighbors 
will convert to a transitive cell after Ψ time steps. 
Such a transitive cell will always have stem cells in 
near neighborhood. Then after M generations of a 
transitive cell, it would convert to a differentiated 
cell, i.e. after (M+1)Θ time steps.  
 

If v is a transitive cell and if v has a stem cell in its 
near neighborhood then after (M+1)Θ time steps it 
becomes a differentiated cell. If v is a transitive cell 
and if v does not have any stem cell in its near 
neighborhood, it becomes a stem cell in the next 
time instance and the argument above follows. 

Thus, except in the case of a resonant state, there 
is a differentiated cell every (μ+1)Ψ + (M+1)Θ + 1 
iterations in B(v, Mη). 

Lemma (4) shows that in an eventuality of a 
severe perturbation, a transitive cell will convert 
back to a stem cell and bring back the entire system 
to a steady state as shown in Lemma (3).  

Note that in this model, one cannot guarantee 
that a particular stem cell will eventually be 

converted to a differentiated cell. The lemma above 
does guarantee that in the close vicinity of any stem 
cell some cell differentiates during a fixed bounded 
time interval unless the system is not in a resonant 
state. An immediate consequence of this is a lower 
bound on the supply of differentiated cells to the 
blood stream. 
 

Corollary 5. Suppose that at some time t0  a vertex v 
is occupied by a stem cell, then every ball of radius 
2Mη eventually supplies at least one mature cell 
every (μ+1)Ψ + (M+1)Θ +1 + Φ time steps unless 
the system is in a resonant state. 
 

Proof: By Lemma (3), every ball of radius Mη 
admits a stem cell from a certain moment onwards in 
any two consecutive time instances. Lemma (4) says 
that either this cell or one of its near neighbors (and 
so we argue about balls of radius 2Mη) converts to a 
differentiated cell within (μ+1)Ψ + (M+1)Θ +1 time 
steps  and migrate from the bone marrow as mature 
cells after Φ additional time steps. Thus, every ball 
of radius 2Mη eventually supplies at least one 
mature cell every (μ+1)Ψ + (M+1)Θ + 1 + Φ time 
steps. 

5 STEADY STATES AND DYING 
OUT STATES OF THE BONE 
MARROW MODEL 

We consider the unique state satisfying ∀v ∈ V, x(v) 

= (E) ∨ x(v) = (D,*) as the death state of the system. 

A state xt for which there exists a k ∈ Z+ such that xt+k 

is the death state, will be called a dying out state. 
Thus, a state not consisting of a single stem cell or a 
transitive cell is a dying out state. We claim that 
there is no other dying out state. 
 

Lemma 6. The dying out states are only those 
consisting of no stem cells or no transitive cells. 
 

Proof:  Let xt
 ∈ Ω be a state, which is not one of the 

dying out states. If there exists v ∈ V which is not a 
stem cell at time t and since there exists a stem cell 
at time t, v turns to a stem cell by Lemma (1). So by 
Lemma (2) there is always a stem cell in B(v, Mη) in 
any two consecutive time instants from the time v 
has converted to a stem cell. The system does not die 
out. Even if v is a transitive cell then it will become 
a stem cell if there is no stem cell in its near 
neighborhood. 

Assume, therefore, that V admits only stem cells at 
time t. If the counters are not synchronized they do 
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not convert to transitive cells at the same time 
instance and the system does not die out. If the 
counters are synchronized they enter into resonant 
state and again the system does not die out. 

Thus, we have proved that the model 
representing the bone marrow is dynamic in the 
sense that it continuously changes in its constitution 
and arrangement, and these changes occur at varying 
rates depending on the constants Φ, Ψ, and Θ. We 
have also seen that except for the death state, the 
system never dies out. The bone marrow is in the 
state of a dynamic equilibrium that can be 
considered as if it is in homeostasis. 

If there exist states x ∈ Ω in which for all k ∈ Z+, 
xt+k = xt, then these are the steady states of the 
system. 
 

Lemma 7. For every Φ, Ψ, Θ the model does not 
have steady states other than the death state and the 
resonant state. 
 

Proof: The fact that each differentiated cell matures 
and leaves the bone marrow eventually, combined 
with Lemma (1) and Lemma (6) implies the above. 

6 DISCUSSION 

In this paper, we have proposed a biologically 
feasible model of bone marrow by extending the 
model of Agur et al. (2002). The proposed model 
adds the ability to recover from severe perturbations 
of the bone marrow by adding rules that can convert 
a transitive cell back to a stem cell and bring back 
the system homeostasis. 

The main properties of our model are achieved 
from the feedback demand of rule (1), namely that a 
stem cell does not convert to a transitive cell unless 
its immediate microenvironment is saturated with 
stem cells. The feedback demand in rule (2) is also 
significant in the sense that a transitive cell can 
convert back to a stem cell in cases of severe 
perturbations resulting into loss of several stem 
cells. We obtain the results that stem cells are 
eventually dense (Lemma 2 and Lemma 3) and that, 
let alone the case when there is no stem cell or 
transitive cell, the system never dies out (Lemma 6). 
Even though our extension of the Agur et al.’s 
model is simple, the properties that emerge are 
general, and hold for more complex descriptions. It 
is a step ahead in the direction to model the 
immensely complex bone marrow system.  

Our extension of Agur et al.’s model removes all 
the drawbacks associated with it. To summarize: 

1. Our model has empty spaces but they no longer 
need any counters. 
2. In the model, a stem cell division is explicitly 
represented.  
3. The model has incorporated a directional 
component for the division of stem cells. 
4. A stem cell’s internal counter comes back to its 
initial state after division; i.e. it becomes a true 
daughter stem cell. Thus, a stem cell divides into 
two identical daughter stem cells. 
5. Transitive cells that have limited ability to 
convert back to stem cells are represented in our 
model. Their ability to regenerate to a stem cell 
diminishes with subsequent generations. 
6. One stem cell divides into a single empty space. 
For another division, the stem cell has to wait for its 
internal counter to reach a threshold as its internal 
counter gets reset after division. 

 

Our model overcomes all the drawbacks of Agur et 
al.’s (2002) model. It also does not require message 
passing between cells and the controlling 
microenvironment, as required by the model of 
d’Inverno and Saunders (2005). Hence, it is closer to 
biological reality. The validation of this fact is 
underscored by the agent-based simulations that we 
have carried out. The results of these simulations are 
included in the Appendix. These simulations also 
demonstrate that, as predicted, large fractions of 
stem cells do remain in the quiescent state (Gordon, 
2007). 

There are several other options of bringing the 
model even more closer to biologically observed 
complexity. There are two extensions that we would 
like to work on in the future. The first is to make a 
provision of apoptosis (cell death) for all types of 
cells. Secondly, we can provide a stochastic 
behavior for the stem cell proliferation to capture 
variations in the human hematopoietic system. 
Addition of the stochastic behavior will also enable 
the introduction of a randomized directional 
component. We would also like to increase the scale 
of the simulation of the bone marrow system and to 
perform the same in three-dimensional space, 
typically with simulated bone marrow size that can 
hold 108 to 1012 number of cells and with the model 
constants matching observed parameters (Michor, 
Hughes, Iwasa, Branford, Shah, Sawyers and 
Nowak, 2005). 
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APPENDIX 

An agent-based model was developed for the bone 
marrow system proposed in this paper. We have 
implemented the program in the C programming 
language and it is available at the following website: 
http://sites.google.com/site/stemcellmodel.  

The results given below are on a two 
dimensional grid of size 30 x 30 for the following 
constants: 
Φ = 4 Constant for differentiated cells. 
Ψ = 1 Constant for stem cells. 
Θ = 1 Constant for transitive cells. 
η = 2 Constant for distance measure for near 
neighborhood from a particular transitive cell. 
μ = 8 Number of directions in a 2-D space. 
M = 3 Number of generations of transition cells. 

We specified colors like Silver (S), Titanium Yellow 
(T), and Dark Red (D) to stem cells, transitive cells, 
and differentiated cells respectively. Also note that 
the directional component moves in the clockwise 
manner. 
 

Simulation 1: Starting with 10% stem cells 
 

 
Figure 3: Initial Screen (with 10% stem cells). 

 
Figure 4: After 100 time steps, 93.3% stem cells quiescent. 

 
Figure 5: After 3000 time steps, 88% stem cells quiescent. 

Simulation 2: Starting with single stem cell at top 
left. 

 
Figure 6: After 100 time steps, 91.9% stem cells quiescent. 
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