
TOWARDS THE AUTOMATIC ARCHITECTURE DRIVEN
SOFTWARE MODERNIZATION

Dimitar Birov and Yanka Todorova
Faculty of Mathematics and Informatics, Sofia University, James Bouchier blvd. 5, Sofia, Bulgaria

Dimitar.Birov@fmi.uni-sofia.bg, Yanka@Todorff.co.uk

Keywords: Software modernization, Model driven software development (MDD), Model driven architecture (MDA),
Model transformation, Domain specific language (DSL), Business process modelling.

Abstract: In this paper, we describe a strategy for implementing source code analysis, model extraction, edition and
analysis and code generation tools that can be applied to a software modernization of existing legacy
software intensive system. As well we present an integrated approach focused on model driven architecture
for software modernizations. Started with an extraction models from source code and other available
software artefacts, transforming these models in order to obtain modern structure of software, and then
generate a code from these models. Bussiness modeling tools and models naturally fits in the proposed
constuction. A tools implementing domain specific languages are integrated into framework in vertical
pipeline toolsuite.

1 INTRODUCTION

The constant evolution of software technology leads
to continuous modernization of IT systems and
software. Software modernization is a main driver of
software evolution. Current enterprise IT systems
are very complex, large and dispersed, which makes
tasks of modernization non-attractive from business
point of view. Moreover modernization of complex,
software intensive systems is very expensive task.
The reasons for software modernizations can be very
different: from technology driven (the obsolescence
of a technology) through the increasing users
business needs (continuously changing user
requirements) to market and business reasons
(integration of enterprise IT systems in merging
companies).

Full redesign and redevelopment of legacy
system is not possible in most cases due to lost
domain knowledge and technical skills for
modernization. Model-driven software development
(Stahl, Voelter, Czarnecki, 2006) offers an
opportunity for increasing the automation in
software modernizations. The full automation of this
process could not be performed because of internal
and external software quality attributes have to be
established like maintainability, testability,
reliability, security, etc.

This paper revisiting the possibilities to semi-
automate the processes of IT systems modernization.
We based on extraction models from source code
and other available software artefacts, transforming
these models in order to obtain modern structure of
software, and generate a code from these models.
Adding bussiness modeling tools and models
produced of them and merging these models with
others is one of the contribution of this paper.
Different tools supporting described process of
software modernization exists, but they lack of
integration in one and the same software
development framework or ingerated development
environment. Second contribution of the paper is a
common framework or toolsuite with vertical
integration of tools. As well the toolsuite reflects 4
model levels of abstraction.

The paper is organized as follows: Sections 2
gives an overview of domain specific languages.
Domain specific languages are used in different
stages of software development. They automate
some software engineers and design activities.
Section 3 overview some bridges between
technologivcal spaces. During software development
software engineers use knowledge, tools and
experience from different areas - technology spaces.
Section 4 presents proposed approach based on the
vertical pipeline scenario for possible software

136
Birov D. and Todorova Y.
TOWARDS THE AUTOMATIC ARCHITECTURE DRIVEN SOFTWARE MODERNIZATION.
DOI: 10.5220/0004459501360142
In Proceedings of the First International Symposium on Business Modeling and Software Design (BMSD 2011), pages 136-142
ISBN: 978-989-8425-68-3
Copyright c© 2011 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

modernization focused on architecture driven
approach of software development.

2 DOMAIN SPECIFIC
LANGUAGES

A domain specific language (DSL) (Fowler, 2010) is
a (programming, specification, modelling) language
dedicated to a particular domain or problem. The
advantage of a domain-specific language is that it
provides appropriate built-in abstractions and
notations according the problem domain. DSLs are
used in a broad range of application domains-
widely known example of DSL is MS Excel (Excel,
2010). Some software configuration or script
languages can be viewed as domain specific.
Software engineering and software architecture are
very interesting problem domains concerning all
process, stages and expertise of software
development. In other words each DSL is
specialised for a set of problems that share enough
characteristics that it is worthwhile to study them as
a whole. In this paper we focus on using DSL for
software modernization. The problems of design and
creating tools (compiler, interpreters) are out of
scope of the paper and a lots of publications could
be found.

Software modernization consists of following
stages – first, extraction models from software
artefacts (source code, databases, etc.), second
extracted models are transformed to models, which
are appropriate for modelling software components
and software architecture, and third stage is
automated code generation from obtained models.
These three stages are supported with specific DSLs.
The architecture driven software modernization is a
specific problem domain with a knowledge,
experience and technologies behind. This makes
DSLs very useful instrument in the domain of
modernization of software intensive systems.

DSL allows the different domain experts to be
involved in the software development process.
Domain experts can be software users who shares
domain knowledge with the developers. It is not
common software engineers to be an expert in the
domain and additional resources have to be planned
for their education. On the other hand, domain
experts are often needed not only during the
requirements specification, but also in the any stage
of the development. These stages include design,
modelling, verification and testing phases. If
properly designed, DSLs provide a chance to

involve these domain experts in the design of
complex models like software architecture or IT
architecture. DSLs extend the range and
collaboration of people being able to contribute to
the software modernization of the product. If the
software developing team use the specific languages
that each party is a familiar, this will decrease time
for production and will increase a quality of
software product and will shorten the time for
production.

Software (architecture) models can be specified
using DSLs. DSLs provide enough abstraction that
they can serve as model specification language
during the design phase of a software development.
Because many technical details are already built in
the semantics of the DSL, the specification written
in a DSL can often be used to automatically generate
code that forms the implementation. Thus, DSLs
often bridge the gap that exists between the phases
of the software engineering process, especially
between the design and the implementation phase.
As we see later software designers can use DSLs for
model transformation which allows in pipeline
manner to transform one model to another, more
abstract or more concrete model depending on
purpose. Pipeline transformation allows not losing
knowledge and expertise during transformation and
same time increase an abstract level of models. As
well each transformation step can be checked
syntactically and semantically.

The DSL is good for documentation purposes in
order to ease the communication between developers
and customers due to semantics included in DSL. If
the semantics of the DSL is formally specified using
some mathematical notation, then the DSL can be
used as specification language also, because an
unambiguous description of the semantics exists.

2.1 Business Process Modelling

Business processes (Boev, Surova, Nikolov,
Zhivkov, 2011) mirror business activities in the
company. BPMN (Shapiro, White, Palmer, 2011) is
a notation for graphical presentation of business
processes and model business activities according to
domain experts and business analysers. The
knowledge encoded in diagrams will be saved
during model transformation on later stages with
purposes of optimization of business process. We
could not generate executable code directly from
these diagrams but after appropriate transformation
we can reach models suitable for software assets
(source code, database schema, configuration script,
etc.) generation. After modification of the model

TOWARDS THE AUTOMATIC ARCHITECTURE DRIVEN SOFTWARE MODERNIZATION

137

modified source code can be obtained semi
automatically, which is syntax correct with respect
of some general purpose language (GPL).

2.2 DSL Categories

Two types DSL are known – textual and graphical
domain specific languages. Textual DSLs can be
easily embedded in other general purpose languages
(GPL). The editors for embedded languages are
widely used and users are familiar with it. Graphical
DSLs are more intuitive for domain experts and can
be embedded in some graphical language like UML
or BPMN language. Textual DSLs can be less
understandable for domain experts, while for
graphical DSLs can be difficult to develop tools with
appropriate quality.

Two other categories of DSLs are internal
(embedded) and external DSLs. Internal DSL is
implemented inside of general purpose host
language, and their characteristics vary depending
on the features of base language. Sometimes
embedded DSL is implemented as a library or
framework. External DSL gives a maximum syntax
and expressions freedom and requires a good
language development support. DSLs discussed in
the rest of the paper are external. This means that
they have notation used by domain experts.

3 BRIDGING TECHNOLOGY
SPACES

Model-driven approaches move focus of software
modernization from last generation programming
languages code to models expressed in some
modelling language - UML for example. Models can
graphically depict system’s structure and behaviour
at a certain point of abstraction. We can refer to a
source code as a textual representation of a model of
design concepts. In this paper this understanding is
important, because we are not focused on the source
code analysis and transformation techniques and
approaches in details but we are going to treat source
code as input for a model extraction and as an output
after code generation from a model of design
concepts.

3.1 Technological Spaces

The term technological spaces (TS) was initially
proposed by Kurtev et al. (Kurtev, Bezivin, Aksit,
2002) to name “a working context with a set of

associated concepts, body of knowledge, tools,
required skills, and possibilities" It is often
associated to a given user community with shared
know-how, educational support, and common
literature. It is also special network of exchange
expertise and ongoing research and a repository for
abstract and concrete resources.

Five technological spaces are commonly
recognized: Programming languages concrete and
abstract syntax, Ontology engineering, XML-based
languages, Data Base Management Systems
(DBMS), Model-Driven Architecture (MDA). Each
technology space is defined according to a couple of
basic concepts: Program/Grammar for the Syntax
TS, Document/Schema for the XML TS,
Model/Meta-Model for the MDA TS,
Ontology/Top-Level Ontology for the Ontology
engineering TS and Data/Schema for the DBMS TS.

In this paper we outline the bridges between
(abstract) Syntax TS (known as grammarware),
XML TS (known as documentware) and Model TS
(known as modelware) and integration of bodies of
knowledge developed by different research software
development communities. The grammarware
technological space is concerned with grammars,
grammar-based description languages, and
associated tools. The modelware technological space
is concerned with metamodels, model-based
description languages, and associated tools,
documentware is concerned with XML, XSLT and
associated tools. The bridges between these three TS
establish foundation of integration between
transformation tools discussed in the paper.
Integration is based on a physical, a logical, and a
pragmatical bridge between grammarware language
and modelling framework.

3.2 Bridge Grammarware to
Modelware

Most of modernization scenarios (Ulrich, Newcomb,
2010) involve dealing with source code conforming
to the grammar of a programming language. Some
of additional software assets (like configuration
files, script files, resource description files) which
are formed using a formal language can be analyzed
or manipulated by tools. These tools can automate
knowledge extraction from software assets in some
degree. This way the tools are significantly support
bridging and understanding knowledge between the
grammarware and modelware TS. Extracting and
creating models from source code is a first step for
architecture/model driven software modernization.

BMSD 2011 - First International Symposium on Business Modeling and Software Design

138

Two main groups of bridging approaches are
known - approaches focused on grammars or syntax
oriented approaches and approaches focused on
models or model oriented approaches. Grammar-
based approaches consider generation of
metamodels from grammars, while (meta)model
based approaches generate grammars from
metamodel. Software modernization process starts
with collection of some information from source
code and other available software assets (user
interfaces, databases, design documentation,
configuration files, etc.) that’s why grammar based
approach prevails. Model-based approach suits
significantly for code-generation phase in automated
software modernization process, when from models
a new code was generated which confirms a
(previously specified) language grammar. Both
process transforms text to model (T2M) and then
model to text (M2T) in order to implement software
modernization process.

The xText (Behrens, Clay, Efftinge, 2010) and
the works of Wimmer et al. (Wimmer, Kramler,
2005) and (Kunert, 2006) are examples of grammar-
based approaches. Operational semantics of
modelled languages in modelware TS can be
described formally as well (Sadilek, Wachsmuth,
2009).

This approaches lack of quality of generated
models. M2M transformations are not easy and lots
of manual work is needed to be performed in respect
to obtain clean models suitable for code generation.
These transformation languages do not provide
construct to make transformation process easy. In
order to obtain knowledge about the software system
parsing of additional software artifacts has to be
done. MoDisco (MoDisco, 2011) extract knowledge
from different software artifacts during the model
discovery phase - obtaining a model that represents a
view on the legacy system (or at least parts of it)
from its source code, raw data, available
documentation, etc.. Next MoDisco phase consists
of models analysis, particular model transformations
are performed until the final (desired) software
artifacts are obtained. MoDisco is an Eclipse open
source project and is based on Eclipse Modelling
Framework and integrates OMG/ADM standards
(KDM, SMM).

Gra2Mol (Izquierdo, Cuadrado, Molina, 2008) is
domain-specific model transformation language
specially intended to deal with source code
described by a grammar. Gra2MoL is a rule-based
transformation language whose rules have a similar
nature to that of other model transformation
languages.

Each transformation definition consists of a set
of transformation rules which specify relationships
between grammar elements and metamodel
elements. Gra2Mol raises significantly levels of
abstraction of model extracted from source code. For
example it is easy to extract knowledge KDM model
from Java code.

3.3 Bridge Modelware to
Grammarware

Widely used techniques in software development is
(partially) code generation from models. The
possibility to automate code generation process and
obtain code straight from models adds to the
flexibility, maintainability, and portability of
application. The different tools exist depending on
level of automation of the code generation process.
In the next part of this section we will outline the
WebDSL – DSL created for purposes of web
applications. WebDSL (Hemel, Kats, Visser, 2008),
(Hemel, Kats, Groenewegen, Visser, 2010), (Hemel,
Groenewegen, Kat, Visser, 2011) allows to reduce
amount of code developers need to write by
introducing abstractions same time entire application
is typechecked for errors.

Figure 1: Organization of models of the WebDSL
generator.

The architecture of WebDSL generator
comprises the approach of code generation by model
transformation, and follows the four-level model
organization of Bezivin (Bezivin, 2005). Fig. 1.
shows the model hierarchy – at top level (M3 meta-
meta-model) is the grammar of the Syntax
Definition Formalism SDF (Visser, 1997), (Heering,
Klint, Rekers, 1990). SDF is intended for the high-
level description of grammars for wide spectrum

TOWARDS THE AUTOMATIC ARCHITECTURE DRIVEN SOFTWARE MODERNIZATION

139

computer-based formal languages: general purpose
programming languages, domain-specific languages,
data formats and others. Any SDF definition
describes the syntax of the language and the
following step is to generate a working parser from
this definition.

The grammar of WebDSL is defined in SDF at
the M2 level meta-model and describes the valid
sentences of the language. From the grammar, the
parser automatically can be generated. Generated
parser transforms the textual representation of a
model to an abstract syntax tree (AST). All
subsequent transformations are applied to the AST
corresponding to the textual representation of the
model.

The WebDSL generator transforms high-level
models into Java code and XML files. The bridge
between three TS – model TS, syntax TS (Java) and
document TS (XML) is hardly coded in functionality
of the WebDSL. On three of them we could apply
transformation in syntax TS. We could transform
from one language to another use code-to-code
(C2C) transformation. In document TS we could
apply different schema for XML transformation.
Bridging between syntax TS and document TS is a
subject of study during the last decade and it is well
understood and established.

The transformations (of WebDSL model) are
expressed in Stratego (Bravenboer, M., Kalleberg,
K. T., Vermaas, R., Visser, E.. 2008),(Visser, 2004)
transformation language. Stratego/XT is a high-level
term rewriting system which implements the
paradigm of rewrite rules with programmable
rewriting strategies and integrates M2M, model-to-
code (M2C), and code-to-code (C2C)
transformations. A strategy is essentially function
that controls the order of application of more basic
transformations. As well Stratego provides
programmable strategies for building complex
transformations that control the application of rules.
In Stratego, the application of rewrite rules is under
the control of programmable strategies, such that
transformations can be explicitly staged.

Using strategies, the WebDSL generator is
divided into different transformation stages.
Actually the generator is organized as a pipeline of
model-to-model transformations. Each stage consists
of a set of rewrite rules that rewrite extensions of the
WebDSL core language to more primitive language
constructs. This technique of compilation by
normalization has advantage to reduce the semantic
gap between input and output model, this way
avoiding the complexity associated by directly
generating code from the input mode.

Model level (M1, Fig 1) of WebDSL models
web applications, which consisting of entity and
page definitions. At this level not all models that
conform to the WebDSL syntax are valid. That is
why semantic analysis needs to be performed. A
separate type checking stage of the generator
performs checks. If static semantic constraints are
violated an error reported. The semantic information
gathered at this stage is also used to provide context
information for other transformations.

Level M0 presents the actual web applications
consisting of programming language constructs (like
Java classes) and web (XHTML) pages. These
software assets represent the models at the M1 level.
M0 models can be implemented in different
languages like PHP, Python, JScript etc. This is very
useful and important for next modernization and
software evolution. For example product lines and
mobile application can be developed with a small
amount of efforts. Moreover that M0 systems can
consists of high-level application frameworks, in
case of Java these are Java Persistence API (JPA),
JavaServer Faces (JSF), etc. In some other cases
more elegant and flexible approach for
implementation is to insert middle level of
intermediate embedded DSLs into the general
purpose implementation language.

Extensions of the WebDSL language, such as the
access control and workflow abstractions are
realized as plug-ins to the base language, extending
the generator with new normalization rules.

4 PIPELINED TOOLSUITE

In this section we present our proposal for software
modernization based on previously described two
bridges. First of it based on a source code (P),
available artefacts, and documentation Artefacts(P)
= P + DataBasesSchema (used in P) + UserInterface
(HTML, Asp, Jscript, PHP web pages, dialog boxes,
XML files, etc.) + DocumentBase(about design of
P). Part of the artefacts confirms to some set of
grammars GrSet(Art(P)). From this set we can
generate models of representation MRep(Art(P))

FMEstr: GrSet(Art(P)) -> MRep(Art(P)) (1)

Model Extraction Functions (FMEstr) is a set of
functions which extract models from grammars for
each artefact of software application and source
code.

MRep(Art(P)) is a set of models. Each model
confirms to model from a set of metamodels
MMRep(Art(P)). These metamodels represent a

BMSD 2011 - First International Symposium on Business Modeling and Software Design

140

basic knowledge about the source code and other
artifacts of the existing system. Part of this
metamodels could be KDM of OMG group, which is
basic knowledge repository. Another metamodels
could be Abstract and/or Concrete Syntax Trees of
the source P. Another example could be entity
relationships schema for databases. This part is very
similar to this one implemented in Gra2Mol.

If we look back on models hierarchy at Fig.1.,
M0 level of model abstraction is a source code P and
Art(P), M1 level is presented by MRep(Art(P)) and
M2 level is represented by MMRep(Art(P)). M3
could be SDF for description of metamodel
construction.

Additionally to this some business process
specification can be obtained – if it is available we
can use it as an artefact of software. So this way
BPMN notation is a part of Art(P)). If it not exist
based on the users interviews we could create it
using visual modelling tools. Visual languages for
BP Modelling are part of Syntax TS supporting
BPM. As well visual languages are DSL languages
with appropriate tools supporting modelling. As a
DSL language they have a syntax (graphical
symbols) and semantic (incorporated into the
models). Many (visual) languages for modelling web
applications have been developed. WebML
(Brambilla, Comai, Matera, 2007) support
generation of (web) application from BP
specifications (Brambilla, 2006). Transformation
from existing BPMN to WebML can be automated
using DSL. As it is shown on Fig 2. through manual
activity we can create Choreography model. Then
through model transformation we can obtain
refinement set of models.

Figure 2: Automatic transformation of BPMN to WebML.

This way application executable model became a
part of MRep(Art(P)) and respectively we can obtain
extended part of MMRep(Art(P)). Merging models
obtained both ways will enrich knowledge obtained
from statically structured models with a knowledge
of processes or dynamical models. Call Flow Graph
(CFG) which is obtained from source code
extraction as a part of MRep(Art(P)) carry some
dynamical information but using BPMN models we
could obtain almost complete information about
dynamics of the process of execution.

The process of model transformation can be
automated also. Using toolsuite like XTEAM-2
(XTEAM), (Edwards, Brun, Medvidovic, 2010)
(eXtensible Tool-chain for Evaluation of
Architectural Models) we can automate process of
evaluation/creation of DSLs for manipulation of
models. This type of tools performs model checking
and model transformation. These tools operates on
metamodel level M3 and transformed models to
models through generated DSL.

MMTools: MMRep(Art(P)) ->
MMRep(Art(Q)) (2)

Art(Q) is a new set of models of artifacts of a new
modernized system Q. So next step from our
proposal goes down from refined and appropriate
metamodels to obtain concrete models (one of them
is software architecture model) which will represent
concrete artefacts of the new system Q. We got idea
for this from process of code generation, described
for WebDSL. We need particular DSLs for
obtaining models for each one of the metamodel in
MMRep(Art(Q)). Automatic creation of DSLs could
be done with XTEAM.

Code generation step is very trivial and well-
studied – from models of artefacts of Q we can
create the concrete exemplars for concrete platform.
This approach makes process of software
modernization very flexible.

5 CONCLUSIONS

In this paper we present an integrated approach
focused on model driven architecture for software
modernizations. Started with an extraction models
from source code and other available software
artefacts, transforming these models in order to
obtain modern structure of software, and generate a
code from these models. Bussiness modeling tools
and models naturally fits in the proposed
constuction. A recent (versions of) tools from
different technological spaces are integrated into
framework in vertical pipeline toolsuite.

Some details of integration can be a subjects for
future research. The protoype of this framefork in
Eclipse integrated development environnment is
under development.

TOWARDS THE AUTOMATIC ARCHITECTURE DRIVEN SOFTWARE MODERNIZATION

141

ACKNOWLEDGEMENTS

This research was fully supported by the Bulgarian
National Science Fund under Grant DO 02-
102/23.04.2009.

REFERENCES

Behrens Х., Clay М., Efftinge, С.,et al. Xtext User Guide,
http://www.eclipse.org/Xtext/documentation/1_0_1/xt
ext.pdf, 2010

Bezivin, J. On the unification power of models. Software
and System Modeling, 4(2):171–188, 2005.

Boev, S., Surova, E., Nikolov, K., Zhivkov, V.,
Incorporating collaboration In Business Processes.,
First International Symposium on Business Modeling
and Software Design, BMSD 2011

Brambilla, M., Generation of WebML Web Application
Models from Business Process Specifications, Demo at
6th International Conference on Web Engineering
(ICWE2006), July 2006, Palo Alto, CA, USA

Brambilla, P. F. M., Comai S., Matera, M.. Designing web
applications with WebML andWebRatio. In G. Rossi
et al., editors, Web Engineering: Modelling and
Implementing Web Applications, Human-Computer
Interaction Series. Springer, October 2007.

Bravenboer, M., Kalleberg, K. T., Vermaas, R., Visser, E..
Stratego/XT 0.17. A language and toolset for program
transformation. Science of Computer Programming,
72(1-2):52-70, 2008.

Edwards, G., Brun, Y., Medvidovic, N., Automated
Analysis and Code Generation for Domain-Specific
Models, Technical Report USC-CSSE-2010-517,
Center for Software and Systems Engineering,
University of Southern California, August 2010.

Excel, http://office.microsoft.com/en-us/excel/
Fowler M., Domain-Specific Languages, book, Addison-

Wesley, 2010, ISBN: 0321712943, 9780321712943
Heering J., Klint P., Rekers, J. Incremental generation of

parsers. 1344--1350. IEEE Transactions on Software
Engineering. 16. 12. 1990.

Hemel Z., Kats L. C. L., Visser E. Code Generation by
Model Transformation. A Case Study in
Transformation Modularity. ICMT 2008, LNCS 5063,
pp 183—198. Springer, June 2008. (An updated,
extended version was published in 2009 in SoSyM.)

Hemel Z., Kats L. C. L., Groenewegen, D., Visser, E.
Code Generation by Model Transformation. A Case
Study in Transformation Modularity. Software and
Systems Modeling, Vol. 9, Iss. 3, pp 375—402,
Springer, 2010.

Hemel, Z. , Groenewegen D. M., Kats L. C. L., Visser, E..
Static Consistency Checking of Web Applications with
WebDSL. Journal of Symbolic Computation, Volume
46, Issue 2, Elsevier, 2011.

Izquierdo, J. L. C., Cuadrado, J. S., Molina, J. G..
Gra2MoL: A domain specific transformation language

for bridging grammarware to modelware in software
modernization. In Workshop on Model-Driven
Software Evolution, 2008

Kunert, A., Semi-automatic generation of metamodels and
models from grammars and programs, Fifth Intl.
Workshop on Graph Transformation and Visual
Modeling Techniques, E. N. in Theorical Computer
Science, Ed., 2006.

Kurtev I., Bezivin, J., and Aksit M.. Technological spaces:
An initial appraisal. In CoopIS, DOA'2002 Federated
Conferences, Industrial track, 2002

MoDisco, http://www.eclipse.org/MoDisco/
Sadilek, D., Wachsmuth, G., Using Grammarware

Languages To Define Operational Semantics of
Modelled Languages, TOOLS '09: 47th International
Conference Objects, Models, Components, Patterns,
Springer, 2009.

Shapiro, R., White, St., Palmer, N., et al, BPMN 2.0
Handbook, book, 2011, ISBN: 9780981987033

Stahl, T., Voelter, M., Czarnecki K., Model-Driven
Software Development: Technology, Engineering,
Management, book, John Wiley & Sons, 2006
ISBN:0470025700

Visser, E. Syntax Definition for Language Prototyping.
PhD thesis, University of Amsterdam, September
1997.

Visser, E. Program transformation with Stratego/XT:
Rules, strategies, tools, and systems in StrategoXT-0.9.
In C. Lengauer et al., editors, Domain-Specific
Program Generation, LNCS 3016, pp 216–238.
Spinger, June 2004.

Wimmer, M., Kramler, G.: Bridging Grammarware and
Modelware. 4th Workshop in Software Model
Engineering (WiSME'05), October 3rd, 2005.

Ulrich W, Newcomb Ph., Information Systems
Transformation: Architecture-Driven Modernization
Case Studies, Morgan Kaufmann OMG Press, 2010,
ISBN: 0123749131

XTEAM http://softarch.usc.edu/~gedwards/xteam.html

BMSD 2011 - First International Symposium on Business Modeling and Software Design

142

