
DEVELOPMENT OF A LOW-COST SVM-BASED 
SPONTANEOUS BRAIN-COMPUTER INTERFACE 

Fernando Flórez, José M. Azorín, Eduardo Iáñez, Andrés Úbeda and Eduardo Fernández 
Biomedical Neuroengineering Group (NBIO), Miguel Hernández University of Elche, Elche, Spain 

Keywords: Brain-computer interface, Electroencephalography, Support vector machines, Emotiv epoc. 

Abstract: This paper describes a spontaneous non-invasive Brain-Computer Interface (BCI) using an inexpensive 
EEG device. The aim of this work is to determine the feasibility of using the Emotiv Epoc device in a BCI. 
BCIs provide a method for interaction with a computer for people with severe communication disabilities. 
The EEG signals of five healthy users have been registered and preprocessed. The Fast Fourier Transform 
(FFT) has been used to extract the relevant characteristics of the EEG signals. Frequency spectrum between 
8 Hz - 30 Hz has been calculated. An offline analysis to the recorded data has been performed using a 
Support Vector Machine (SVM) as a classification algorithm in order to differentiate three and four mental 
tasks. Results of up to 71% classification accuracy for three tasks and 64% classification accuracy for four 
tasks were obtained, showing that the Emotiv Epoc is suitable to be used in a Brain-Computer Interface. 

1 INTRODUCTION 

A Brain-Computer Interface (BCI) provides a 
communication and control system that does not 
depend on the brain’s normal neuromuscular output 
channels (Wolpaw, et al., 2002). A BCI is based on 
the use of the mental activity of a person to generate 
control commands in a device (Dornhege, et al., 
2007). For this purpose, the brain activity of the user 
has to be registered and processed appropriately in 
order to distinguish between different cognitive 
processes or “mental tasks”. 

BCIs are an alternative to classical methods of 
human-machine communication, like a keyboard or 
a mouse. For that reason, this kind of interfaces are 
very useful for people with severe communication 
disabilities. BCIs have been used in different 
applications, from the control of a wheelchair 
(Galán, et al., 2008) to the control of a smart home 
(Guger, et al., 2008). 

Brain activity can be registered in several ways, 
using invasive and non-invasive techniques. Using 
invasive techniques, the activity of a single neuron 
or a small group of neurons can be registered with 
microelectrodes arrays implanted directly in the 
brain. These techniques have been used to determine 
the intention of movements in animals (Carmena, et 
al., 2003) or to control a cursor on a screen (Serruya, 

et al., 2002). Non-invasive techniques use electrodes 
on the scalp to measure the EEG signals. For 
humans, non-invasive techniques based on EEG 
signals are more appropriate due to ethical aspects 
and medical risks. 

Non-invasive BCIs can be classified as evoked 
or spontaneous. In an evoked BCI, the registered 
signals evidence the automatic response of the brain 
to certain external stimuli (Bayliss, 2003; Sirvent, et 
al., 2010). Nevertheless, the need for external stimuli 
limits the number of applications. In contrast, in a 
spontaneous BCI, the user performs the mental tasks 
of his/her own free will (Iáñez, et al., 2010). 

Once the EEG signals have been registered, they 
have to be processed and filtered, and a 
classification has to be done in order to differentiate 
between the cognitive processes.  

Table 1: Inexpensive EEG devices. 

Price Range Device Channels 

0€ - 200€ 
Neurosky MindWave 

Modular EEG 
OCZ Technology  NIA 

1 
2-6 
3 

200€ - 500€ Emotiv Epoc 14 

500€ - 1.000€ Neurobit Optima 
Neurobics Pendant EEG 

2-4 
2 

 
 
 

415
Elgendi M., Vialatte F., Constable M. and Dauwels J..
IMMERSIVE NEUROFEEDBACK - A New Paradigm.
DOI: 10.5220/0003725704650469
In Proceedings of the International Conference on Neural Computation Theory and Applications (Special Session on Challenges in Neuroengineering-
2011), pages 465-469
ISBN: 978-989-8425-84-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



     
Figure 1: Sensor placement of the 14 data channels in the Emotiv Epoc, according to the 10/20 International System (left). 
Emotiv Epoc (centre). User with the Emotiv Epoc (right). 

Different classification algorithms has been used 
in BCI experiments (Bashashati, Fatourechi, Ward 
and Birch, 2007). Among several of them, like 
Linear Discriminant Analysis (LDA) and Neural 
Networks (NN), Support Vector Machines (SVM) 
provide a powerful method for data classification 
(Garrett, Peterson, Anderson and Thaut,  2003). In 
this project, a SVM has been used as a classification 
algorithm. 

Nowadays, several low-cost EEG devices are 
available for the consumer. They have a very 
affordable price by comparison with the professional 
EEG systems, whose prices vary between 10.000€ 
and 150.000€. Table 1 presents a list of inexpensive 
EEG devices. The Emotiv Epoc has been chosen in 
this experiment. 

In recent years, there has been an increasing 
amount of literature on inexpensive BCI. The 
Emotiv Epoc device have been used from the control 
of a mobile phone (Campbell, et al., 2010) to the 
control of a car without using a steering wheel 
(AutoNOMOS project Freie Universität Berlin, 
2011). 

This paper describes a spontaneous non-invasive 
EEG-based Brain-Computer Interface using the 
Emotiv Epoc device. The BCI developed uses the 
Fast Fourier Transform (FFT) to extract the 
relevants characteristics of the EEG signals. The 
results of five voluntary users will be obtained using 
a Support Vector Machine (SVM) as a classification 
algorithm to differentiate between mental tasks. The 
aim of this experiment is to check the feasibility of 
using an inexpensive EEG device in a Brain-
Computer Interface. 

The rest of this paper is organized as follows. 
Section 2 describes the Brain-Computer Interface 
developed and the classifier used is introduced. In 
section 3, the experimental results are shown. 
Finally, Section 4 contains the conclusions.  

2 BRAIN-COMPUTER 
INTERFACE 

In this section, the Emotiv Epoc device is 
introduced. The procedure followed to register the 
EEG signals and to extract the relevant features of 
the signals is explained. The classifier used in this 
experiment is presented. 

2.1 EEG Hardware 

The EEG signals have been registered using the 
Emotiv Epoc headset (Figure 1, centre), released by 
the Emotiv Company (Emotiv Systems, 2011).  

Emotiv Epoc is a wireless device composed of 
14 channels and 2 reference electrodes, located 
according to the 10/20 International System 
(American Electroencephalographic Society, 1991) 
in the positions AF3, F7, F3, FC5, T7, P7, O1, O2, 
P8, T8, FC6, F4, F8 and AF4. CMS/DRL reference 
electrodes are located in the positions P3/P4 (Figure 
1, left). Each electrode has to be moistened with a 
saline solution before being used. Once the device is 
placed on the scalp (Figure 1, right), the signal 
quality of the electrodes has to be checked. It has 
been seen that the signal quality decreases when the 
electrodes get dry. 

The Emotiv Epoc device does not provide the 
impedance level of each channel. Instead, the 
contact quality of each sensor is represented by a 
colour code: Black – No signal; Red – Very poor 
signal; Orange – Poor signal; Yellow – Fair signal; 
Green – Good signal. This connection quality has to 
be checked from within the Emotiv Control Panel. 

The headset transmits the EEG signals wirelessly 
to a Windows-based computer in the frequency of 
2.4  GHz.   The  signals  are  filtered  on  the  device 

NCTA 2011 - International Conference on Neural Computation Theory and Applications

416



 

Table 2: Mental tasks. 

Number Name Description 
1 Rest Countdown from 20 to 0 

2 Arm 
Imagination of a repetitive  

low circular movement  
of the right arm 

3 Song Mentally singing the  
“Happy Birthday” song 

4 Math Mentally performing  
the Fibonacci series 

5 Object Mentally rotating an object 

before amplifying the data. A high-pass filter at 0.16 
Hz cut-off frequency and a low-pass filter at 83 Hz 
are applied. The internal sampling rate is 2.048 Hz. 
Then, the data are filtered with a 5th order Sinc filter 
to notch out the 50 Hz and 60 Hz frequencies, and 
downsampled to 128 Hz. 

2.2 Mental Tasks 

Five cognitive processes or mental tasks have been 
considered in the experiment. These mental tasks 
have been taken into consideration due to the 
placement of the electrodes in the Emotiv Epoc. 
Table 2 shows the mental tasks considered. 

2.3 Acquisition 

A Matlab interface has been developed to register 
the EEG signals. The interface gives us options to 
connect and disconnect with the device, select the 
configuration of the test, and start/stop the test. The 
process used to register the data is as follows. 

Each test is comprised of 25 trials, lasts 250 
seconds and is repeated 4 times. There is a short 
pause between tests. Once the test is started, the 
mental tasks that the user has to perform are 
displayed. Each of the five tasks is showed randomly 
5 times, and lasts 10 seconds (Figure 2). In the first 2 
seconds, a cross appears to indicate the user that a 
new task is started; in the following 2 seconds, the 
image of the mental task to perform is displayed; in 
the last 6 seconds, the user performs the mental task. 
Once the test is finished, 120 seconds of each task 
have been recorded. A similar timing paradigm as 
the one described in (Guger, et al., 2001) is used to 
register the data. 

Using the Emotiv Control Panel, it has been 
checked that the signal quality of each electrode was 
always good (green colour). 

EEG signals were acquired at a sample 
frequency of 128 Hz. The EEG signals registered are 
processed in sequences of 1 second of length, 
including an overlap of 1/8 a second with the 

previous sequence. Once the data are recorded, they 
are preprocessed and a feature extraction algorithm 
is applied. 

2.4 Feature Extraction 

Before extracting the main characteristics of the 
registered data, a preprocessing has been applied to 
the signals. The DC offset in all channels is 
removed. Afterwards, the baseline of each electrode 
is removed, eliminating the mean value of the signal 
registered by each electrode. In this preprocessing, 
all 14 electrodes have been used. 

Following this, a feature extraction algorithm is 
applied to the data in order to extract the main 
characteristics of the EEG signals, to facilitate the 
posterior classification. The algorithm used is based 
on the frequency domain. The Fast Fourier 
Transform (FFT) has been used to extract the 
relevant characteristics of the EEG signals. The 
frequency spectrum between 8 Hz and 30 Hz, with  
2 Hz resolution (12 features), has been calculated in 
order to analyze the rhythmic activity variations. All 
the mental tasks are expected to be found in the EEG 
signals in the alpha (8 Hz – 12 Hz) and beta waves 
(12 Hz – 30 Hz). Each feature vector consists of 168 
elements (12 features x 14 electrodes), obtaining 960 
feature vectors by user. 

Finally, a Surface Laplacian is applied in order to 
improve the signal/noise ratio in each electrode 
(Babiloni, et al., 2001). 

2.5 Classifier 

A Support Vector Machine (SVM) has been used in 
this experiment as a classification algorithm. SVMs 
are a very useful technique for data classification 
(Hsu, Chang and Lin, 2003). It uses a hyperplane or 
set of hyperplanes in a high or infinite dimensional 
space to distinguish between object of different 
classes. 
A classification task usually consists in separating 
data  into  trainings  and  testing sets. Each instance 

 
Figure 2: Time distribution of each task. 
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Figure 3: Image of a user performing the test. 

in the training set contains a class label and several 
features. The aim of SVM is to create a model, 
based on the training data, which predicts the class 
labels of the test data given its features.  

The accuracy of the SVM depends on the 
selection of the kernel type and the values of its 
parameters. In a Brain-Computer Interface project, 
the kernel generally used is the Gaussian or Radial 
Basis Function (RBF) kernel (Lotte, et al., 2007). 

There are two parameters for an RBF kernel, the 
regularization parameter C and the parameter γ, 
which determines the RBF width. It is not known 
which C and γ are best for a specific problem. For 
that reason, some kind of parameter search has to be 
done. The aim of this search is to identify C and γ 
values so that the classifier can accurately predict 
the testing data. The best combination of C and γ is 
often selected by a grid-search using cross-
validation with exponentially growing sequences of 
C and γ. The one with the best cross-validation 
accuracy will be selected. 

3 EXPERIMENTAL RESULTS 

In this section, the experimental results obtained are 
showed. The offline analysis performed to the 
registered data of five users is explained, using SVM 
as a classification algorithm. 

3.1 Participants 

For the experiment, the participation of five healthy 
right-handed male users with ages between 26 and 
40 years old has been required. After informing the 
users of the requirements and tests involved, the 
volunteers agreed and gave their consent to take part 
in the tests. All users had normal vision and hearing, 

and no history of neurological or psychiatric 
disorders. All tests were done in an isolated room 
with the user sitting in front of a PC screen at a 
distance of 1 meter (Figure 3). 

3.2 SVM Classification 

An offline analysis has been done to the registered 
data. For this purpose, a Matlab application has been 
developed.  

The results of five users have been calculated. 
Users 4 and 5 had not been previously involved in 
any BCI experiment. For every user, all the possible 
combinations of three and four tasks have been 
calculated. For each combination of tasks, data may 
be randomly extracted and separated into training 
data and test data. 75% of the data has been used as 
a training data, whereas the rest 25% is used as a test 
data. 

As a classification algorithm, the Matlab 
interface of LIBSVM 2.9 library has been used 
(Chang and Lin, 2001). LIBSVM, developed by the 
National Taiwan University, is a free integrated 
software for Support Vector classification, 
regression, and distribution estimation. Features of 
LIBSVM include, among many other, multi-class 
classification, different SVM formulations and 
various type of kernels. 

In this BCI experiment, a C-SVM with a Radial 
Basis Function (RBF) kernel has been used. To 
identify C and γ parameters values so that the 
classifier can more accurately predict the testing 
data, a grid-search using cross-validation with 
exponentially growing sequences of C (between 2-3 
and 212) and γ (between 2-13 and 21) has been 
perform. For the classification of three tasks, values 
of C=512 and γ=0.0020 present the best results. 
Classifying four tasks, values of C=1.024 and 
γ=0.0020 have been selected. 

Input values to the SVM were not normalized, 
because normalization did not improve the 
classification results. 

3.3 Results 

For each user and combination of three and four 
tasks, the mean value of the accuracy achieved after 
10 iterations of the application has been calculated, 
in order to determine more accurately the success 
percentage in the classification. Average percentage 
of success for every set of tasks and user has been 
calculated. Tables 3 and 4 show the results obtained 
from the classification of three and four different 
tasks. 
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Table 3: Percentage of correct classification using 3 mental tasks. 

Tasks User 1 User 2 User 3 User 4 User 5 Average 
Rest – Arm – Song 66.80 67.57 73.39 67.96 63.12 67.77 
Rest – Arm – Math 74.08 72.80 72.78 67.55 67.18 70.88 

Rest – Arm – Object 67.75 68.90 76.35 66.34 66.91 69.25 
Rest – Song – Math 66.40 70.07 72.80 67.79 62.44 67.90 

Rest – Song – Object 65.30 67.73 78.46 66.55 64.30 68.47 
Rest – Math – Object 73.88 71.05 78.30 66.69 68.58 71.70 
Arm – Song – Math 73.50 71.75 72.58 67.59 66.10 70.31 
Arm –Song – Object 69.95 67.91 75.96 67.91 66.37 69.62 
Arm – Math – Object 72.13 74.32 75.39 67.10 68.53 71.49 
Song – Math – Object 71.83 71.21 76.35 68.05 66.86 70.86 

Average 70.16 70.33 75.24 67.35 66.04  

Table 4: Percentage of correct classification using 4 mental tasks. 

Tasks User 1 User 2 User 3 User 4 User 5 Average 
Rest – Arm – Song – Math 63.78 64.84 66.70 61.28 58.75 63.07 

Rest – Arm – Song – Object 60.06 61.47 70.12 60.90 57.78 62.07 
Rest – Arm – Math – Object 66.15 64.93 69.84 61.30 61.04 64.65 
Rest – Song – Math – Object 62.38 63.45 70.57 61.38 58.60 62.28 
Arm – Song – Math – Object  65.70 65.34 69.13 61.08 60.44 64.34 

Average 63.62 64.01 69.27 61.19 59.32  
 

On average, involving both three and four tasks,  
user number 3 has achieved the best results. It is 
noted that user number 3 was the one with more 
experience in BCI experiments. In contrast, users 4 
and 5, with no previous experience in BCI 
experiments, have obtained a low success 
percentage. This may probe that the more experience 
you have in BCI experiments, the better results you 
will obtain. Figure 4 shows the average accuracy of 
each user.  

As regards sets of three tasks, the combination 
between the task “Rest – Math – Object” presents 
the greatest accuracy, with a 71.70%.  As for sets of 
four tasks, the best results are classifying the tasks 
“Rest – Arm – Math – Object”, with a 64.65% of 
success. These combination of three and four tasks 
can be used as cognitive processes to classify in 
future works.  

Furthermore, with the aim of obtaining more 
information in the classification, tables 5 and 6 show 
the average success percentage obtained by 5 users 
on each task, for each combination of three and four 
tasks. Results show that the task “Rest” has the 
greatest success percentage (77.16% using 3 tasks 
and 72.28% using 4 tasks) and the task “Math” has 
the second best success percentage (69.72% using 3 
tasks and 62.77% using 4 tasks). This is reflected in 
the results showed in tables 3 and 4, where the 
combination of tasks that achieves the best results 
include these 2 tasks. 

All results obtained indicate that an SVM 
classification together with the Emotiv Epoc as a 
register device can be used in a Brain-Computer 
Interface.   

 
Figure 4: Average accuracy of each user. 

4 CONCLUSIONS AND FUTURE 
WORK 

A spontaneous non-invasive Brain-Computer 
Interface has been proposed. Using the Emotiv Epoc 
device to register the EEG signals, this BCI allows 
performing the classification of mental tasks. The 
feature extraction process using Fast Fourier 
Transform and the subsequent classification using a 
Support Vector Machine has been explained.  

Results obtained in the classification have been 
showed. Success percentage for three and four tasks  
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Table 5: Average success percentage by 5 users on each task using 3 mental tasks. 

Tasks Rest Arm Song Math Object 
Rest – Arm – Song 75.02 64.48 60.83 - - 
Rest – Arm – Math 76.76 64.70 - 67.86 - 

Rest – Arm – Object 80.44 62.28 - - 63.67 
Rest – Song – Math 76.19 - 58.60 66.54 - 

Rest – Song – Object 77.09 - 60.07 - 66.44 
Rest – Math – Object 77.48 - - 68.53 67.35 
Arm – Song – Math - 67.66 73.71 68.93 - 
Arm –Song – Object - 65.69 77.35 - 65.09 
Arm – Math – Object - 67.04 - 76.39 68.49 
Song – Math – Object - - 73.86 70.05 66.86 

Average 77.16 65.31 67.40 69.72 66.32 

Table 6: Average success percentage by 5 users on each task using 4 mental tasks. 

Tasks Rest Arm Song Math Object 
Rest – Arm – Song – Math 71.83 60.10 53.46 62.02 - 

Rest – Arm – Song – Object 73.03 58.24 54.28 - 57.70 
Rest – Arm – Math – Object 73.24 58.27 - 63.01 58.31 
Rest – Song – Math – Object 71.01 - 53.81 62.13 61.70 
Arm – Song – Math – Object  - 59.54 69.10 63.92 59.31 

Average 72.28 59.04 57.66 62.77 59.26 

 

indicates that the Emotiv Epoc is suitable to be used 
in a Brain-Computer Interface. As a future work, the 
implementation of an online application has been 
proposed. Also, is expected to perform different tests 
using volunteers with disabilities. In order to 
compare results and verify if there is any 
performance loss due to the Emotiv Epoc device, it 
is expected to test the same experiments with a high-
quality research-oriented EEG system (gUSBamp 
g.tec). Finally, the use of a new set of tasks (for 
example, new motor tasks, tongue movement, 
mental calculation or word formation) are suggested, 
as well as the use of new classification algorithms.  
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